Lecture 15. Convergence in Distribution, Continuous
Mapping Theorem, Delta Method

11/7/2011

Approximation using CLT (Review)

The way we typically use the CLT result is to approximate the distribution of v/n(X,, —
@)/ by that of a standard normal. Note that if \/n(X,, — u)/o is exactly a N (0, 1) random
variable, then X, is exactly a N(u,0%/n) random variable for any n. Consequently, if
Vn(X, — w)/o is approximately a N(0,1) random variable, then it makes sense to use
N(u,0?/n) as an approximating distribution for X, .

Similarly, one can also use N(nu,no?) to approximate the sum of n i.i.d. random vari-
ables: S, := > " | X;. For example, one could use N(np,np(l — p)) to approximate the
a binomial distribution: Bin(n,p) because the binomial distribution is the sum of n i.i.d.
Bernoulli random variables.

This approximation is not good unless n is sufficient large. How large is sufficiently large
is a good question. It depends on the underlying distribution from which the random sample
(X1, ..., X,,) is drawn.

For the normal approximation of Bin(n,p), a useful rule of thumb is that n > 30 is large
enough for Bin(n,p) to be approxiamted by N (np,np(1 — p)) well enough. (Question: does
this depend on p?)

How does one evaluate the approximation quality? One needs to have a measure of
distance on the space of probability measures. A popular distance is the Kolmolgorov-

Smirnov distance:

KS(Fy, F) = sup |F,(x) — F(z)], (1)

z€ER
where F, and F' are two cdf’s. There are many other distances that one can use, but the
KS distance is the most common, perhaps for its simplicity. Now that we have a measure of
approximation quality, we can do the following computer exercise:

(1) For a fixed n, and some very large S (say S = 1000000), generate S random n-



samples: (Xi,...,Xps) 1 s =1,...,.S from a population distribution Fx with known mean g

and variance o2.

(2) Compute /n(X,1 — p)/0,...;v/n(Xns — p)/o. Note that this is an i.i.d. sample of
size S from the distribution F 55, _ /0 (1)

(3) Estimate the cdf of /(X1 — p)/o by Fmx,, we(@) = STEX0 1H{y/n(X —
p)jo <}, )

(4) Estimate the KS distance between F 5%, )/, (2) and ®(x) by taking many grid
points on R.

(5) Change n and repeat to see how large n needs to be for the KS distance to be smaller
than your tolerance level.

Obviously, different Fy will require different n. Try Bern(p) for different p. Try t-
distributions with different degrees of freedom, and then try other familar distributions.

You will get a sense about the applicability of the central limit theorem.

Convergence in Distribution
The CLT is a special case of a sequence of random variables “converge in distribution” to

a random variable.
Definition 1. A sequence of random variables or vectors {Y,,}22, converges in distribu-

tion to a random variable Y, if

lim Pr(Y, <y)=Pr(Y <vy), (2)

n—oo
for all points of continuity of Fy(-).

Remark. (1) Equivalently, (2) can be replaced by:

lim Fy (y) = F(y).

n—o0

(2) Convergence in distribution is denoted —4: Y,, —4 Y.
(3) If Y,, =4 Y, we say Y, has an asymptotic/limiting distribution with cdf Fy (y).
(4) The concept of convergence in distribtion involves the distributions of random vari-

ables only, not the random variable themselves. e.g. suppose the CLT conditions hold:

\/E(Xn —p)/o —q Z,

where Z ~ N(0,1). It is equally true that \/n(X,, — u)/o —4 —Z, because —Z has the same
distribution as Z.
Because of this, it is OK to simply write Y,, —4 N(0,1) when Y,, —; Z for Z ~ N (0, 1).
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(5) In the definition above, the convergence of the cdf is only required to hold for contin-
uous points of the cdf of the limiting random variable. This is important when the limiting
random variable is not a continuous random variable.

e.g. Y, has pdf:

n/2 x € (0,1/n)
froy) =4n/2 ze(1,1+1/n)

0 otherwise.

Then Y, —4 Y for Y ~ Bern(1/2), and Fy, (y) — Fy(y) for all y € R/{0,1}.

Continuous Mapping Theorem

Theorem 1 (CMT). Ifh: R™ — RP is a continuous function, Y,, Y are R™-valued random
vectors, and Y,, —q4 Y. Then

e.g. IfY, =47 ~ N(0,1), then Y2 —; Z? ~ x*(1).
If (X, —p)/o —q Z ~ N(0,1), then \/n(X, —p) =4 0Z ~ N(0,5?).

IfY, = (Yin, Yon) —aq (Z1,2Z5) = Z ~ N(0, L), then Y,Y,, =4 Z' Z ~ x*(2).

The CMT requires joint convergence (in distribution) of all elements of the vector Y.
The following is NOT true: “if Y}, —q Y1, Ya,, —a Ya then A(Y],, Ys,) —4 h(Y1,Y2)"

However, the following is true: “if Y3 ,, —4 Y1, Ya,, =, 7 then h(Y,,,7) —4 h(Y1,r), where
r is a constant vector”. This is due to the Lemma 1 below. In Lemma 1, “Y,, » —, 7" can be
replaced by “Y,, o —4 r”, because for a constant vector/scalar r, “Y, 5 —, r” is equivalent to

“Y,2 —q 1" as we proved in class.

Lemma 1. Supposes {Y, 1}, and {Y,2}72, are two sequences of random vectors/variables,

and as n — 00, Y1 —q Y1 and Y, o —, v for a random variable Y; and a constant vec-

Yin Y
Yn::< 1’>—>d< 1)z:Y.
Yon r

Proof. (scalar case only) The set of points of continuity of the cdf of Y is {(y1,y2) € R* 1 41 €
C(Fy,),y2 # 1}, where C(Fy,) is the set of points of continuity of the cdf of Y;. Consider

tor/scalar r. Then



(y1,y2) € {(y1,y2) € R* 1 € C(Fy,),y2 < r}. Then

FYn(y17y2) Pr len S yh}é,n S y2)

IN
)~<

(Y1,
r(Yo, < y2)
r(Yz,
(
(

n_TSyQ_T)

I
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r(r— Yo, >r—1ys)
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r |}/2,n_r| >’f‘—y2)
—p 0
= Fy(y1,v2). (3)

Consider (y1,y2) € {(y1,y2) € R* : y1 € C(Fy,),y2 > r}. Then

Fy, (y1,y2) = Pr(Yi, < w1, Yo, < o)

= Fy(y1,92)- (4)
Also,
Fy, (y1,42) = Pr(Yi, < 1) — Pr(Yin < yi, Yo > o)
> Pr(Yi, < yi) — Pr(Ya, > 4o)
= Pr(}/l,n < yl) - Pr(}/é,n —Tr>Y— T)
> Pr(Yi, <y) = Pr([Yau — 7 > 4o — 1)
— Pr(Y; <y1) -0
= Iy (y1,42)- (5)

The above two displays imply that Fy, (y1,vy2) = Fy (y1,y2)-
Now that we have shown for any (y1,%2) € {(y1,%2) € R* : y2 # 7}, Fy, (y1,%2) —
Fy (y1,y2). By the definition of convergence in distribution, Y,, —4 Y. O]

The vector case of the above lemma can be proved using the Cramér-Wold Device, the
CMT, and the scalar case proof above. The Cramér-Wold device is a device to obtain the

convergence in distribution of random vectors from that of real random variables. The the-



orem is given below without proof (— the proof is straightforward using mgf’s/characteristic

functions).

Theorem 2 (Cramér-Wold Device). Suppose {Y,}22 ,is a sequence of random k-vectors that
satisfies ¢ Y, —q4¢’Y asn — oo for all c € R¥. Then'Y, =, Y.

The proof of Lemma 1 for the vector case is left as an exercise.

Example 1. t-statistic with estimated variance. Consider a random sample {Xi,..., X,,}
drawn from a population distribution with mean p and variance o? > 0. The distribution
of the following random variable is often of interest: t, = \/n(X, — u)/Sx, where S% =
(n—1)"1>""  (X;— X,)?. Suppose that the mean u is known constant, then ¢, is a statistic
and it is often called the t-statistic. What is the limiting distribution of ¢,,?

We have learned from the CLT that ¢, x Sx/o —4 Z ~ N(0,1). We have shown in

previous lectures that S% —, 2. Then by Lemma 1 above, we have

(s

Let h(z,y) = ox/\/y. Then, h is continuous and ¢, = h(t, x Sx/0,5%). Thus, the CMT
applies and give us
tn —a W(Z,0%) = Z — N(0,1). (7)

Example 2. the asymptotic distribution of the variance estimator. Consider a random
sample { X, ..., X,,} drawn from a population distribution with mean y and variance o and
finite fourth moment: E|X|* < co. We know that o2 is the probability limit of S%. What is
the limiting distribution of \/n(S% — 02)?

VS, o) = LS - %) - 2
= n\/_ﬁl Z[(Xz - M)2 - (Xn - ,u)2 — o+ 02/n]
- n\/_ﬁl Z[(Xz —p)? = o*] — :\_/T_i (Xo — )+ vVno®/(n — 1)

= g D06 = OV ) i),




First, by the CLT, /n(X,, — i) =4 Zo1 ~ N(0,02). Because /n/(n — 1) — 0, by the
Lemma 1 above,
—d .
vn/(n—1) 0

(Vn(X, —p)? +vno?/(n—1) =40-Z, +0-0* = 0. (8)

By the CMT,

vn

n—1

Second, let Y; = (X; — p)®. Then (Y,...,Y,) is an i.id. sample from a population
distribution with mean 02 and variance E((X; — )% — 0?)2. By the CLT, we have

% Z[(Xz - ,Uz)Q _ 0'2] —d Z2 ~ N(()’E((Xl o M)Q o 0,2)2).

Clearly, n/(n — 1) — 1. Using Lemma 1 and CMT in the same way as above, we have

n

X o a2 )

n

Using (8) and (9), Lemma 1 and CMT, we can conclude that

Vn(S%x — 0%) =4 Zs. (10)

Example 3. the Delta Method. Suppose én is an estimator of # and én satisfies

~

Vn(0, —0) =4 N(0,%). (11)

Suppose g : R% — R* is continuously differentiable in a neighborhood of §. Then, the delta

method says:

where G = ag—é?).
Proving that the Delta method works is a simple application of Lemma 1 and CMT.
Because ¢(-) is continuously differentiable in a neighborhood of #, we can do a mean-value

~

expansion of g(#,) around 0:

Vin(g(6,) — 9(6)) = [v/n(6n = 0)], (13)




where 8, lies on the line segment connectiong 6, and 6. Notice that /n(g(6,) — g(0)) is
a product of two components: % and [/n(0, — 0)]. We already know that the second
component converges in distribution to N(0,%). We need to show the limiting distribution
(or probability limit) of the first component.
The convergence (11) implies that
. 1 .
0, —0)=—"- 0, —0)] —40-N(0,X) =0. 14
(B, 0) = =+ [Viill, = 0)] =0- N(.) (14)
Or equivalently: 6, — 6 —, 0. Because 0, lies in between 6, —0, |0, —0|| < |6, — 0]|. Thus
for any € > 0,
Pr(||6, — 0| > ) < Pr(||d, — 0| > &) — 0. (15)

Therefore, §,, —, 0. This and the Slutsky Theorem (you can use the CMT here, too) implies
that

9g(0y) dg(6)
T
By (11) and (16) and Lemma 1, the convergences in the two equations hold jointly. Then
by (13) and the CMT,

—G. (16)

Vi(g(0n) = 9(0)) =4 G- N(0,%) = N(0,GEG). (17)

The O, and o, notation.

Definition 2 (Bounded in Probability). A sequence of random variables {Y},} is bounded
in probability, if
im lim Pr(]Y,| > B) =0.

B
Remark. (1) A sequence of uniformly bounded random variables (3B |Y,,| < B ¥n) is bounded
in probability.
(2) A sequence of random variables that converges in distribution to a random variable

Y is bounded in probability.

lim lim Pr(]Y,| > B) = lim lim [Pr(Y,, > B) + Pr(Y,, < —B)]

B—o00 n—00 B—oc0 n—o00

= lim lim [1 — Fy, (B) + Pr(Y,, < —B)]

B—oo n—o0

< lim lim [1 — Fy, (B) + Fy. (—B)]

B—o0o n—o0

B—oo

—0, (18)



where the last equality holds by the properties of cdf’s.
(3) A sequence of random variables that converges in probability to a constant r is

bounded in probability. (Excercise)

Definition 3 (O,). We say Y,, = O,(X,,) if and only if Y,,/X,, is bounded in probability as

n — o0.

Remark. The definition above gives us a notation for “bounded in probability™ Y,, = O,(1)
if and only if Y,, is bounded in probablility as n — oo.

Another useful notation is the little o,:
Definition 4 (0,). We say Y,, = 0,(X,,) if and only if ¥,,/X,, —,0 as n — oo.

Remark. The definition above gives us a new notation for “convergence in probability”: Y, —,

r if anly only if Y;, — r = 0,(1), or sometimes written as Y, = r + o0,(1).

Remark. Loosely, one can say that Y, is of smaller “stochastic order” than X, when Y, =
0p(Xo).



