
Lecture 15. Convergence in Distribution, Continuous

Mapping Theorem, Delta Method
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Approximation using CLT (Review)

The way we typically use the CLT result is to approximate the distribution of
√
n(X̄n −

µ)/σ by that of a standard normal. Note that if
√
n(X̄n− µ)/σ is exactly a N(0, 1) random

variable, then Xn is exactly a N(µ, σ2/n) random variable for any n. Consequently, if
√
n(X̄n − µ)/σ is approximately a N(0, 1) random variable, then it makes sense to use

N(µ, σ2/n) as an approximating distribution for X̄n .

Similarly, one can also use N(nµ, nσ2) to approximate the sum of n i.i.d. random vari-

ables: Sn :=
∑n

i=1 Xi. For example, one could use N(np, np(1 − p)) to approximate the

a binomial distribution: Bin(n, p) because the binomial distribution is the sum of n i.i.d.

Bernoulli random variables.

This approximation is not good unless n is su�cient large. How large is su�ciently large

is a good question. It depends on the underlying distribution from which the random sample

(X1, ..., Xn) is drawn.

For the normal approximation of Bin(n, p), a useful rule of thumb is that n > 30 is large

enough for Bin(n, p) to be approxiamted by N(np, np(1− p)) well enough. (Question: does
this depend on p?)

How does one evaluate the approximation quality? One needs to have a measure of

distance on the space of probability measures. A popular distance is the Kolmolgorov-

Smirnov distance:

KS(Fn, F ) = sup
x∈R
|Fn(x)− F (x)|, (1)

where Fn and F are two cdf's. There are many other distances that one can use, but the

KS distance is the most common, perhaps for its simplicity. Now that we have a measure of

approximation quality, we can do the following computer exercise:

(1) For a �xed n, and some very large S (say S = 1000000), generate S random n-
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samples: (X1,s, ..., Xn,s) : s = 1, ..., S from a population distribution FX with known mean µ

and variance σ2.

(2) Compute
√
n(X̄n,1 − µ)/σ, ...,

√
n(X̄n,S − µ)/σ. Note that this is an i.i.d. sample of

size S from the distribution F√n(X̄n,1−µ)/σ(·).
(3) Estimate the cdf of

√
n(X̄n,1 − µ)/σ by F̂√n(X̄n,1−µ)/σ(x) = S−1

∑S
s=1 1{

√
n(X̄n,1 −

µ)/σ ≤ x}.
(4) Estimate the KS distance between F̂√n(X̄n,1−µ)/σ(x) and Φ(x) by taking many grid

points on R.

(5) Change n and repeat to see how large n needs to be for the KS distance to be smaller

than your tolerance level.

Obviously, di�erent FX will require di�erent n. Try Bern(p) for di�erent p. Try t-

distributions with di�erent degrees of freedom, and then try other familar distributions.

You will get a sense about the applicability of the central limit theorem.

Convergence in Distribution

The CLT is a special case of a sequence of random variables �converge in distribution� to

a random variable.

De�nition 1. A sequence of random variables or vectors {Yn}∞n=1 converges in distribu-

tion to a random variable Y , if

lim
n→∞

Pr(Yn ≤ y) = Pr(Y ≤ y), (2)

for all points of continuity of FY (·).

Remark. (1) Equivalently, (2) can be replaced by:

lim
n→∞

FYn(y) = F (y).

(2) Convergence in distribution is denoted →d: Yn →d Y .

(3) If Yn →d Y , we say Yn has an asymptotic/limiting distribution with cdf FY (y).

(4) The concept of convergence in distribtion involves the distributions of random vari-

ables only, not the random variable themselves. e.g. suppose the CLT conditions hold:

√
n(X̄n − µ)/σ →d Z,

where Z ∼ N(0, 1). It is equally true that
√
n(X̄n−µ)/σ →d −Z, because −Z has the same

distribution as Z.

Because of this, it is OK to simply write Yn →d N(0, 1) when Yn →d Z for Z ∼ N(0, 1).
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(5) In the de�nition above, the convergence of the cdf is only required to hold for contin-

uous points of the cdf of the limiting random variable. This is important when the limiting

random variable is not a continuous random variable.

e.g. Yn has pdf :

fYn(y) =


n/2 x ∈ (0, 1/n)

n/2 x ∈ (1, 1 + 1/n)

0 otherwise.

Then Yn →d Y for Y ∼ Bern(1/2), and FYn(y)→ FY (y) for all y ∈ R/{0, 1}.

Continuous Mapping Theorem

Theorem 1 (CMT). If h : Rm → Rp is a continuous function, Yn, Y are Rm-valued random

vectors, and Yn →d Y . Then

h(Ym)→d h(Y ).

e.g. If Yn →d Z ∼ N(0, 1), then Y 2
n →d Z

2 ∼ χ2(1).

If
√
n(X̄n − µ)/σ →d Z ∼ N(0, 1), then

√
n(X̄n − µ)→d σZ ∼ N(0, σ2).

If Yn := (Y1n, Y2n)
′ →d (Z1, Z2)

′
=: Z ∼ N(0, I2), then Y

′
nYn →d Z

′
Z ∼ χ2(2).

The CMT requires joint convergence (in distribution) of all elements of the vector Yn.

The following is NOT true: �if Y1,n →d Y1, Y2,n →d Y2 then h(Y1,n, Y2,n)→d h(Y1, Y2)�.

However, the following is true: �if Y1,n →d Y1, Y2,n →p r then h(Y1,n, r)→d h(Y1, r), where

r is a constant vector�. This is due to the Lemma 1 below. In Lemma 1, �Yn,2 →p r� can be

replaced by �Yn,2 →d r�, because for a constant vector/scalar r, �Yn,2 →p r� is equivalent to

�Yn,2 →d r� as we proved in class.

Lemma 1. Supposes {Yn,1}∞n=1 and {Yn,2}∞n=1 are two sequences of random vectors/variables,

and as n → ∞, Yn,1 →d Y1 and Yn,2 →p r for a random variable Y1 and a constant vec-

tor/scalar r. Then

Yn :=

(
Y1,n

Y2,n

)
→d

(
Y1

r

)
=: Y.

Proof. (scalar case only) The set of points of continuity of the cdf of Y is {(y1, y2) ∈ R2 : y1 ∈
C(FY1), y2 6= r}, where C(FY1) is the set of points of continuity of the cdf of Y1. Consider
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(y1, y2) ∈ {(y1, y2) ∈ R2 : y1 ∈ C(FY1), y2 < r}. Then

FYn(y1, y2) = Pr(Y1,n ≤ y1, Y2,n ≤ y2)

≤ Pr(Y2,n ≤ y2)

= Pr(Y2,n − r ≤ y2 − r)

= Pr(r − Y2,n > r − y2)

≤ Pr(|Y2,n − r| > r − y2)

→p 0

= FY (y1, y2). (3)

Consider (y1, y2) ∈ {(y1, y2) ∈ R2 : y1 ∈ C(FY1), y2 > r}. Then

FYn(y1, y2) = Pr(Y1,n ≤ y1, Y2,n ≤ y2)

= Pr(Y1,n ≤ y1)− Pr(Y1,n ≤ y1, Y2,n > y2)

≤ Pr(Y1,n ≤ y1)

→ Pr(Y1 ≤ y1)

= Pr(Y1 ≤ y1, r ≤ y2)

= FY (y1, y2). (4)

Also,

FYn(y1, y2) = Pr(Y1,n ≤ y1)− Pr(Y1,n ≤ y1, Y2,n > y2)

≥ Pr(Y1,n ≤ y1)− Pr(Y2,n > y2)

= Pr(Y1,n ≤ y1)− Pr(Y2,n − r > y2 − r)

≥ Pr(Y1,n ≤ y1)− Pr(|Y2,n − r| > y2 − r)

→ Pr(Y1 ≤ y1)− 0

= FY (y1, y2). (5)

The above two displays imply that FYn(y1, y2)→ FY (y1, y2).

Now that we have shown for any (y1, y2) ∈ {(y1, y2) ∈ R2 : y2 6= r}, FYn(y1, y2) →
FY (y1, y2). By the de�nition of convergence in distribution, Yn →d Y .

The vector case of the above lemma can be proved using the Cramér-Wold Device, the

CMT, and the scalar case proof above. The Cramér-Wold device is a device to obtain the

convergence in distribution of random vectors from that of real random variables. The the-
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orem is given below without proof (� the proof is straightforward using mgf's/characteristic

functions).

Theorem 2 (Cramér-Wold Device). Suppose {Yn}∞n=1is a sequence of random k-vectors that

satis�es c
′
Yn →d c'Y as n→∞ for all c ∈ Rk. Then Yn →d Y .

The proof of Lemma 1 for the vector case is left as an exercise.

Example 1. t-statistic with estimated variance. Consider a random sample {X1, ..., Xn}
drawn from a population distribution with mean µ and variance σ2 > 0. The distribution

of the following random variable is often of interest: tn =
√
n(X̄n − µ)/SX , where S

2
X =

(n−1)−1
∑n

i=1(Xi− X̄n)2. Suppose that the mean µ is known constant, then tn is a statistic

and it is often called the t-statistic. What is the limiting distribution of tn?

We have learned from the CLT that tn × SX/σ →d Z ∼ N(0, 1). We have shown in

previous lectures that S2
X →p σ

2. Then by Lemma 1 above, we have(
tn × SX/σ

S2
X

)
→d

(
Z

σ2

)
. (6)

Let h(x, y) = σx/
√
y. Then, h is continuous and tn = h(tn × SX/σ, S2

X). Thus, the CMT

applies and give us

tn →d h(Z, σ2) = Z → N(0, 1). (7)

Example 2. the asymptotic distribution of the variance estimator. Consider a random

sample {X1, ..., Xn} drawn from a population distribution with mean µ and variance σ2 and

�nite fourth moment: E|X|4 <∞. We know that σ2 is the probability limit of S2
X . What is

the limiting distribution of
√
n(S2

X − σ2)?

√
n(S2

X − σ2) =

√
n

n− 1

n∑
i=1

[(Xi − X̄n)2 − n− 1

n
σ2]

=

√
n

n− 1

n∑
i=1

[(Xi − µ)2 − (X̄n − µ)2 − σ2 + σ2/n]

=

√
n

n− 1

n∑
i=1

[(Xi − µ)2 − σ2]− n
√
n

n− 1
(X̄n − µ)2 +

√
nσ2/(n− 1)

=
n

n− 1
· 1√

n

n∑
i=1

[(Xi − µ)2 − σ2]−
√
n

n− 1
(
√
n(X̄n − µ))2 +

√
nσ2/(n− 1).
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First, by the CLT,
√
n(X̄n − µ) →d Z21 ∼ N(0, σ2). Because

√
n/(n − 1) → 0, by the

Lemma 1 above, ( √
n(X̄n − µ)
√
n/(n− 1)

)
→d

(
Z1

0

)
.

By the CMT,

√
n

n− 1
(
√
n(X̄n − µ))2 +

√
nσ2/(n− 1)→d 0 · Z1 + 0 · σ2 = 0. (8)

Second, let Yi = (Xi − µ)2. Then (Y1, ..., Yn) is an i.i.d. sample from a population

distribution with mean σ2 and variance E((Xi − µ)2 − σ2)2. By the CLT, we have

1√
n

n∑
i=1

[(Xi − µ)2 − σ2]→d Z2 ∼ N(0, E((Xi − µ)2 − σ2)2).

Clearly, n/(n− 1)→ 1. Using Lemma 1 and CMT in the same way as above, we have

n

n− 1
· 1√

n

n∑
i=1

[(Xi − µ)2 − σ2]→d Z2. (9)

Using (8) and (9), Lemma 1 and CMT, we can conclude that

√
n(S2

X − σ2)→d Z2. (10)

Example 3. the Delta Method. Suppose θ̂n is an estimator of θ and θ̂n satis�es

√
n(θ̂n − θ)→d N(0,Σ). (11)

Suppose g : Rdθ → Rk is continuously di�erentiable in a neighborhood of θ. Then, the delta

method says:
√
n(g(θ̂n)− g(θ))→d N(0, GΣG′), (12)

where G = ∂g(θ)
∂θ′

.

Proving that the Delta method works is a simple application of Lemma 1 and CMT.

Because g(·) is continuously di�erentiable in a neighborhood of θ, we can do a mean-value

expansion of g(θ̂n) around θ:

√
n(g(θ̂n)− g(θ)) =

∂g(θ̄n)

∂θ′ [
√
n(θ̂n − θ)], (13)
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where θ̄n lies on the line segment connectiong θ̂n and θ. Notice that
√
n(g(θ̂n) − g(θ)) is

a product of two components: ∂g(θ̄n)

∂θ′
and [

√
n(θ̂n − θ)]. We already know that the second

component converges in distribution to N(0,Σ). We need to show the limiting distribution

(or probability limit) of the �rst component.

The convergence (11) implies that

(θ̂n − θ) =
1√
n
· [
√
n(θ̂n − θ)]→d 0 ·N(0,Σ) = 0. (14)

Or equivalently: θ̂n− θ →p 0. Because θ̄n lies in between θ̂n− θ, ||θ̄n− θ|| ≤ ||θ̂n− θ||. Thus
for any ε > 0,

Pr(||θ̄n − θ|| > ε) ≤ Pr(||θ̂n − θ|| > ε)→ 0. (15)

Therefore, θ̄n →p θ. This and the Slutsky Theorem (you can use the CMT here, too) implies

that
∂g(θ̄n)

∂θ′ →p
∂g(θ)

∂θ′ = G. (16)

By (11) and (16) and Lemma 1, the convergences in the two equations hold jointly. Then

by (13) and the CMT,

√
n(g(θ̂n)− g(θ))→d G ·N(0,Σ) = N(0, GΣG

′
). (17)

The Op and op notation.

De�nition 2 (Bounded in Probability). A sequence of random variables {Yn} is bounded
in probability, if

lim
B→∞

lim
n→∞

Pr(|Yn| > B) = 0.

Remark. (1) A sequence of uniformly bounded random variables (∃B |Yn| < B ∀n) is bounded
in probability.

(2) A sequence of random variables that converges in distribution to a random variable

Y is bounded in probability.

lim
B→∞

lim
n→∞

Pr(|Yn| > B) = lim
B→∞

lim
n→∞

[Pr(Yn > B) + Pr(Yn < −B)]

= lim
B→∞

lim
n→∞

[1− FYn(B) + Pr(Yn < −B)]

≤ lim
B→∞

lim
n→∞

[1− FYn(B) + FYn(−B)]

= lim
B→∞

[1− FY (B) + FY (−B)]

=0, (18)

7



where the last equality holds by the properties of cdf's.

(3) A sequence of random variables that converges in probability to a constant r is

bounded in probability. (Excercise)

De�nition 3 (Op). We say Yn = Op(Xn) if and only if Yn/Xn is bounded in probability as

n→∞.

Remark. The de�nition above gives us a notation for �bounded in probability�: Yn = Op(1)

if and only if Yn is bounded in probablility as n→∞.

Another useful notation is the little op:

De�nition 4 (op). We say Yn = op(Xn) if and only if Yn/Xn →p0 as n→∞.

Remark. The de�nition above gives us a new notation for �convergence in probability�: Yn →p

r if anly only if Yn − r = op(1), or sometimes written as Yn = r + op(1).

Remark. Loosely, one can say that Yn is of smaller �stochastic order� than Xn when Yn =

op(Xn).
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