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1. Introduction

Population games are used to model strategic interactions in which

(i) the number of agents is large,
(ii) each agent is small,
(iii) agents are anonymous, with each agent’s payoffs depending on

his own strategy and the distribution of others’ strategies.

Typically it is also assumed that

(iv) the number of populations is finite,
(v) agents in each population are identical.

Prototypical example: traffic networks.

Many examples in economics, computer science, biology, sociology, and other fields.



The traditional approach to prediction in games is equilibrium analysis.

It is based on strong assumptions about what players know:

that players fully understand the game they are playing,

that they are able to correctly anticipate how others will act.

These assumptions are especially demanding in games with many agents.



An alternative approach: a dynamic, disequilibrium analysis.

One assumes that agents occasionally receive opportunities to switch strategies.

An object called a revision protocol specifies when and how they do so.

The definition of the protocol reflects

what information is available to agents when they make decisions, and

how this information is used.



A population game, a population size, and a revision protocol generate a Markov
process on the set of population states—that is, of distributions over pure strategies.

We will study this process over a fixed time horizon in the large population limit.

A suitable law of large numbers leads to a deterministic limit: the mean dynamic.

The analysis uses tools from the theory of dynamical systems.

Alternatively, stochastic stability analysis focuses on infinite horizon behavior as
either a noise parameter or the population size approaches its limit.

This analysis uses tools from the theory of stochastic processes.
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2. Population games

2.1 Definitions

We consider games played by a single unit-mass population.

S = {1, . . . ,n} strategies
X = {x ∈ Rn

+ :
∑

i∈S xi = 1} population states/mixed strategies
Fi : X→ R payoffs to strategy i (continuous)
F : X→ Rn payoffs to all strategies

x∗ is a Nash equilibrium if

(1) x∗i > 0 implies that Fi(x∗) ≥ F j(x∗) for all j ∈ S.

Theorem. Every population game admits at least one Nash equilibrium.



2.2 Examples

ex. 1. Matching in (symmetric two-player) normal form games

A ∈ Rn×n payoff matrix
Ai j = e′i Ae j payoff for playing i ∈ S against j ∈ S
Fi(x) = e′i Ax = (Ax)i total payoff for playing i against x ∈ X
F(x) = Ax payoffs to all strategies



ex. 2. Congestion games (Beckmann, McGuire, and Winsten (1956))

Home and Work are connected by paths i ∈ S consisting of links ` ∈ L .

The payoff to choosing path i is

−(the delay on path i) = −(the sum of the delays on links in path i)

Fi(x) = −
∑
`∈Li

c`(u`(x)) payoff to path i
xi mass of players choosing path i
u`(x) =

∑
i: `∈Li

xi utilization of link `
c`(u`) (increasing) cost of delay on link `



2.3 The Geometry of Population Games
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The simplex is X = {x ∈ Rn
+ :

∑
i∈S xi = 1}.

Its tangent space is TX = Rn
0 ≡ {z ∈ R

n :
∑

i∈S zi = 0}.

The matrix Φ = I − 1
n 11′ ∈ Rn×n is the orthogonal projection of Rn onto TX.

If π ∈ Rn then

Φπ = π − 1
1
n

∑
i∈S

πi ≡ π − 1π̄

Φ eliminates information about average payoffs, while preserving information
about payoff differences, and hence about the incentives that revising agents face.



1

2 3

(i) 123 Coordination

R

P S

(ii) standard Rock-Paper-Scissors

FC3(x) =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3

 ; FRPS(x) =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 =


xS − xP

xR − xS

xP − xR

 .



The tangent cone of X at x is be the set of directions of motion from x that do not
cause the state to leave the simplex X:

TX(x) =
{
z ∈ Rn : z = α

(
y − x

)
for some y ∈ X and some α ≥ 0

}
.

The normal cone of X at x is the polar of the tangent cone of X at x.

It contains directions that form an obtuse or right angle with every vector in TX(x):

NX(x) = (TX(x))◦ =
{
y ∈ Rn : y′z ≤ 0 for all z ∈ TX(x)

}
.
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Theorem. Let F be a population game. Then x ∈ NE(F) if and only if F(x) ∈ NX(x).



3. Revision Protocols and Mean Dynamics

Evolutionary dynamics for population games are designed to capture two basic
assumptions.

Inertia: agents only occasionally consider switching strategies.

Myopia: agents base their decisions on the information they have about the current
strategic environment.



3.1 Revision Protocols

ρ revision protocol
ρF : X→ Rn×n

+ the revision protocol for game F
ρF

ij(x) conditional switch rate

A population game F, a revision protocol ρ, and a finite population size N together
define a stochastic evolutionary process on the discrete grid X N = X ∩ 1

NZ
n.

Each agent has a rate R stochastic alarm clock.

The clock’s ring signals the arrival of a revision opportunity for the clock’s owner.

If he is playing i ∈ S, he switches to strategy j , i with probability 1
Rρ

F
ij(x);

he continues to play strategy i with probability 1 − 1
R
∑

j,i ρ
F
ij(x).

In general ρF
ii(x) has no meaning.

It does if
∑

j∈S ρ
F
ij(x) = 1.

Then we set R = 1 and call ρF
ij(x) a conditional switch probability.



3.2 Information Requirements for Revision Protocols

Reactive protocols only depend on the game by way of the current payoff:

ρF(x) = ρ(F(x), x).

Most protocols in the literature are of this form.

The remaining protocols are called prospective.

They require agents to know enough about the payoff functions
to engage in counterfactual reasoning.

Protocols can also be distinguished by the amount and types of data about the
current strategic environment that they require.

A third distinction separates continuous and discontinuous protocols.



3.3 The Stochastic Evolutionary Process and Mean Dynamics

The game F, the protocol ρ, and a finite population size N
define a Markov process {XN

t }t≥0

on the finite state space X N = X ∩ 1
NZ

n.

Since each of the N agents receives revision opportunities at rate R,
revision opportunities arrive in the population as a whole at rate NR.

Let τk denote the arrival time of the kth revision opportunity.

Then the transition law of the process {XN
t } is

P
(
XN
τk+1

= y
∣∣∣ XN

τk
= x

)
=



xiρF
ij(x)

R
if y = x + 1

N (e j − ei), j , i,

1 −
∑
i∈S

∑
j,i

xiρF
ij(x)

R
if y = x,

0 otherwise.



The mean dynamic

We consider the behavior of {XN
t } over [0,T] as N grows large.

Over the next dt time units, starting from state x:

the expected number of opportunities arriving during is NR dt.

the expected number received by current strategy i players is Nxi R dt.

the expected number of these that lead to switches to strategy j is Nxi ρF
ij(x) dt.

∴ the expected change in the proportion of agents using strategy i is∑
j∈S

x jρ
F
ji(x) − xi

∑
j∈S

ρF
ij(x)

 dt.

The mean dynamic induced by F and ρ is thus

(3) ẋ = VF(x), where VF
i (x) =

∑
j∈S

x jρ
F
ji(x) − xi

∑
j∈S

ρF
ij(x).



Example (Pairwise proportional imitation and the replicator dynamic).

(4) ρF
ij(x) = ρi j(F(x), x) = x j[F j(x) − Fi(x)]+.

An agent who receives a revision opportunity chooses an opponent at random.

This opponent is a strategy j player with probability x j.

The agent imitates the opponent only if the opponent’s payoff is higher than his
own, doing so with probability proportional to the payoff difference.



ẋi =
∑
j∈S

x jxi[Fi(x) − F j(x)]+ − xi

∑
j∈S

x j[F j(x) − Fi(x)]+

= xi

∑
j∈S

x j(Fi(x) − F j(x))

= xi

Fi(x) −
∑
j∈S

x jF j(x)

 .
This is the replicator dynamic of Taylor and Jonker (1978), the best known dynamic
in evolutionary game theory.



After 3.3: Ordinary differential equations

A continuous vector field V : Rn
→ Rn defines an ordinary differential equation on

Rn:

d
dt xt = V(xt).

Often we write ẋt for d
dt xt; we also express the previous equation as

(D) ẋ = V(x).

When the current state is xt, the current velocity of state is V(xt). (Show picture.)

The trajectory {xt}t∈I is a solution to (D) if ẋt = V(xt) at all times t in the interval I.
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Example: ẋ = ax

We call f : O→ Rn Lipschitz continuous if there exists a scalar K such that∣∣∣ f (x) − f (y)
∣∣∣ ≤ K

∣∣∣x − y
∣∣∣ for all x, y ∈ O.

Theorem (The Picard-Lindelöf Theorem). Let V : O → Rn be Lipschitz continuous.
Then for each ξ ∈ O, there exists a scalar T > 0 and a unique trajectory x : (−T,T) → O
with x0 = ξ such that {xt} is a solution to (D).



Theorem ((Forward) invariance on compact convex sets).

Let C ⊂ Rn be a compact convex set, and let V : C→ Rn be Lipschitz continuous.

(i) Suppose that V(x̂) ∈ TC(x̂) for all x̂ ∈ C. Then for each ξ ∈ C, there exists a unique
x : [0,∞)→ C with x0 = ξ that solves (D).

(ii) Suppose that V(x̂) ∈ TC(x̂) ∩ (−TC(x̂)) for all x̂ ∈ C. Then for each ξ ∈ C, there
exists a unique x : (−∞,∞)→ C with x0 = ξ that solves (D).



The semiflow φ : [0,∞) × C→ C generated by (D) is defined by φt(ξ) = xt,
where {xt}t≥0 is the solution to (D) with initial condition x0 = ξ.

If we fix ξ ∈ C and vary t, then {φt(ξ)}t∈[0,∞) is the solution orbit of (D) through
initial condition ξ.

Note that φ satisfies the group property φt(φs(ξ)) = φs+t(ξ).

If we instead fix t and vary ξ, then {φt(ξ)}ξ∈C′ describes the positions at time t of
solutions to (D) with initial conditions in C′ ⊆ C.

Theorem (Continuity of solutions in initial conditions).

Suppose that V : C→ Rn is Lipschitz continuous with Lipschitz constant K.

Let φ be the semiflow of (D), and fix t ∈ [0,∞).

Then φt(·) is Lipschitz continuous with Lipschitz constant eK|t| :
for all ξ, χ ∈ C, we have that

∣∣∣φt(ξ) − φt(χ)
∣∣∣ ≤ |ξ − χ| eK|t|.



3.4 Finite Horizon Deterministic Approximation

Theorem. Suppose that the mean dynamic VF is Lipschitz continuous.

Let the initial conditions XN
0 = xN

0 converge to state x0 ∈ X.

Let {xt}t≥0 be the solution to the mean dynamic (3) starting from x0.

Then for all T < ∞ and ε > 0,

(5) lim
N→∞

P

 sup
t∈[0,T]

∣∣∣XN
t − xt

∣∣∣ < ε = 1.
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4. Deterministic Evolutionary Dynamics

4.1 Definition

Let F be a set of population games F : X→ Rn (with fixed number of strategies n).

Let D be the set of Lipschitz continuous ODEs ẋ = V(x) on the simplex X,
where V : X→ Rn satisfies V(x) ∈ TX(x) for all x ∈ X.

A map that assigns each game F ∈ F a differential equation in D
is called a deterministic evolutionary dynamic.

Every well-behaved revision protocol implicitly defines
a deterministic evolutionary dynamic.



4.2 Incentives and Aggregate Behavior

We introduce conditions that relate the evolution of aggregate behavior under the
dynamics to the incentives in the underlying game.

The two most important conditions are:

Positive correlation VF(x) , 0 ⇒ VF(x)′F(x) > 0.(PC)

Nash stationarity VF(x) = 0 ⇔ x ∈ NE(F).(NS)



Positive correlation VF(x) , 0 ⇒ VF(x)′F(x) > 0.(PC)

Game-theoretic interpretation:

Requires a positive correlation between growth rates and payoffs
under the uniform probability distribution on strategies:

E(VF(x)) =
∑
k∈S

1
n VF

k (x) = 0, so that

Cov(VF(x),F(x)) = E(VF(x) F(x)) − E(VF(x))E(F(x)) = 1
n VF(x)′F(x).



Geometric interpretation:

If the growth rate vector VF(x) is nonzero,
it forms an acute angle with the payoff vector F(x).

1

2 3



Nash stationarity VF(x) = 0 ⇔ x ∈ NE(F).(NS)

Interpretation.

For the (⇐) direction, we have

Proposition. If VF satisfies (PC), then x ∈ NE(F) implies that VF(x) = 0.



5. Families of Evolutionary Dynamics

The five basic protocols and dynamics:

All of the protocols are reactive: ρF
ij(x) = ρi j(F(x), x).

F̄(x) =
∑

i∈S xiFi(x) population average payoff

F̂i(x) = Fi(x) − F̄(x) excess payoff to strategy i
M(π) = argmax

y∈X
y′π (mixed) maximizer correspondence



Revision protocol Mean dynamic Name

ρi j = x j[π j − πi]+ ẋi = xiF̂i(x) replicator

ρi• = M(π) ẋ ∈M(F(x)) − x best response

ρi j =
exp(η−1π j)∑

k∈S exp(η−1πk)
ẋi =

exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

− xi logit

ρi j = [π j −
∑

k∈S xkπk]+ ẋi = [F̂i(x)]+ − xi
∑
j∈S

[F̂ j(x)]+ BNN

ρi j = [π j − πi]+

ẋi =
∑
j∈S

x j[Fi(x) − F j(x)]+

−xi
∑
j∈S

[F j(x) − Fi(x)]+

Smith

Table 1: Five basic deterministic dynamics.
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5.1 Imitative Dynamics

5.1.1 Definition

The Lipschitz continuous revision protocol ρ is an imitative protocol if

ρi j(π, x) = x jri j(F(x), x), where(6a)

π j ≥ πi ⇐⇒ [rkj(π, x) − r jk(π, x) ≥ rki(π, x) − rik(π, x) for all i, j, k ∈ S].(6b)

The values of ri j are called conditional imitation rates.

Condition (6b) is called net monotonicity of conditional imitation rates.

The dynamics generated by protocol satisfying (6) are called imitative dynamics:

(7) ẋi = xi

∑
j∈S

x j

(
r ji(F(x), x) − ri j(F(x), x)

)
.



Formula Restriction Interpretation

ρi j(π, x) = x j φ(π j − πi) sgn(φ(d)) = sgn([d]+)
imitation via

pairwise comparisons

ρi j(π, x) = a(πi) x j a decreasing
imitation driven by

dissatisfaction

ρi j(π, x) = x j c(π j) c increasing imitation of success

ρi j(π, x) =
x j w(π j)∑

k∈S xk w(πk)
w increasing

imitation of success
with repeated sampling

Table 2: Some specifications of imitative revision protocols.



5.1.2 Examples

We now consider some important instances of these protocols and the dynamics
they induce.

Example (The replicator dynamic).

(8) ẋi = xiF̂i(x).

From imitation via pairwise comparisons: ρi j(π, x) = x j[π j − πi]+.

From imitation driven by dissatisfaction: ρi j(π, x) = (K − πi)x j

From imitation of success: ρi j(π, x) = x j(π j − K).



Example (The Maynard Smith replicator dynamic).

Assume imitation of success with repeated sampling: ρi j(π, x) =
x j w(π j)∑

k∈S xk w(πk)
.

Suppose payoffs are positive, and let w(π j) = π j.

(9) ẋi =
xi F̂i(x)

F̄(x)
.



Example (The imitative logit dynamic).

Assume imitation of success with repeated sampling: ρi j(π, x) =
x j w(π j)∑

k∈S xk w(πk)
.

Let w(π j) = exp(η−1π j) with noise level η > 0.

ẋi =
xi exp(η−1Fi(x))∑

k∈S xk exp(η−1Fk(x))
− xi.



Before 5.1.3: Extinction and invariance under imitative dynamics

(7) ẋi = xi

∑
j∈S

x j

(
r ji(F(x), x) − ri j(F(x), x)

)
.

(⇒) imitative dynamics satisfy extinction:

(†) If xi = 0, then Vi(x) = 0.

(⇒) V(x) ∈ TX(x) ∩ (−TX(x))



Proposition (Forward and backward invariance).

Every imitative dynamic admits a unique solution trajectory
in T (−∞,∞) = {x : (−∞,∞)→ X | x is continuous}
from every initial condition in X.

Theorem (Support invariance).

If {xt} is a solution trajectory of an imitative dynamic,
then the sign of component (xt)i is independent of t ∈ (−∞,∞).



5.1.3 Basic properties

(10) ẋi = Vi(x) = xiGi(x), where Gi(x) =
∑
k∈S

xk (rki(F(x), x) − rik(F(x), x)).

If strategy i ∈ S is in use, then Gi(x) = Vi(x)/xi is the
percentage growth rate of the number of agents using i.

Condition (6b) implies monotonicity of percentage growth rates

(11) Gi(x) ≥ G j(x) if and only if Fi(x) ≥ F j(x),

This property, a strong restriction on percentage growth rates,
implies positive correlation (PC), a weak restriction on absolute growth rates.

(PC) VF(x) , 0 ⇒ VF(x)′F(x) > 0.



With 5.1.3: Monotone percentage growth rates and positive correlation

Theorem. All imitative dynamics satisfy positive correlation (PC).



With 5.1.3: Rest points and restricted equilibria

Recall the definition of Nash equilibrium:

NE(F) = {x ∈ X : xi > 0⇒ Fi(x) = max
j∈S

F j(x)}.

Define the set of restricted equilibria of F by

RE(F) = {x ∈ X : xi > 0⇒ Fi(x) = max
j∈S:x j>0

F j(x)}.

In words, x is a restricted equilibrium of F if it is a Nash equilibrium of a restricted
version of F in which only strategies in the support of x can be played.

Theorem. If ẋ = VF(x) is an imitative dynamic, then RP(VF) = RE(F).



Non-Nash rest points of imitative dynamics
are not natural predictions of play:
they cannot be locally stable,
nor can they be approached by any interior solution trajectory.

Even so, continuous dynamics move slowly near rest points,
so escape from the vicinity of non-Nash rest points is necessarily slow.



5.1.4 Inflow-outflow symmetry

Compare the general equation for mean dynamics with that for imitative dynamics:

ẋi =
∑
j∈S

x jρ
F
ji(x) − xi

∑
j∈S

ρF
ij(x),(3)

ẋi = xi

∑
j∈S

x j

(
r ji(F(x), x) − ri j(F(x), x)

)
.(7)

The latter exhibits inflow-outflow symmetry:
the rates of switches from j to i and from i to j
are both proportional to both xi and x j.

This is the source of various special properties of imitative dynamics



Another dynamic satisfying inflow-ouflow symmetry is the projection dynamic

It is defined on the interior of the simplex by

(12) ẋ = ΦF(x).

It is defined in general by

ẋ = ProjTX(x)(F(x)),

where ProjTX(x) represents the closest point projection onto TX(x).



5.2 The Best Response Dynamic and Related Dynamics

5.2.1 Target protocols and target dynamics

Under a target protocol, an agent’s conditional switch rates
do not depend on his current strategy.

Protocols with this feature have identical rows:
ρF

ij(x) = ρF
ı̂ j(x) for all x ∈ X and i, ı̂, j ∈ S.

In this case, we write τF
≡ ρF

i·.

Target protocols generate mean dynamics of the form

(13) ẋi = τF
i (x) − xi

∑
j∈S

τF
j (x),

which we call target dynamics.



(13) ẋi = τF
i (x) − xi

∑
j∈S

τF
j (x),

If λF(x) =
∑
j∈S

τF
j (x) , 0, define σF(x) ∈ X by σF

j (x) =
τF

j (x)

λF(x)
.

Then (13) becomes

(14) ẋ = λF(x)(σF(x) − x).

Thus the state moves from its current position x
toward the target state σF(x) at rate λF(x).

If
∑

j∈S τ
F
j (x) ≡ 1, then the τF

j are conditional switch probabilities.

In this case, we write σF in place of τF, and (14) becomes

(15) ẋ = σF(x) − x.



5.2.2 The best response dynamic

The best response protocol:

σ(π) = M(π), where(16a)

M(π) = argmax
y∈X

y′π,(16b)

is the (mixed) maximizer correspondence.

Substituting into (15) yields the best response dynamic

(17) ẋ ∈M(F(x)) − x.

Equivalently,

ẋ ∈ BF(x) − x,

where BF = M ◦ F is the (mixed) best response correspondence for F.



Since M is set-valued and discontinuous, this dynamic is a differential inclusion.

Thus, the basic results on existence and uniqueness of solutions and on deterministic
approximation do not apply.

Fortunately, versions of both of these results are available for the current setting.

M is a convex-valued and upper hemicontinuous correspondence.

(⇒) from every initial condition, there exists a Carathéodory solution:
a Lipschitz continuous trajectory {xt}t≥0 that satisfies ẋt ∈ V(xt) for almost all t ≥ 0.

Solutions are generally not unique.

But in regions where the best response is unique, solutions take a simple form:

BF(x) = {i} ⇒ ẋ = ei − x ⇒ xt = (1 − e−t) ei + e−t x0.



With 5.2.2: Construction of solutions of the best response dynamic
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(17) ẋ ∈M(F(x)) − x.

The best response dynamic satisfies versions of (PC) and (NS)
suitable for differential inclusions:

If y ∈M(F(x)) is any best response to x, we have

(y − x)′F(x) = max
j∈S

F j(x) − F̄(x) = max
j∈S

F̂ j(x) ≥ 0,

with equality only when x ∈ NE(F) (as we shall see).

Clearly, 0 ∈M(F(x)) − x ⇔ x ∈ NE(F).



5.2.3 Perturbed best response dynamics

Perturbed best response protocols are target protocols of the form

(18) σ(π) = M̃(π),

the perturbed best response function M̃ : Rn
→ int(X)

is a smooth approximation of M.

–1 10 π1

Such protocols (under restrictions to come) generate
perturbed best response dynamics:

(23) ẋ = M̃(F(x)) − x.



M̃ is defined most conveniently in terms of a deterministic perturbation
v : int(X)→ R of the payoff to each mixed strategy:

M̃v(π) = argmax
y∈int(X)

(y′π − v(y)), where(19a)

z′∇2v(y)z > 0 for all z ∈ TX and y ∈ int(X), and(19b)

lim
k→∞

yk ∈ bd(X) ⇒ lim
k→∞

∣∣∣∇v(yk)
∣∣∣ = ∞.(19c)

It is more natural to define M̃ using stochastic perturbations
of the payoff of each pure strategy:

(21) M̃ε
i (π) = P

i = argmax
j∈S

π j + ε j

 ,
where ε is a random vector that admits a positive density function
that is smooth enough that M̃ is continuously differentiable
(e.g., if the εi are independent with bounded densities).



With 5.2.3: More on perturbed best response dynamics

Perturbed optimization: a representation theorem

M̃v(π) = argmax
y∈int(X)

(y′π − v(y))(19)

M̃ε
i (π) = P

i = argmax
j∈S

π j + ε j

(21)

In both cases, M̃(π) = M̃(Φπ) for all π ∈ Rn,
so we can focus on the restriction M̄ : Rn

0 → int(X). (Rn
0 = TX = {z ∈ Rn : z′1 = 0}.)

Theorem. Let M̃ be a perturbed maximizer function defined
in terms of an admissible stochastic perturbation ε via equation (21).

Then M̃ satisfies equation (19) for some admissible deterministic perturbation v.

In fact, M̄ = M̃|Rn
0

and ∇v are invertible, and M̄ = (∇v)−1.



Logit choice and the logit dynamic

The logit choice function with noise level η:

(22) M̃i(π) =
exp(η−1πi)∑

j∈S exp(η−1π j)
.

The logit dynamic with noise level η:

(L) ẋi =
exp(η−1Fi(x))∑

j∈S exp(η−1F j(x))
− xi .

Rest points are called logit equilibria (or quantal response equilibria).

Stochastic derivation: εi are i.i.d. double exponential:
P(εi ≤ c) = exp(− exp(−η−1c − γ).

Deterministic derivation: v is negated entropy: v(y) = η
∑

j∈S y j log y j.

Example: 123 Coordination



1

2 3

(i) η = .001

1

2 3

(ii) η = .1

1

2 3

(iii) η = .2

1

2 3

(iv) η = .22

1

2 3

(v) η = .27

1

2 3

(vi) η = .28



1

2 3

(vii) η = .4

1

2 3

(viii) η = .6

1

2 3

(ix) η = .68

1

2 3

(x) η = .85

1

2 3

(xi) η = 1.2

1

2 3

(xii) η = 3



Perturbed incentive properties via virtual payoffs

It is enough to consider deterministic perturbations.

Define the set of perturbed equilibria of the pair (F, v) by

PE(F, v) = {x ∈ X : x = M̃(F(x))}.

Observation. All perturbed best response dynamics satisfy perturbed stationarity:

V(x) = 0 if and only if x ∈ PE(F, v).



Define the virtual payoffs F̃ : int(X)→ Rn for the pair (F, v) by

F̃(x) = F(x) − ∇v(x).

Intuitively, strategies that very few agents use have high virtual payoffs.

Theorem. Let x ∈ X be a social state. Then x ∈ PE(F, v) if and only if ΦF̃(x) = 0.

Define virtual positive correlation:

(24) V(x) , 0 implies that V(x)′F̃(x) > 0.

Theorem. All perturbed best response dynamics satisfy virtual positive correlation (24).



5.3 Excess Payoff and Pairwise Comparison Dynamics

Can Nash equilibrium can be interpreted as stationary behavior among agents who
employ simple myopic rules? (Compare Nash (1950)!)

Imitative dynamics fail (NS).

The best response dynamic is discontinuous.

Perturbed best response dynamics only approximately satisfy (NS).

Can we do better?



5.3.1 Excess payoff dynamics

Recall the excess payoff function F̂ : X→ Rn:

F̂i(x) = Fi(x) − F̄(x).

Clearly, F̂(x) cannot be in int(Rn
−

).

Proposition. x ∈ NE(F) if and only if F̂(x) ∈ bd(Rn
−

).

Explanation:

Let Rn
∗ = Rn r int(Rn

−
) denote the set of vectors in Rn

with at least one nonnegative component. Then bd(Rn
∗) = bd(Rn

−
).

The proposition says that the Nash equilibria are the states
at which no strategy receives an above-average payoff.



With 5.3.1: Characterization of Nash equilibrium via excess payoffs

A target protocol τ an excess payoff protocol if it is Lipschitz continuous and satisfies

τ j(π, x) = τ j(π̂), where π̂i = πi − x′π, and(25a)

π̂ ∈ int(Rn
∗)⇒ τ(π̂)′π̂ > 0.(25b)

Condition (25b), acuteness, requires that away from Nash equilibrium,
strategies with higher growth rates tend to be those with higher excess payoffs.

These protocols generate the excess payoff dynamics:

(26) ẋi = τi(F̂(x)) − xi

∑
j∈S

τ j(F̂(x)).



Example (The BNN dynamic).

(27) τi(π̂) = [π̂i]+,

(⇒) the Brown-von Neumann-Nash (BNN) dynamic:

(28) ẋi = [F̂i(x)]+ − xi

∑
j∈S

[F̂ j(x)]+.

It is not difficult to verify that the BNN dynamic satisfies (PC) and (NS).

In fact, one can show that all excess payoff dynamics satisfies these properties.



Of course, excess payoff dynamics require agents to know excess payoffs!

They thus do not provide a satisfactory foundation for Nash equilibrium prediction.



5.3.2 Pairwise comparison dynamics

Pairwise comparison protocols are Lipschitz continuous protocols
ρ : Rn

× X→ Rn×n
+ that satisfy sign preservation:

(29) sgn(ρi j(π, x)) = sgn([π j − πi]+) for all i, j ∈ S.

The resulting evolutionary dynamics (3) are called pairwise comparison dynamics.

Example (The Smith dynamic).

(30) ρi j(π, x) = [π j − πi]+,

Inserting this into (3) yields the Smith dynamic:

(31) ẋi =
∑
j∈S

x j[Fi(x) − F j(x)]+ − xi

∑
j∈S

[F j(x) − Fi(x)]+.

Compare (30) to pairwise proportional imitation: ρi j(π, x) = x j[π j − πi]+.



With 5.3.2: Analysis of pairwise comparison dynamics

Theorem. Every pairwise comparison dynamic satisfies (PC) and (NS).

The theorem follows from three lemmas.

Lemma. x ∈ NE(F)⇔ For all i ∈ S, xi = 0 or
∑
j∈S

[F j(x) − Fi(x)]+ = 0.

Proof. Both statements say that each strategy in use at x is optimal. �

Lemma. V(x) = 0⇔ For all i ∈ S, xi = 0 or
∑
j∈S

ρi j(F(x)) = 0.

Proof. (⇐) is immediate.

Lemma.

(i) V(x)′F(x) ≥ 0.
(ii) V(x)′F(x) = 0⇔ For all i ∈ S, xi = 0 or

∑
j∈S

ρi j(F(x))[F j(x) − Fi(x)]+ = 0.



With 5.3.2: Multiple revision protocols and hybrid dynamics

How compatible is imitation with Nash stationarity?

Suppose an agent uses revision protocols ρV and ρW at intensities a and b.

Then his behavior is described by the new revision protocol ρC = aρV + bρW.

Since mean dynamics are linear in conditional switch rates,
the mean dynamic for the combined protocol is CF = aVF + bWF.

Theorem. Suppose that VF satisfies (PC), that WF satisfies (PC) and (NS),
and that a, b > 0. Then CF = aVF + bWF also satisfies (PC) and (NS).



Family Example Continuity Data Req. (PC) (NS)

imitation replicator yes weak yes no
optimization best response no moderate yes yes

perturbed optimization logit yes moderate approx. approx.
excess payoff BNN yes strong yes yes

pairwise comparison Smith yes weak yes yes

Table 3: Families of revision protocols and evolutionary dynamics, and their properties.

Remark: Imitation vs. (nonimitative) pairwise comparison.



6. Potential Games

In potential games, all information about incentives can be captured
by a scalar-valued function on the set of population states.

Dynamics satisfying positive correlation (PC) ascend this function
and converge to its maximizers, which are Nash equilibria of the game.



6.1 Population Games and Full Population Games

Population games are models of multilateral externalities.

What is the effect of adding new agents playing strategy j
on the payoffs of agents currently choosing strategy i?

In principle, it is
∂Fi

∂x j
.

But since payoffs are only defined on the simplex,
this partial derivative does not exist.

We therefore consider full population games,
in which payoffs are defined on the positive orthant Rn

+.

These describe the payoffs that would arise were the population size to change.



6.2 Definition, Characterization, and Interpretation

Let F : Rn
+ → R

n be a (full) population game.

We call F a potential game if there exists a C1 function f : Rn
+ → R,

called a potential function, satisfying

∇ f (x) = F(x) for all x ∈ Rn
+, or equivalently

∂ f
∂xi

(x) = Fi(x) for all i ∈ S and x ∈ Rn
+.

If the payoff function F is C1, then F is a potential game if and only if
it satisfies full externality symmetry:

DF(x) is symmetric for all x ∈ Rn
+, or equivalently

∂Fi

∂x j
(x) =

∂F j

∂xi
(x) for all i, j ∈ S and x ∈ Rn

+.



Intuition:

Suppose that some members of the population switch from strategy i to strategy j,
so that the state moves in direction z = e j − ei.

If these switches improve the payoffs of those who switch, then

∂ f
∂z

(x) = ∇ f (x)′z = F(x)′z = F j(x) − Fi(x) > 0.

Thus profitable strategy revisions increase potential.

For more general sorts of adjustment, we have the following simple lemma:

Lemma. Let F be a potential game with potential function f , and suppose the dynamic
VF satisfies positive correlation (PC). Then along any solution trajectory {xt}, we have
d
dt f (xt) > 0 whenever ẋt , 0.

Proof :
d
dt

f (xt) = ∇ f (xt)′ẋt = F(xt)′VF(xt) ≥ 0, with equality only if VF(xt) = 0.



6.3 Examples

Example (Matching in games with common interests).

F(x) = Ax, A ∈ Rn×n symmetric.

Example (Congestion games).

Fi(x) = −
∑
`∈Li

c` (u`(x)) .



Fi(x) = −
∑
`∈Li

c` (u`(x)) .

(⇒)
∂Fi

∂x j
(x) = −

∑
`∈Li∩L j

c′`(u`(x)) =
∂F j

∂xi
(x).

In fact, we have

(32) f (x) = −
∑
`∈L

∫ u`(x)

0
c`(z) dz.

In general f differs from the average payoff function,

F̄(x) = −
∑
`∈L

u`(x)c`(u`(x)).

But if c`(u) = a`uη for some η ≥ 0, then f (x) = 1
η+1 F̄(x).



With 6.3: Efficiency in homogeneous full potential games

Definition. We call a full potential game F homogeneous of degree k
if each of its payoff functions Fi : Rn

→ R is a homogeneous function of degree k
(that is, if Fi(tx) = tkFi(x) for all x ∈ Rn and t > 0), where k , −1.

Example: Matching in normal form games with common interests.

Example: Isoelastic congestion games.

Theorem. The full potential game F is homogeneous of degree k , −1 if and only if
the normalized aggregate payoff function 1

k+1 F̄(x) is a full potential function for F
and is homogeneous of degree k + 1 , 0.



Example (Games generated by variable pricing schemes).

Given population game F with average payoff function F̄,
define a new game F̃ by

F̃i(x) = Fi(x) +
∑
j∈S

x j
∂F j

∂xi
(x).

Then

∂F̄
∂xi

(x) =
∂
∂xi

∑
j∈S

x jF j(x) = Fi(x) +
∑
j∈S

x j
∂F j

∂xi
(x) = F̃i(x).



6.4 Characterization of equilibrium

Consider the problem of maximizing potential over the set of population states:

max f (x) subject to
∑
j∈S

x j = 1 and xi ≥ 0 for all i ∈ S.

The Lagrangian for this maximization problem is

L(x, µ, λ) = f (x) + µ

1 −
∑
i∈S

xi

 +
∑
i∈S

λixi ,

so the Kuhn-Tucker first-order necessary conditions for maximization are

∂ f
∂xi

(x) = µ − λi for all i ∈ S,(33a)

λixi = 0, for all i ∈ S, and(33b)

λi ≥ 0 for all i ∈ S.(33c)



∂ f
∂xi

(x) = µ − λi for all i ∈ S,(33a)

λixi = 0, for all i ∈ S, and(33b)

λi ≥ 0 for all i ∈ S.(33c)

Theorem. Let F be a potential game with potential function f .

Then x is a Nash equilibrium of F if and only if (x, µ, λ) satisfies (33a)–(33c)
for some λ ∈ Rn and µ ∈ R.

This result allows a simple proof of existence of Nash equilibrium.



Example (Nash equilibria in a potential game).

FC3(x) =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3


(⇒) f C3(x) =

1
2

((x1)2 + 2(x2)2 + 3(x3)2).



(i)

1

2 3

(ii)



After 6.4: Inefficiency and inefficiency bounds in congestion games

Inefficiency and inefficiency bounds (“price of anarchy”) in congestion games

Example (Braess’s paradox).

A

B

C

D

E

Home

Work

cA(u) = cD(u) = 4 + 20u

cB(u) = cC(u) = 2 + 30u2

cE(u) = 1 + 20u.

Equilibrium before link E is opened: x∗ = (.5, .5). Travel time: 23.5.



A

B

C

D

E

Home

Work

Equilibrium before link E is opened: x∗ = (.5, .5). Travel time: 23.5.

Equilibrium after link E is opened: x∗ = (.4616, .4616, .0768). Travel time: 23.93.

Adding a link to the network worsens performance!

This phenomenon is known as Braess’s paradox.



A congestion game’s inefficiency ratio (or “price of anarchy”)
is the ratio between the game’s equilibrium social cost
and its minimal feasible social cost C̄(x) = −F̄(x).

Example. Two parallel links, c1(u) = 1 and c2(u) = u.

In the unique Nash equilibrium, all drivers travel on route 2,
creating a social cost of 1.

The efficient state, which minimizes C̄(x) = x1 + (x2)2, is xmin = ( 1
2 ,

1
2 );

it generates a social cost of C̄(xmin) = 3
4 .

Thus, the inefficiency ratio in this game is 4
3 .



Remarkably, this example is the worst case for any network with affine costs.

Theorem.

Let C be a congestion game whose cost functions c` are
nonnegative, nondecreasing, and affine: c`(u) = a` + b`u with a`, b` ≥ 0.

If x∗ ∈ NE(C) and x ∈ X, then C̄(x∗) ≤ 4
3 C̄(x).



Before 6.5: Stability and recurrence for flows

Let X ⊂ Rn be compact.

Let V : X→ Rn be Lipschitz continuous with V(x) ∈ TX(x) for all x ∈ X. Then

(D) ẋ = V(x)

has a unique forward solution from every initial condition in X.

Let ξ ∈ X, and let {xt}[0,∞ be the solution to (D) with x0 = ξ.

The ω-limit ω(ξ) is the set of all points that the solution from ξ

approaches arbitrarily closely infinitely often:

ω(ξ) =
{

y ∈ X : there exists {tk}
∞

k=1 with lim
k→∞

tk = ∞ such that lim
k→∞

xtk = y
}
.

We write Ω =
⋃
ξ∈X ω(ξ) and Ω̄ = cl(Ω).



Proposition. (i) ω(ξ) is non-empty and connected.
(ii) ω(ξ) is closed. In fact, ω(ξ) =

⋂
t≥0 cl({xs : s ≥ t}),

where {xt} solves (D) with x0 = ξ.
(iii) ω(ξ) is invariant under (D).

Y ⊆ X is forward invariant under (D) if for each solution {xt} of (D),
x0 ∈ Y implies that xt ∈ Y for all t > 0.

Y is backward invariant if x0 ∈ Y implies that xt exists and is in Y for all t < 0.

Y is invariant it is both forward and backward invariant.



Let A ⊆ X be a closed set.

O ⊆ X is a neighborhood of A if it is open relative to X and contains A.

A is Lyapunov stable under (D) if for every neighborhood O of A,
there exists a neighborhood O′ of A such that every solution {xt}

that starts in O′ is contained in O (that is, x0 ∈ O′⇒ xt ∈ O for all t ≥ 0).

A is attracting if there is a neighborhood Y of A such that every solution that starts
in Y converges to A (that is, x0 ∈ Y⇒ ω(x0) ⊆ A).

A is globally attracting if it is attracting with Y = X.

A is asymptotically stable if it is Lyapunov stable and attracting.

A is globally asymptotically stable if it is Lyapunov stable and globally attracting.

Example: Attracting but not Lyapunov stable.

Example: Asymptotically stable but not backward invariant.



Before 6.5: Lyapunov functions

A Lyapunov function is a function whose value changes monotonically along solu-
tion trajectories of (D).

If monotonicity is strict whenever (D) is not at rest, it is a strict Lyapunov function.

Lemma.

Suppose that the function L : Y→ R and the trajectory {xt}t≥0 are Lipschitz continuous.

(i) If L̇(xt) ≤ 0 for almost all t ≥ 0, then the map t 7→ L(xt) is nonincreasing.
(ii) If in addition L̇(xs) < 0, then L(xt) < L(xs) for all t > s.



Call the (relatively) open set Y ⊂ X inescapable if for each solution {xt}t≥0

with x0 ∈ Y, we have that cl ({xt}) ∩ bd(Y) = ∅.

Theorem.

Let Y ⊂ X be relatively open and inescapable under (D).

Let L : Y→ R be C1, and suppose that L̇(x) ≡ ∇L(x)′V(x) ≤ 0 for all x ∈ Y.

Then ω(ξ) ⊆ {x ∈ Y : L̇(x) = 0} for all ξ ∈ Y.

Thus, if L̇(x) = 0 implies that V(x) = 0, then ω(ξ) ⊆ RP(V) ∩ Y.

Theorem.

Let A ⊆ X be closed, and let Y ⊆ X be a neighborhood of A.
Let L : Y→ R+ be C1 with L−1(0) = A.

(i) If L̇(x) ≡ ∇L(x)′V(x) ≤ 0 for all x ∈ Y − A, then A is Lyapunov stable under (D).
(ii) If L̇(x) < 0 for all x ∈ Y − A, then A is asymptotically stable under (D).
(iii) If in (ii) Y = X, then A is globally asymptotically stable under (D).



With 6.5: Global convergence and local stability in potential games

Global convergence in potential games

Let F be a potential game with potential function f .

If VF satisfies positive correlation (PC), then f is a strict Lyapunov function:

˙f (xt) = ∇ f (xt)′ẋt = F(xt)′VF(xt) ≥ 0,with equality only when VF(x) = 0.

Theorem. Let F be a potential game, and let ẋ = VF(x) be a Lipschitz continuous evolu-
tionary dynamic for F that satisfies (PC). Then Ω(VF) = RP(VF). In particular,

(i) If VF is an imitative dynamic, then Ω(VF) = RE(F).
(ii) If VF is an excess payoff dynamic or a pairwise comparison dynamic, then Ω(VF) =

NE(F).

An analogous result holds for the best response dynamic.



For perturbed best response dynamics we have

Theorem. Let F be a potential game with potential function f , and let ẋ = VF,v(x)
be the perturbed best response dynamic for F generated by the admissible deterministic
perturbation v. Define the perturbed potential function f̃ : int(X)→ R by

f̃ (x) = f (x) − v(x).

Then f̃ is a strict Lyapunov function for VF,v, and so Ω(VF,v) = PE(F, v).



Local stability in potential games

Theorem. Let F be a potential game with potential function f , let VF be a Lipschitz
continuous evolutionary dynamic for F.

(i) If A ⊆ NE(F) is a local maximizer set of f , and VF satisfies positive correlation
(PC), then A is Lyapunov stable. If in addition VF satisfies Nash stationarity (NS)
and A is isolated in NE(F), then A is asymptotically stable.

(ii) Conversely, if VF satisfies (PC) and (NS) and A ⊆ NE(F) is a smoothly connected
asymptotically stable set, then A is a local maximizer set of f and is isolated in
NE(F).



With 6.6: Local stability of strict equilibrium

VF satisfies strong positive correlation in Y ⊆ X if

There exists a c > 0 such that for all x ∈ Y,(SPC)

VF(x) , 0 implies that Corr(VF(x),F(x)) =
VF(x)′ΦF(x)
|VF(x)||ΦF(x)|

≥ c.

That is, the correlation between strategies’ growth rates and payoffs,
(= the cosine of the angle between the growth rate and excess payoff vectors)
is be bounded away from zero on Y.



Theorem. Let ek be a strict equilibrium of F.

Suppose that VF satisfies strong positive correlation (SPC)
in some neighborhood of ek in X.

Define the function L : X→ R by

L(x) = (ek − x)′F(ek).

Then L(x) ≥ 0, with equality only when x = ek,
and there is a neighborhood of ek on which L̇(x) ≤ 0, with equality only when VF(x) = 0.

Thus ek is Lyapunov stable under VF,
and if ek is an isolated rest point of VF, ek is asymptotically stable under VF.

Explain the construction in a picture.



7. Evolutionarily Stable States and Contractive Games

7.1 Evolutionarily Stable States

Three equivalent definitions. First, an ESS is a (infinitesimal) local invader:

(34) There is a neighborhood O of x such that (y − x)′F(y) < 0 for all y ∈ O r {x}.

Second, an ESS has a uniform invasion barrier:

(35)
There is an ε̄ > 0 such that (y − x)′F(εy + (1 − ε)x) < 0

for all y ∈ X r {x} and ε ∈ (0, ε̄).

The third definition is the original one of Maynard Smith and Price.

x is a Nash equilibrium: (y − x)′F(x) ≤ 0 for all y ∈ X.(36a)

There is a neighborhood O of x such that for all y ∈ O r {x},

(y − x)′F(x) = 0 implies that (y − x)′F(y) < 0.
(36b)



Theorem. The following are equivalent:

(i) x satisfies condition (34).
(ii) x satisfies condition (35).
(iii) x satisfies condition (36).

Proof.

(34)⇔ (35) is on the problem set.

(34)⇒ (36) will be done later.

(36)⇒ (34) is immediate if x = ei or x ∈ int(X); otherwise it is complicated.
(But if F(x) = Ax, there is an easier proof that (36)⇒ (35).)



There is a neighborhood O of x such that (y − x)′F(y) < 0 for all y ∈ O r {x}.(34)

There is an ε̄ > 0 such that (y − x)′F(εy + (1 − ε)x) < 0

for all y ∈ X r {x} and ε ∈ (0, ε̄).
(35)

x is a Nash equilibrium: (y − x)′F(x) ≤ 0 for all y ∈ X.(36a)

There is a neighborhood O of x such that for all y ∈ O r {x},

(y − x)′F(x) = 0 implies that (y − x)′F(y) < 0.
(36b)

We call state x a regular ESS if

x is a quasistrict equilibrium: Fi(x) = F̄(x) > F j(x) whenever xi > 0 and x j = 0.(37a)

z′DF(x)z < 0 for all z ∈ TX r {0} such that zi = 0 whenever xi = 0.(37b)



7.2 Contractive Games

The population game F : X→ Rn is a contractive game if

(38) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

If the inequality in condition (38) holds strictly whenever x , y,
F is strictly contractive,

If this inequality always binds, F is null contractive.

(other names: stable game, negative semidefinite game, monotone vector field.)



(38) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

Intuition 1: If F is a potential game, (38) says that f is concave.

Intuition 2: Consider the projection dynamic on int(X): ẋ = ΦF(x).

Run from two initial states x0 and y0:

(39)
d
dt

∣∣∣yt − xt
∣∣∣2 = 2(yt − xt)′(ẏt − ẋt) = 2(yt − xt)′(F(yt) − F(xt)).



Intuition 3: Global version of ESS stability condition:

Proposition.

If F is continuously differentiable, it is contractive
if and only if it satisfies self-defeating externalities:

(40) DF(x) is negative semidefinite with respect to TX for all x ∈ X.

(40) can be rewritten as∑
i∈S

zi
∂Fi

∂z
(x) ≤ 0 for all z ∈ TX and x ∈ X.

Improvements in the payoffs of strategies to which revising agents are switching
are always exceeded by the improvements in the payoffs of strategies
which revising agents are abandoning.

When z = e j − ei, this becomes
∂F j

∂(e j − ei)
(x) ≤

∂Fi

∂(e j − ei)
(x).



7.3 Examples

Example (Matching in symmetric zero-sum games).

A ∈ Rn×n is symmetric zero-sum if A is skew-symmetric: A ji = −Ai j for all i, j ∈ S.

Then F(x) = Ax satisfies z′DF(x)z = z′Az = 0 for all z ∈ Rn, and so is null contractive.

Example (Matching in Rock-Paper-Scissors). Let F(x) = Ax with

A =


0 −l w
w 0 −l
−l w 0

 .
Here w > 0 and l > 0 represent the benefit from a win and the cost of a loss.

w = l is (standard) RPS, w > l is good RPS, w < l is bad RPS.

In all cases, the unique Nash equilibrium is x∗ = ( 1
3 ,

1
3 ,

1
3 ).

When is F(x) = Ax contractive?



Example ((Perturbed) concave potential games).

If F is a potential game with a strictly concave potential function,
(y − x)′(F(y) − F(x)) ≤ 0 always holds strictly.

If we slightly perturb F, the result is unlikely to be a potential game,
but it will still be strictly contractive.



7.4 Equilibrium in Contractive Games

We call x is a globally neutrally stable state of F (x ∈ GNSS(F)) if

(41) (y − x)′F(y) ≤ 0 for all y ∈ X.

We call x a globally evolutionarily stable state of F (x ∈ GESS(F)) if

(y − x)′F(y) < 0 for all y ∈ X r {x}.

GESS is the global analogue of ESS (which used y ∈ O r {x}).

GNSS is the global analogue of NSS.

Geometric interpretation:

Moving from y in direction F(y) moves the state (weakly) closer to x.



Example (GNSS in standard RPS).

R

P S

The GNSS of standard RPS.



GNSS: (y − x)′F(y) ≤ 0 for all y ∈ X.

GNSS(F) is an intersection of half spaces, and so is convex. Moreover,

Proposition. GNSS(F) ⊆ NE(F).

Proof.

x

y ΦF(x)xε

ΦF(x  )ε



Theorem.

If F is a contractive game, then NE(F) ⊆ GNSS(F).
Thus NE(F) = GNSS(F), and so is a convex set.

Proof. Add.

Theorem.

If F is a strictly contractive game,
then GNSS(F) is a singleton and coincides with NE(F).



After 7.4: Existence of Nash equilibrium in contractive games

Proposition.

Let F be a contractive game, and let Y be a finite subset of X.

Then there exists a state x∗ ∈ conv(Y) such that (y − x∗)′F(y) ≤ 0 for all y ∈ Y.

Since F is contractive,

NE(F) = GNSS(F) =
⋂
y∈X

{x ∈ X : (y − x)′F(y) ≤ 0},

so the proposition and the finite intersection property imply that NE(F) , ∅.



7.5 Global Convergence and Local Stability

7.5.1 Imitative dynamics

Theorem. Let Xx∗ =
{
x ∈ X : supp(x∗) ⊆ supp(x)

}
.

Let F be a strictly contractive game with unique Nash equilibrium x∗,
and let ẋ = VF(x) be the replicator dynamic for F.

Define the function Hx∗ : Xx∗ → R+ by

Hx∗(x) =
∑

i∈supp(x∗)

x∗i log
x∗i
xi
,

Then H−1
x∗ (0) = {x∗}, and Hx∗(x) approaches infinity whenever x approaches X − Xx∗ .

Moreover, Ḣx∗(x) ≤ 0, with equality only when x = x∗.

Therefore, x∗ is globally asymptotically stable with respect to Xx∗ .

A very similar argument shows that any ESS is locally asymptotically stable.



With 7.5: Linear differential equations

The simplest ordinary differential equations onRn are linear differential equations:

(L) ẋ = Ax, A ∈ Rn×n.

Example: If n = 1, so that ẋ = ax, we have xt = ξ exp(at).
The flow of (L) is an contraction if a < 0, and an expansion if a > 0.

Example: If n = 2, the nature of the dynamics depends on the eigenvalues and
diagonalizability of A.



(i) stable node (µ < λ < 0) (ii) saddle (µ > 0 > λ) (iii) unstable node (µ > λ > 0)

Linear dynamics on the plane: two real eigenvalues λ, µ.



(i) stable spiral (a < 0) (ii) center (a = 0) (iii) unstable spiral (a > 0)

Linear dynamics on the plane: complex eigenvalues a ± i b, b < 0.



(i) stable improper node (λ < 0) (ii) unstable improper node
(λ > 0)

Linear dynamics on the plane: A not diagonalizable, one real eigenvalue λ.



Theorem. Let {xt}t∈(−∞,∞) be the solution to (L) from initial condition x0. Then each
coordinate of xt is a linear combination of terms of the form tkeat cos(bt) and tkeat sin(bt),
where a + i b ∈ C is an eigenvalue of A and k ∈ Z+ is less than the algebraic multiplicity of
this eigenvalue.

Thus in generic case, the stability of the origin under (L)
depends on the real parts ai of the eigenvalues {a1 + i b1, . . . , an + i bn} of A.

If each ai is negative, all solutions converge to the origin; the origin is called a sink,
and the flow of (L) is called a contraction.

Solutions to (L) converge to the origin at an exponential rate:
for any a > 0 satisfying a < |ai| for all i ∈ {1, . . .n}, there is a C = C(a) ≥ 1 such that

0 is a sink ⇔
∣∣∣φt(ξ)

∣∣∣ ≤ Ce−at
|ξ| for all t ≥ 0 and all ξ ∈ Rn.

If each ai is positive, then all solutions besides the one at 0 move away from 0;
the origin is called a source, and the flow of (L) is called an expansion.



More generally, the flow of (L) may be contracting in some directions
and expanding in others.

When each real part ai of an eigenvalue of A is nonzero,
the differential equation ẋ = Ax, its rest point at the origin,
and the flow of (L) are all said to be hyperbolic.

Hyperbolic linear flows come in three varieties:
contractions, expansions, and saddles.



With 7.5: Linearization of nonlinear differential equations

Consider the C1 differential equation

(D) ẋ = V(x)

with rest point x∗.

We can approximate the value of V in the neighborhood of x∗ via

V(y) = 0 + DV(x∗)(y − x∗) + o(|y − x∗|).

This suggests that the behavior of the dynamic (D) near x∗

can be approximated by the behavior near 0 of

(L) ż = DV(x∗)z.



We say that flows φ and ψ are topologically conjugate on X and Z
if there is a homeomorphism h : X→ Z such that φt(x0) = h−1

◦ ψt ◦ h (x0).

Theorem (The Hartman-Grobman Theorem).

Let φ and ψ be the flows of the C1 equation (D) and the linear equation (L),
where x∗ is a hyperbolic rest point of (D).

Then there exist neighborhoods Ox∗ of x∗ and O0 of the origin 0
on which φ and ψ are topologically conjugate.

Corollary.

Let x∗ be a hyperbolic rest point of (D).

Then x∗ is asymptotically stable if all eigenvalues of DV(x∗) have negative real parts,
and x∗ is unstable otherwise.



With 7.5: Local stability of ESS via linearization

We want to approximate the behavior of

(D) ẋ = V(x)

near x∗ using the linear dynamic

(L) ż = DV(x∗)z.

Since V : X→ TX, DV(x∗) maps TX into itself.

Therefore, we can (and should) think of (L) as a dynamic on TX.

So, rather than looking at all the eigenvalues of DV(x∗), we should only consider
those associated with the restricted map DV(x∗) : TX→ TX.

One way to do this is to compute the eigenvalues of DV(x∗)Φ, and to ignore the
eigenvalue 0 corresponding to the eigenvector 1 (which is mapped to 0 by Φ).



The following result, called Hines’s lemma, is often useful.

Lemma. Suppose that Q ∈ Rn×n is symmetric, satisfies Q1 = 0, and is positive definite
with respect to TX, and that A ∈ Rn×n is negative definite with respect to TX. Then each
eigenvalue of the linear map QA : TX→ TX has negative real part.

If we ignored the complications caused by the dynamics being defined on X, this
would reduce to

Lemma. If Q is symmetric positive definite and A is negative definite, then the eigenvalues
of QA have negative real parts.



The replicator dynamic

Theorem. Let x∗ be a regular ESS of F. Then x∗ is linearly stable under the replicator
dynamic.

This condition is not necessary. (A counterexample is Zeeman’s game.)

Proof for x∗ ∈ int(X).



Other imitative dynamics

ẋi = xiF̂i(x)(R)

ẋi = xiGi(x), Gi(x) ≥ G j(x) if and only if Fi(x) ≥ F j(x).(I)

Theorem. Assume that x∗ is a hyperbolic rest point of both (R) and imitative dynamic (I).
Then x∗ is linearly stable under (R) if and only if it is linearly stable under (I). Thus, if x∗

is a regular ESS that satisfies the hyperbolicity assumptions, it is linearly stable under (I).

Assume x∗ ∈ int(X). Write V(x) = diag(x)F̂(x) and W(x) = diag(x)G(x).

DV(x∗)Φ = Q(x∗)DF(x∗)Φ = Q(x∗)ΦDF(x∗)Φ and

DW(x∗)Φ = Q(x∗)ΦDG(x∗)Φ.

Lemma. Let x∗ be an interior Nash equilibrium, and suppose that ΦDF(x∗) and ΦDG(x∗)
define invertible maps from TX to itself. Then ΦDG(x∗)Φ = c ΦDF(x∗)Φ for some c > 0.



The logit dynamic

Recall:

ẋi = Vi(x) = xiF̂i(x)(R)

DV(x∗) = Q(x∗)DF(x∗)

Consider the logit dynamic.

ẋi = Vη
i (x) =

exp(η−1Fi(x))∑
j∈S exp(η−1F j(x))

− xi.

One can show that at rest point x̃η,

DVη(x̃η) = η−1Q(x̃η)DF(x̃η) − I.

At rest points, the derivative matrices of the replicator and logit dynamics
differ only by a positive affine transformation!



7.5.2 Target and pairwise comparison dynamics:
Global convergence in contractive games

With 7.5: More on global convergence in contractive games

Integrable target dynamics

The BNN, best response, and logit dynamics can be expressed as target dynamics
that condition on the vector of excess payoffs: σF

ij(x) = τ j(F̂(x)).

In general, such dynamics need not converge in contractive games.



Example: In good RPS, consider the protocol
τR(π̂)
τP(π̂)
τS(π̂)

 =


[π̂R]+gε(π̂S)
[π̂P]+gε(π̂R)
[π̂S]+gε(π̂P)

 ,
where gε : R→ R equals 1 on (–∞, 0], equals ε2 on [ε,∞), and is linear on [0, ε].

The weight placed on a strategy is proportional to positive part of the strategy’s
excess payoff, but is only of order ε2 if the strategy it beats in RPS has an excess
payoff greater than ε.

This protocol satisfies acuteness, and so the corresponding dynamic satisfies (PC)
and (NS).



R

P S

An excess payoff dynamic in standard RPS.



But convergence can be ensured when τ is integrable:
there is a C1 revision potential γ : Rn

→ R such that

τ ≡ ∇γ.

This is weaker than separability:

τi(π̂) is independent of π̂−i ⇒ γ(π̂) =
∑
i∈S

∫ π̂i

0
τi(s) ds.

Interpretation.

Practical consequence: a building block for constructing Lyapunov functions.



We first consider integrable excess payoff dynamics.

These include the BNN dynamic:

τi(π̂) = [π̂i]+ ⇒ γ(π̂) =
1
2

∑
i∈S

[π̂i]2
+.

Theorem. Let F be a C1 contractive game, and let ẋ = VF(x) be the integrable excess payoff
dynamic for F based on revision protocol τwith revision potential γ. Define the C1 function
Γ : X→ R by

(42) Γ(x) = γ(F̂(x)).

Then Γ is a strict Lyapunov function for VF, and NE(F) is globally attracting.

In addition, if F admits a unique Nash equilibrium, or if τ is separable, then NE(F) is
globally asymptotically stable.



For the best response dynamic, the target protocol is the maximizer correspondence

M(π̂) = argmax
y∈X

y′π̂.

Consider the maximum function

µ(π̂) = max
y∈X

y′π̂ = max
i∈S

π̂i.

Then when the unique optimal strategy under π is i, we have µ(π̂) = π̂i,
so at such states we have ∇µ(π̂) = ei = M(π̂).

Theorem. Let F be a C1 contractive game, and let ẋ ∈ VF(x) be the best response dynamic
for F. Define the Lipschitz continuous function G : X→ R+ by

G(x) = max
y∈X

(y − x)′F(x) = max
i∈S

F̂i(x).

Then G−1(0) = NE(F). Moreover, if {xt}t≥0 is a solution to VF, then for almost all t ≥ 0 we
have that Ġ(xt) ≤ −G(xt), and so NE(F) is globally asymptotically stable under VF.



For perturbed best response dynamics: the perturbed maximizer function

M̃(π̂) = argmax
y∈int(X)

y′π̂ − v(y),

where v is admissible.
The perturbed maximum function

µ̃(π) = max
y∈int(X)

y′π − v(y),

is a potential function for M̃.

Theorem. Let F be a C1 contractive game, and let ẋ = VF,v(x) be the perturbed best
response dynamic for F generated by the admissible deterministic perturbation v. Define
the function G̃ : int(X)→ R+ by

G̃(x) = µ̃(F̂(x)) + v(x),

Then G−1(0) = PE(F, v), and this set is a singleton. Moreover, G̃ is a strict Lyapunov
function for VF,v, and so PE(F, v) is globally asymptotically stable under VF,v.



Impartial pairwise comparison dynamics

Pairwise comparison dynamics are defined using revision protocols ρi j(π) that are
sign preserving:

sgn(ρi j(π)) = sgn([π j − πi]+) for all i, j ∈ S.

To obtain a convergence result, we assume impartiality:

ρi j(π) = φ j(π j − πi) for some functions φ j : R→ R+.

Theorem. Let F be a C1 contractive game, and let ẋ = VF(x) be an impartial pairwise
comparison dynamic for F. Define the Lipschitz continuous function Ψ : X→ R+ by

Ψ(x) =
∑
i∈S

∑
j∈S

xiψ j(F j(x) − Fi(x)), where ψk(d) =

∫ d

0
φk(s) ds.

Then Ψ−1(0) = NE(F). Moreover, Ψ̇(x) ≤ 0 for all x ∈ X, with equality if and only if
x ∈ NE(F), and so NE(F) is globally asymptotically stable.



Dynamic Lyapunov function for contractive games

replicator Hx∗(x) =
∑

i∈supp(x∗) x∗i log
x∗i
xi

best response G(x) = max
i∈S

F̂i(x)

logit G̃(x) = max
y∈int(X)

(
y′F̂(x) − η

∑
i∈S yi log yi

)
+ η

∑
i∈S xi log xi

BNN Γ(x) = 1
2
∑

i∈S[F̂i(x)]2
+

Smith Ψ(x) = 1
2
∑
i∈S

∑
j∈S

xi[F j(x)−Fi(x)]2
+

Table 4: Lyapunov functions for five basic deterministic dynamics in contractive games.



7.5.3 Target and pairwise comparison dynamics: Local stability of regular ESS

With 7.5: Local stability of ESS via Lyapunov functions

Recall that x ∈ X a regular ESS if

x is a quasistrict equilibrium: Fi(x) = F̄(x) > F j(x) whenever xi > 0 and x j = 0.(37a)

z′DF(x)z < 0 for all z ∈ TX r {0} such that zi = 0 whenever xi = 0.(37b)

Theorem. Let x∗ be a regular ESS of F. Then x∗ is asymptotically stable
under the replicator dynamic for F.

Proof. Use the Lyapunov function Hx∗ . �



Theorem. Let x∗ be a regular ESS of F. Then x∗ is asymptotically stable under

(i) any separable excess payoff dynamic for F;
(ii) the best response dynamic for F;
(iii) any impartial pairwise comparison dynamic for F.

Idea of proof. Augment the Lyapunov functions Γ, G, and Ψ by adding

Υx∗(x) = C
∑

j : x∗j =0

x j,

which is a multiple of the total mass of agents using strategies unused in x∗.

Then Γx∗ = Γ + Υx∗ , Gx∗ = G + Υx∗ , and Ψx∗ = Ψ + Υx∗

are strict local Lyapunov functions for x∗.



8. Iterative Solution Concepts, Supermodular Games, and Equilibrium Selection

8.1 Iterated Strict Dominance and Never-a-Best-Response

Strategy i is strictly dominated by strategy j if F j(x) > Fi(x) for all x ∈ X.

Theorem. Let {xt} be an interior solution trajectory of an imitative dynamic in game F. If
strategy i ∈ S is strictly dominated in F, then lim

t→∞
(xt)i = 0.

A continuity argument extends this conclusions to iteratively dominated strategies.



Under the best response dynamic, it is obvious that any strategy i
that is never a best response (for every x ∈ X there is a j ∈ S such that F j(x) > Fi(x))
vanishes at an exponential rate ((xt)i = (x0)ie−t).

This is true from all initial conditions.

By continuity, strategies eliminated by iterative removal of strategies
that are never a best response eventually vanish at an exponential rate.



8.2 Supermodular Games and Perturbed Best Response Dynamics

Define the stochastic dominance matrix Σ ∈ R(n−1)×n by

Σ =


0 1 · · · 1
...

. . .
. . .

...

0 · · · 0 1

 .
Then:

(Σx)i =
∑n

j=i+1 x j equals the total mass on actions greater than i at state x,

Σy ≥ Σx if and only if y stochastically dominates x.



We call F a supermodular game if

(43) Σy ≥ Σx implies that Fi+1(y) − Fi(y) ≥ Fi+1(x) − Fi(x) for all i < n.

If F is continuously differentiable, then it is supermodular if and only if

(44)
∂(Fi+1 − Fi)
∂(e j+1 − e j)

(x) ≥ 0 for all i < n, j < n, and x ∈ X.

In words, if some agents switch from strategy j to strategy j + 1,
the performance of strategy i + 1 improves relative to that of strategy i.

Conditions (43) and (44) are both called strategic complementarity.



Example (Search with positive externalities).

Fi(x) = m(i) b(a(x)) − c(i), where a(x) =
∑n

k=1 kxk.

Since

∂(Fi+1 − Fi)
∂(e j+1 − e j)

(x) = (m(i + 1) −m(i)) b′(a(x)) ≥ 0,

F is a supermodular game.



Intuitively, supermodular games should have
increasing best response correspondences.

This has implications for the structure of the set of Nash equilibrium.

Let B(x) = min B(x) and B̄(x) = max B(x).

For states x, x̄ ∈ X satisfying Σx ≤ Σx̄, we define [x, x̄] = {x ∈ X : Σx ≤ Σx ≤ Σx̄}.

Theorem. Suppose F is a supermodular game. Then

(i) B and B̄ are increasing in the stochastic dominance order: if Σx ≤ Σy, then
ΣB(x) ≤ ΣB(y) and ΣB̄(x) ≤ ΣB̄(y).

(ii) The sequences of iterates {Bk(e1)}k≥0 and {B̄k(en)}k≥0 are monotone sequences of pure
states, and so converge within n steps to their limits, x∗ and x̄∗.

(iii) x∗ = B(x∗) and x̄∗ = B̄(x̄∗), so x∗ and x̄∗ are pure Nash equilibria of F.
(iv) NE(F) ⊆ [x∗, x̄∗]. Thus if x∗ = x̄∗, then this state is the unique Nash equilibrium

of F.



It is natural to look for convergence results for the best response dynamic.

It follows from previous results that all solutions converge to [x∗, x̄∗].

But few results on convergence to equilibrium exist.



(Strongly) cooperative differential equations:

ẋ = V (x ), V is C1,
∂Vi

∂x j
(x ) > 0 whenever i , j.

Consider the stochastically perturbed best response dynamic

(45) ẋ = M̃ε(F(x)) − x,

Perform a change of variable using the stochastic dominance operator:

Let X = ΣX ⊂ Rn−1 denote the image of X under Σ,
and let Σ̄ : X → X denote the (affine) inverse of the map Σ.

Then the change of variable Σ converts (45) into the following dynamic on X :

(46) ẋ = ΣM̃ε(F(Σ̄x )) − x .

By combining strategic complementarity (44) with the properties of DM̃ε(π),
one can show that (46) is strongly cooperative.



Theorem. Let F be a C1 strictly supermodular game,
and let ẋ = VF,ε(x) be a stochastically perturbed best response dynamic for F. Then

(i) States x∗ ≡ ω(x) and x̄∗ ≡ ω(x̄) exist and are the minimal and maximal elements
of the set of perturbed equilibria. Moreover, [x∗, x̄∗] contains all ω-limit points of
VF,ε and is globally asymptotically stable.

(ii) Solutions to ẋ = VF,ε(x) from an open, dense, full measure set of initial conditions
in X converge to perturbed equilibria.



8.3 Iterated p-Dominance and Equilibrium Selection

So far we have considered dynamics based on reactive protocols ρF(x) = ρ(F(x), x).

This formulation leads naturally to dynamics satisfying positive correlation (PC)
and Nash stationarity (NS).

But it also imposes restrictions on what the dynamics can achieve.

For instance, in coordination games, all pure equilibria are locally stable,
implying that predictions of play will depend on initial conditions.



Sampling best response dynamics

We consider an analog of the best response dynamic in which agents do not know
the population state, instead basing their decisions on information from samples:

Revision opportunities arrive at a unit rate.

Each revising agent obtains information by drawing a sample of size k
from the population.

The agent then plays a best response to the empirical distribution of strategies
in his sample.

Note that this revision protocol is prospective:
an agent must consider the payoffs that would obtain
if his sample were representative of behavior in the population at large.



k-sampling best response dynamics

Zn,k
+ = {z ∈ Zn

+ :
∑

i∈S zi = k} possible outcomes of samples of size k.

Assume that each such outcome generates a unique best response.

Then we can define the k-sampling best response function Bk : X→ X by

Bk
i (x) =

∑
z∈Zn,k

+ : b( 1
k z)={i}

(
k

z1 . . . zn

)
xz1

1 · · · xzn
n .

Assuming Poisson arrivals of revision opportunities, we obtain
the k-sampling best response dynamic:

(Sk) ẋ = Bk(x) − x.



Observation.

If strategy i is a strict equilibrium of F, then state ei is a rest point
of any sampling best response dynamic for F.



Theorem. Consider a game with strategy set S = {0, 1},
and in which strategy 1 is 1

k -dominant, where k ≥ 2,
Then under the k-sampling best response dynamic,
if play begins at a state at which a positive mass of agents choose strategy 1,
it converges to the state where all play strategy 1.



Selection of iterated p-dominant equilibrium

To obtain more general results, we develop an iterated version of the analysis above.

S∗ ⊆ S is a p-best response set of F (Tercieux (2006)) if b(x) ⊆ S∗ holds for all x ∈ X
with

∑
i∈S∗ xi ≥ p.

S∗ ⊆ S is an iterated p-best response set of F if there exists a sequence S0, . . . ,Sm

with S = S0
⊇ · · · ⊇ Sm = S∗ such that S` is a p-best response set in the restricted

game F|S`−1 for each ` = 1, . . . ,m.

a∗ ∈ S is an iterated p-dominant equilibrium if {a∗} is an iterated p-best response set.



Theorem. Let S∗ be an iterated 1
k -best response set. Then XS∗ = {x ∈ X : supp(x) ⊆ S∗}

is almost globally asymptotically stable under the k-sampling best response dynamic.

In particular, if a∗ is an iterated 1
k -dominant equilibrium, then ea∗ is almost globally asymp-

totically stable.



The best response dynamic in Young’s game, A =
(

6 0 0
5 7 5
0 5 8

)
.



1

2 3

The 2-sampling best response dynamic in Young’s game, A =
(

6 0 0
5 7 5
0 5 8

)
.



A key element of the proof is the transitivity theorem for asymptotic stability
(Conley (1978)):

If Y is asymptotically stable in X, and Z is asymptotically stable in Y,
then Z is asymptotically stable in X.



9. Nonconvergence of Evolutionary Dynamics

9.1 Examples

Example. In zero-sum games (F(x) = Ax, A′ = −A), Hx∗ is a constant of motion.

Hx∗(x) =
∑

i∈supp(x∗)

x∗i log
x∗i
xi
,

But time averaged solutions converge to Nash equilibrium.

For instance, consider

F(x) = Ax =


0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0



x1

x2

x3

x4

 =


x4 − x2

x1 − x3

x2 − x4

x3 − x1

 .



1

2

3

4

1

3

4

x∗ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ), Hx∗(x) = .02 x∗ = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ), Hx∗(x) = .58



1

3

4

1

3

4

x∗ = ( 3
8 ,

1
8 ,

3
8 ,

1
8 ), Hx∗(x) = .35 x∗ = ( 1

8 ,
3
8 ,

1
8 ,

3
8 ), Hx∗(x) = .35



Example (Bad RPS).

F(x) = Ax, where A =


0 −l w
w 0 −l
−l w 0

 , l > w > 0.



R

P S

(i) replicator

R

SP

(ii) best response

R

P S

(iii) logit(.1)

R

P S

(iv) BNN

R

P S

(v) Smith

Five basic deterministic dynamics in bad Rock-Paper-Scissors (l = 2, w = 1).



With 9.1: More on games with nonconvergent dynamics

The hypercycle system

Consider the game

F(x) = Ax =



0 0 · · · 0 1
1 0 0 · · · 0
. . .

. . .
. . .

. . .
. . .

0 · · · 1 0 0
0 0 · · · 1 0


x.

The replicator dynamic for this game is known as the hypercycle system.

The unique Nash equilibrium of F is the barycenter x∗ = 1
n 1.



Let ẋ = R(x) denote the replicator dynamic for F.
Then the eigenvalue/eigenvector pairs of DR(x∗) are

(λk, vk) =

1
n
ι(n−1)k
n −

2
n2

n−1∑
j=0

ι
jk
n , (1, ιkn, . . . , ι

(n−1)k
n )′

 , k = 0, . . . ,n − 1.

where ιn = exp( 2πi
n ) = cos( 2π

n ) + i sin( 2π
n ) is the nth root of unity.

Eigenvalue λ0 = 1
n −

2
n = − 1

n corresponds to eigenvector v0 = 1.

For k ≥ 1, the sum in the formula for λk vanishes, leaving us with

λk =
1
n
ι(n−1)k
n =

1
n
ι−k
n .

The stability of x∗ therefore depends on whether any λk with k > 0
has positive real part.

This largest real part is negative when n ≤ 3, zero when n = 4, and positive when
n ≥ 5. Thus x∗ is asymptotically stable when n ≤ 3, but unstable when n ≥ 5.



With 9.1: Attractors and continuation

A set A ⊆ X is an attractor of the flow φ if it is nonempty, compact, and invariant
under φ, and if there is a neighborhood U of A such that

lim
t→∞

sup
x∈U

dist(φt(x),A) = 0.

Thus, attractors are asymptotically stable sets that are also invariant under the flow.

The set B(A) = {x ∈ X : ω(x) ⊆ A} is called the basin of A .



A key property of attractors for the current context is known as continuation:

Let ẋ = Vε(x) be a family of differential equations on Rn

with unique solutions xt = φεt (x0).

Suppose that (ε, x) 7→ Vε(x) is continuous, and that X ⊂ Rn is compact and forward
invariant under φε.

Then as ε varies continuously from 0,
there exist attractors Aε of the flows φε that vary upper hemicontinuously from A0;
their basins B(Aε) vary lower hemicontinuously from B(A0).

Thus, if we slightly change the parameter ε, the attractors that exist under φ0

continue to exist, and they do not explode.



Example (The Hofbauer-Swinkels game).

Fε(x) = Aεx =


0 0 −1 ε

ε 0 0 −1
−1 ε 0 0
0 −1 ε 0



x1

x2

x3

x4

 .

When ε = 0, the payoff matrix Aε = A0 is symmetric,
so F0 is a potential game with potential function f (x) = 1

2 x′A0x = −x1x3 − x2x4.

The function f attains its minimum of −1
4 at states v = ( 1

2 , 0,
1
2 , 0) and w = (0, 1

2 , 0,
1
2 ),

has a saddle point with value −1
8 at the Nash equilibrium x∗ = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ),

and attains its maximum of 0 along the closed path of Nash equilibria γ
consisting of edges e1e2, e2e3, e3e4, and e4e1.



1

3

4

The Smith dynamic in F0.



Fε(x) = Aεx =


0 0 −1 ε

ε 0 0 −1
−1 ε 0 0
0 −1 ε 0



x1

x2

x3

x4

 .

Now suppose that ε > 0.

Then the attractor γ of VF0
continues to an attractor γε of VFε .

This attractor attracts solutions to VFε from initial conditions x with f (x) > − 1
8 + δ.

But the unique Nash equilibrium is now x∗!



1

3

4

The Smith dynamic in Fε, ε = 1
10 .



Example. Mismatching Pennies is a three-player normal form game.

Each player has two strategies, Heads and Tails.

Player p receives a payoff of 1 for choosing a different strategy than player p + 1 and
a payoff of 0 otherwise, where players are indexed modulo 3.

The unique Nash equilibrium of this game has each player play each of his strategies
with equal probability.



H

T

T

H

H

T

H

T

T

H

H

T

replicator best response



Proposition.

Let V(·) be an evolutionary dynamic that is generated by a C1 revision protocol ρ and that
satisfies Nash stationarity (NS).

Let F be Mismatching Pennies, and suppose that the unique Nash equilibrium x∗ of F is a
hyperbolic rest point of ẋ = VF(x).

Then x∗ is unstable under VF, and there is an open, dense, full measure set of initial
conditions from which solutions to VF do not converge.



Example (The hypnodisk game).

Hypnodisk is a three-strategy game with nonlinear payoffs
and unique Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ). (We define this game shortly.)

Proposition.

Let V(·) be a Lipschitz continuous evolutionary dynamic that satisfies (NS) and (PC),
and let H be the hypnodisk game.

Then every solution to ẋ = VH(x) other than the stationary solution at x∗

converges to a cycle.



1

2
3

(i) The potential function

1

2 3

(ii) The projected payoff vector field

The coordination game FC(x) = Cx =


1 0 0
0 1 0
0 0 1



x1
x2
x3

 =


x1
x2
x3

.



1

2
3

(i) The potential function

1

2 3

(ii) The projected payoff vector field

The anticoordination game F−C(x) = −Cx =


−1 0 0
0 −1 0
0 0 −1



x1
x2
x3

 =


−x1
−x2
−x3

.



1

2 3

Projected payoff vector field for the coordination game.



1

2 3

Projected payoffs in the hypnodisk game.



With 9.1: The Poincaré-Bendixson theorem

The claim of convergence to a closed orbit follows from this basic result
for dynamics on the plane.

Theorem (The Poincaré-Bendixson Theorem).

Let V : R2
→ R2 be Lipschitz continuous, and consider the differential equation ẋ = V(x).

(i) Let x ∈ R2. If ω(x) is compact, nonempty, and contains no rest points,
then it is a periodic orbit.

(ii) Let Y ⊂ R2. If Y is nonempty, compact, forward invariant,
and contains no rest points, then it contains a periodic orbit.

Thus in planar systems, the only possible ω-limit sets are rest points,
sequences of trajectories leading from one rest point to another (heteroclinic cycles
and homoclinic orbits), and periodic orbits.



Example (Chaotic dynamics).

In population games with four or more strategies, and hence state spaces with three
or more dimensions, solutions of game dynamics can converge to chaotic attractors.

Central to most definitions of chaos is sensitive dependence on initial conditions:
solution trajectories starting from close together points on the attractor move apart
at an exponential rate.

Chaotic attractors can be recognized by their intricate appearance.

Consider the replicator dynamic in

F(x) = Ax =


0 −12 0 22
20 0 0 −10
−21 −4 0 35
10 −2 2 0



x1

x2

x3

x4

 .





9.2 Survival of Strictly Dominated Strategies

We saw earlier that strictly dominated strategies are eliminated
under imitative dynamics and the best response dynamic.

How robust are these results?



Consider the Smith dynamic for “bad RPS with a twin”:

F(x) = Ax =


0 −2 1 1
1 0 −2 −2
−2 1 0 0
−2 1 0 0



xR

xP

xS

xT

 .

The Nash equilibria of F are the states on line segment {x∗ ∈ X : x∗ = ( 1
3 ,

1
3 , c,

1
3 − c)},

which is a repellor under the Smith dynamic.

Away from Nash equilibrium, strategies gain players at rates that depend on their
payoffs, but lose players at rates proportional to their current usage levels.

The proportions of players choosing the twin strategies are therefore equalized,
with the state approaching the plane P = {x ∈ X : xS = xT}.

Since F is based on bad RPS, solutions on plane P approach a closed orbit
away from any Nash equilibrium.



The Smith dynamic in bad RPS with a twin.



Now consider the Smith dynamic in “bad RPS with a feeble twin”,

Fd(x) = Adx =


0 −2 1 1
1 0 −2 −2
−2 1 0 0
−2 − d 1 − d −d −d



xR

xP

xS

xT

 ,



The Smith dynamic in bad RPS with a feeble twin, d = 1
10 .



To obtain a general survival result, we:

(i) start the analysis with the hypnodisk game.

(ii) introduce a new condition called innovation:

(IN) If x < NE(F), xi = 0, and i ∈ argmax
j∈S

F j(x), then (VF)i(x) > 0.

In words: when a non-Nash population state includes an unused optimal strategy,
this strategy’s growth rate must be positive.

Theorem.

Suppose the Lipschitz continuous evolutionary dynamic V(·) satisfies (NS), (PC), and (IN).

Then there is a game F such that under ẋ = VF(x), along solutions from most initial
conditions, there is a strictly dominated strategy played by a fraction of the population
bounded away from 0.



Remarks:

1. The theorem covers hybrid dynamics that combine imitation
with a small probability of direct choice of alternatives. Thus the elimination result
for imitative dynamics is not robust.

2. The best response dynamic is not subject to the theorem because it is
discontinuous. But one can show numerically that dominated strategies can survive
in economically significant proportions under the logit(η) dynamic when η is small.

3. It is important that agents base their decisions on the strategies’ present payoffs,
and not on general knowledge about payoff functions.

4. The possibility that dynamics do not converge is crucial to the survival result.



10. Connections and Further Developments

10.1 Connections with Stochastic Stability Theory

10.2 Connections with Models of Heuristic Learning

10.3 Games with Continuous Strategy Sets

10.4 Extensive Form Games and Set-Valued Solution Concepts

10.5 Applications



Probability Models and their Interpretation

Countable Probability Models

(Ω,P) countable probability model
Ω sample space (finite or countable)
P : 2Ω

→ [0, 1] probability measure

Pmust satisfy P(∅) = 0, P(Ω) = 1, and countable additivity:

if {Ak} is a finite or countable collection of disjoint events (i.e., subsets of Ω), then
P(

⋃
k Ak) =

∑
kP(Ak).



A random variable X is a function whose domain is Ω.

The distribution of X is defined by P(X ∈ B) = P(ω ∈ Ω : X(ω) ∈ B) for all subsets B
of the range of X.

To define a finite collection of discrete random variables {Xk}
n
k=1, we specify a

probability model (Ω,P) and then define the random variables as functions on Ω.

To interpret this construction, imagine picking an ω at random from the sample
space Ω according to the probability distribution P.

The value ofω so selected determines the realizations X1(ω),X2(ω), . . . ,Xn(ω) of the
entire sequence of random variables X1,X2, . . .,Xn.



Example (Repeated rolls of a fair die).

R = {1, 2, 3, 4, 5, 6}

Ω = Rn

P({ω}) = ( 1
6 )n for all ω ∈ Ω

Xk(ω) = ωk

Then

P(Xk = xk) = P(ω ∈ Ω : Xk(ω) = xk) = P(ω ∈ Ω : ωk = xk) = 1
6

P

 n⋂
k=1

{Xk ∈ Ak}

 =

n∏
k=1

P(Xk ∈ Ak).



The expected value of a random variable is its integral with respect to the probability
measure P.

In the case of the kth roll of a fair die,

EXk =

∫
Ω

Xk(ω) dP(ω) =
∑
ω∈Ω

ωkP({ω}) =
∑
ωk∈R

ωk

∑
ω−k

P({(ωk, ω−k)})

 =

6∑
i=1

i × 1
6 = 3 1

2 .

We can create new random variables out of old ones using functional operations.

Sn =

n∑
k=1

Xk

More explicitly,

Sn(ω) =

n∑
k=1

Xk(ω) for all ω ∈ Ω.



Uncountable Probability Models and Measure Theory

Suppose we want to construct a random variable representing a uniform draw from
the unit interval.

It is natural to choose Ω = [0, 1] as our sample space and to define our random
variable as the identity function on Ω: that is, X(ω) = ω.

But it is impossible to define a countably additive probability measure P that
specifies the probability of every subset of Ω!

To resolve this problem, one chooses a set of subsets F ⊆ 2Ω whose probabilities
will be specified, and then introduces corresponding restrictions on the definition
of a random variable.

A random variable satisfying these restrictions is said to be measurable.

In summary, an uncountable probability model consists of a triple (Ω,F ,P), where
Ω is a sample space, F ⊆ 2Ω is a collection (more specifically, a σ-algebra) of subsets
of Ω, and P : F → [0, 1] is a countably additive probability measure.



Distributional Properties and Sample Path Properties

Why bother with the explicit construction of random variables?

Why not just work with the joint distributions?

This is fine for distributional properties of the random variables.

But many key results in probability theory concern not the distributional properties
of random variables, but rather their sample path properties.

These are properties of realization sequences: i.e., the sequences of values
X1(ω),X2(ω),X3(ω), . . . that arise for each choice of ω ∈ Ω.



Example. Consider the probability model (Ω,P) with sample space Ω = {−1, 1} and
probability measure P({−1}) = P({1}) = 1

2 .

Define the sequences of random variables {Xt}
∞

t=1 and {X̂t}
∞

t=1 as follows:

Xt(ω) = ω;

X̂t(ω) =

−ω if t is odd,

ω if t is even.

The time t marginal distributions, {Xt}
∞

t=1 and {X̂t}
∞

t=1 look identical.

But from the sample path point of view, the two sequences are different.
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(i) Time t marginal distributions of X and X̂.
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(ii) Time (t, t + 1) joint distributions of X and X̂.
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(iii) Sample paths of X and X̂

Figure 1: Distributional properties and sample path properties.



Distributional properties are only meaningful from an ex ante point of view, before
the realization of ω (and hence of the random variables) is known.

Theorems on distributional properties constrain the probabilities of certain events,
often in the limit as some parameter (e.g., the number of trials) grows large.

Theorems on sample path properties typically state that with probability one, the
infinite sequence of realizations of a process must satisfy certain properties.

These theorems can be interpreted as ex post statements about the random variables,
since they provide information about the infinite sequence of realizations {Xt(ω)}∞t=1
that we actually observe.

(To be precise, this is “only” true for a set of ωs that has probability one: we cannot
completely avoid referring to the ex ante point of view.)



Example (Properties of i.i.d. random variables).

The Weak Law of Large Numbers: For all ε > 0, lim
n→∞
P

(
ω ∈ Ω : Xn(ω) ∈ [−ε, ε]

)
= 1.

The Strong Law of Large Numbers: P
(
ω ∈ Ω : lim

n→∞
Xn(ω) = 0

)
= 1.

Distributional and sample path results can be distinguished by the order in which
P and lim appear:

The WLLN concerns a “limit of probabilities”.

The SLLN concerns a “probability of a limit”.



Results about variation of sums of i.i.d. random variables:

The Central Limit Theorem: lim
n→∞
P

(
ω ∈ Ω :

Sn(ω)
√

n
∈ [a, b]

)
=

1
√

2π

∫ b

a
e−x2/2 dx.

The Law of the Iterated Logarithm: P

ω ∈ Ω : lim sup
n→∞

Sn(ω)√
2n log log n

= 1

 = 1.



Example (Kurtz’s Theorem).

(47) lim
N→∞

P

ω ∈ Ω : sup
t∈[0,T]

∣∣∣XN
t (ω) − xt

∣∣∣ < ε = 1.

Kurtz’s Theorem concerns a distributional property.

It is a statement about a limit of probabilities.

The “random variables” {XN
}t∈[0,T] whose distributions are at issue are infinite-

dimensional, taking values in the set of step functions from the time interval [0,T]
to the simplex X.



Countable State Markov Chains and Processes

Markov chains and Markov processes are collections of random variables {Xt}t∈T

with the property that “the future only depends on the past through the present”.

We focus on settings where these random variables take values in some finite or
countable state space X .

We use the terms “Markov chain” and “Markov process” to distinguish between
the discrete time (T = {0, 1, . . .}) and continuous time (T = [0,∞)) frameworks.



Countable State Markov Chains

The sequence of random variables {Xt} = {Xt}
∞

t=0 is a Markov chain if it satisfies the
Markov property:

P (Xt+1 = xt+1 |X0 = x0, . . . ,Xt = xt ) = P (Xt+1 = xt+1 |Xt = xt )

for all times t ∈ {0, 1, . . .} and all collections of states x0, . . . , xt+1 ∈ X for which the
conditional expectations are well defined.

We only consider temporally homogeneous Markov chains, which are Markov
chains whose one-step transition probabilities are independent of time:

P
(
Xt+1 = y |Xt = x

)
= Pxy.

We call the matrix P ∈ RX×X
+ the transition matrix for the Markov chain {Xt}.

The vector π ∈ RX
+ defined by P(X0 = x) = πx is the initial distribution of {Xt}.



The vector π and the matrix P fully determine the joint distributions of {Xt} via

P (X0 = x0, . . . ,Xt = xt) = πx0

t∏
s=1

Pxs−1xs .

Since certain properties of Markov chains do not depend on the initial distribution
π, it is sometimes left unspecified.



By definition, the one-step transition probabilities of the Markov chain {Xt} are the
elements of the matrix P:

P
(
X1 = y |X0 = x

)
= Pxy.

The two-step transition probabilities of {Xt} are obtained by multiplying P by itself

P
(
X2 = y |X0 = x

)
=

∑
z∈X
P

(
X2 = y,X1 = z |X0 = x

)
=

∑
z∈X
P (X1 = z |X0 = x )P

(
X2 = y |X1 = z,X0 = x

)
=

∑
z∈X

PxzPzy

= (P2)xy.

Thus the t step transition probabilities of {Xt} are given by the entries of the tth
power of the transition matrix:

P
(
Xt = y |X0 = x

)
= (Pt)xy.



Countable State Markov Processes: Definition and Construction

A (temporally homogeneous) Markov process on the countable state space X is a
collection of random variables {Xt} = {Xt}t≥0 with continuous time index t. This
collection must satisfy the following three properties:

(MP) The (continuous time) Markov property:
P

(
Xtk+1 = xtk+1

∣∣∣Xt0 = xt0 , . . . ,Xtk = xtk

)
= P

(
Xtk+1 = xtk+1

∣∣∣Xtk = xtk

)
for all

0 ≤ t0 < . . . < tk+1 and xt0 , . . ., xtk+1 ∈ X with P
(
Xt0 = xt0 , . . . ,Xtk = xtk

)
> 0.

(TH) Temporal homogeneity:
P

(
Xt+u = y |Xt = x

)
= Pxy(u) for all t,u ≥ 0.

(RCLL) Right continuity and left limits:
For every ω ∈ Ω, the sample path {Xt(ω)}t≥0 is continuous from the right
and has left limits. That is, lims↓t Xs(ω) = Xt(ω) for all t ∈ [0,∞), and
lims↑t Xs(ω) exists for all t ∈ (0,∞).

While conditions (MP) and (TH) are restrictions on the (joint) distributions of {Xt},
condition (RCLL) is a restriction on the sample paths of {Xt}.



Long Run Behavior of Markov Chains (and Processes)

Communication, Recurrence, and Irreducibility

State y is accessible from state x, denoted x y, if for some n ≥ 0 there is a sequence
of states x = x0, x1, . . . , xn = y such that Pxi−1,xi > 0 for all i ∈ {1, . . . ,n}.

We allow n = 0 to ensure that each state is accessible from itself.

We write x! y to indicate that x and y are mutually accessible.

Accessibility defines a partial order on the set X .

The equivalence classes under this order, referred to as communication classes, are
the maximal sets of (pairwise) mutually accessible states.

A set of states R ⊆ X is closed if the process cannot leave it: [x ∈ R, x y]⇒ y ∈ R.

If R is a communciation class, then R is closed if and only if it is minimal under .

Once {Xt} enters a closed communication class, it remains in the class forever.



Example. X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

P =



.4 .3 .2 .1 0 0 0 0 0

.5 .1 0 0 .3 .1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 .8 .1 .1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 .9 0 .1


9

87

6

543

21



State x is transient if Px({t : Xt = x} is unbounded) = 0.

State x recurrent if Px({t : Xt = x} is unbounded) = 1.

Theorem. Let {Xt} be a Markov chain or Markov process on a finite set X . Then

(i) Every state in X is either transient or recurrent.
(ii) A state is recurrent if and only if it is a member of a closed communication class.

A closed communication class R is commonly called a recurrent class.

When all of X forms a single recurrent class, {Xt} is said to be irreducible.

ex.: stochastic evolutionary processes with full support revision protocols.



Example (Birth and death chains).

X = {0, 1, . . . ,N}

Pi j =


pi if j = i + 1,
qi if j = i − 1,
1 − pi − qi if j = i,
0 otherwise.

Irreducible if and only if pk > 0 for k < N and qk > 0 for k > 0.



Periodicity

In the discrete-time case, the behavior of the Markov chain {Xt}
∞

t=0 within a recurrent
class depends on the period structure of that class.

The period of the recurrent state x of the Markov chain {Xt}
∞

t=0 is

gcd({t ≥ 1 : Px(Xt = x) > 0}).

It is the greatest common divisor of the set of times at which the chain can revisit x
if it is run from x.

If the Markov chain {Xt} is irreducible, then all of its states are of the same period.

If this common period is greater than 1, {Xt} is periodic.

If it is 1, {Xt} is aperiodic.

If Pxx > 0 for some x ∈ X , then {Xt} is aperiodic.



Hitting Times and Hitting Probabilities

Proposition. Let {Xt} be an irreducible Markov chain or process, let Z ⊆ X, and let {wx}x<Z

be the collection of expected times to hit Z starting from states outside Z.

If {Xt}
∞

t=0 is a Markov chain with transition matrix P, then {wx}x<Z is the unique solution
to the linear equations

(48) wx = 1 +
∑
y<Z

Pxy wy for all x < Z.



The Perron-Frobenius Theorem

Call a transition matrix P ∈ RX×X (i.e., a nonnegative row matrix with row sums
equal to 1) as a stochastic matrix.

Call such a matrix irreducible or aperiodic according to whether the induced
Markov chain has these properties.



Theorem (Perron-Frobenius).

Suppose that the matrix P ∈ RX×X is stochastic and irreducible. Then:

(i) 1 is an eigenvalue of P of algebraic multiplicity 1, and no eigenvalue of P has
modulus greater than 1.

(ii) The vector 1 is a right eigenvector of P corresponding to eigenvalue 1. That is,
P1 = 1.

(iii) There is a probability vector µ with positive components that is a left eigenvector of
P corresponding to eigenvalue 1; thus, µ′P = µ′.

Suppose in addition that P is aperiodic. Then:

(iv) All eigenvalues of P other than 1 have modulus less than 1.
(v) The matrix powers Pt converge to the matrix 1µ′ as t approaches infinity.
(vi) Indeed, let λ2 be the eigenvalue of P with the second-largest modulus, and let

r ∈ (|λ2| , 1). Then for some c > 0, we have that

max
i j

∣∣∣(Pt
− 1µ′)i j

∣∣∣ ≤ c rt for all t ≥ 1.

If P is (real or complex) diagonalizable, this statement remains true when r = |λ2|.



Stationary Distributions for Markov Chains

A probability distribution µ ∈ RX a stationary distribution of {Xt}
∞

t=0 if

(49) µ′P = µ′.

More explicitly, µ is a stationary distribution if

(50)
∑
x∈X

µxPxy = µy for all y ∈ X .

Decompose the probability of the chain being at state y at time 1 as follows:∑
x∈X
P(X0 = x)P(X1 = y |X0 = x) = P(X1 = y).

Thus if X0 is distributed according to the stationary distribution µ, then X1 is also
distributed according to µ; by the Markov property, so is every subsequent Xt.



Theorem. If the Markov chain {Xt} is irreducible, it has a unique stationary distribution.

Example.
P =

0 1
1 0

 , µ = ( 1
2 ,

1
2 ).

P =


0 1 0
0 0 1
.9 0 .1

 , µ = ( 9
28 ,

9
28 ,

10
28 ).

The hitting time of state x under the Markov chain {Xt} is the random variable
Tx = inf {t ≥ 1 : Xt = x} .

When {Xt} is run from initial condition x, Tx is called the return time of state x.

Proposition. If the Markov chain {Xt} is irreducible with stationary distribution µ, then
ExTx = µ−1

x for all x ∈ X .

The higher is the weight on x in the stationary distribution, the less time we expect
will pass before a chain starting at x returns to this state.



Reversible Markov Chains

Markov chain {Xt} is reversible if it admits a reversible distribution: a probability
distribution µ that satisfies the detailed balance conditions

(51) µxPxy = µyPyx for all x, y ∈ X .

Summing over x ∈ X shows that µ is also a stationary distribution.

Why the name?

Example (Birth and death chains: Reversibility and the stationary distribution).
The detailed balance conditions (51) reduce to µkqk = µk−1pk−1 for k ∈ {1, . . . ,N}.
Applying this formula inductively and normalizing yields

µk = µ0

k∏
i=1

pi−1

qi
for k ∈ {1, . . . ,N}, and µ0 =

 N∑
k=0

k∏
i=1

pi−1

qi


−1

.



Convergence in Distribution

Theorem (Convergence in distribution). Suppose that {Xt} is an irreducible aperiodic
Markov chain with stationary distribution is µ. Then for any initial distribution π,

lim
t→∞
Pπ(Xt = x) = µx for all x ∈ X .

This is part (v) of Perron-Frobenius:

lim
t→∞
Pπ(Xt = x) = lim

t→∞
(π′Pt)x = (π′1µ′)x = µx.

Part (vi) of Perron-Frobenius shows that the rate of convergence to the stationary
distribution is determined by the second-largest eigenvalue modulus of P.



Ergodicity

Having considered distributional properties, we turn to sample path properties.

Theorem (Ergodicity).

Suppose that {Xt}
∞

t=0 is an irreducible Markov chain with stationary distribution µ. Then
for any initial distribution π,

Pπ

 lim
T→∞

1
T

T−1∑
t=0

1{Xt=x} = µx

 = 1 for all x ∈ X .

For almost all realizations of ω ∈ Ω, the proportion of time that the sample path
{Xt(ω)} spends in each state x converges; the limit is the s.d. weight µx.

If {Xt}
∞

t=0 is an i.i.d. sequence, with each Xt having distribution µ, this conclusion
can be obtained by applying the SLLN to the sequence of indicator RVs {1{Xt=x}}

∞

t=0.

The theorem shows that Markov dependence is enough to reach this conclusion.



While irreducible, aperiodic Markov chains converge in distribution and are er-
godic, the latter two properties are distinct in general.

A Markov chain that is irreducible but not aperiodic will still be ergodic, but will
not converge in distribution.

Conversely, consider a Markov chain whose transition matrix is the identity matrix.
This chain (trivially) converges in distribution to its initial distribution, but the chain
is not ergodic.



Stationary Distributions and Infinite Horizon Behavior

Irreducibile Evolutionary Processes

Full Support Revision Protocols

The Markov chain {XN
t }t∈{0, 1

N ,
2
N ...}

:

State space: X N = X ∩ 1
NZ

n = {x ∈ X : Nx ∈ Zn
}

Transition probabilities:

(52) PN
xy =



xiρi j(F(x), x)
R

if y = x + 1
N (e j − ei), j , i,

1 −
∑
i∈S

∑
j,i

xiρi j(F(x), x)
R

if y = x,

0 otherwise.

Revision protocol ρ has full support if for some R > 0,

(53) ρi j(F(x), x) ≥ R for all i, j ∈ S and x ∈ X.



Example (Best response with mutations, mutation rate ε > 0).

A revising agent switches to his current best response with probability 1 − ε, but
chooses a strategy uniformly at random (or mutates) with probability ε > 0.

Must specify what happens when there are multiple best responses.

Example (Logit choice, noise level η > 0).

ρi j(π) =
exp(η−1π j)∑

k∈S exp(η−1πk)

=
exp(η−1(π j − πk∗))∑

k∈S exp(η−1(πk − πk∗))
, where k∗ is optimal under π.



Stationary Distributions for Two-Strategy Games

Birth and death chains:

PN
x y ≡



pN
x if y = x + 1

N ,

qN
x if y = x − 1

N ,

1 − pN
x − qN

x if y = x ,
0 otherwise.

For irreducibility: pN
x > 0 for x < 1 and qN

x > 0 for x > 0.

Stationary distribution:

(54)
µN

x

µN
0

=

Nx∏
j=1

pN
( j−1)/N

qN
j/N

for x ∈ { 1
N , . . . , 1}, µN

0 =

 N∑
i=0

i∏
j=1

pN
( j−1)/N

qN
j/N


−1

.



For two-strategy games, let S = {0, 1}, and write x = x1.

Example (Toss and switch).

When an agent’s clock rings, he flips a fair coin and switches strategies after Heads.

pN
x = 1

2 (1 − x )

qN
x = 1

2x .

Mean dynamic: ẋ = 1
2 − x .

Solutions: x t = 1
2 + (x 0 −

1
2 ) e−t.

Stationary distribution:

µN
x =

1
2N

 N
Nx

 for all x ∈ X N = {0, 1
N , . . . , 1}.

= a “binomial distribution” with parameters N and 1
2 , but with outcomes in X N.
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Fix two-strategy game F, full support revision protocol ρ, and population size N.

S = {0, 1}, x = x1.

For x ∈ { 1
N ,

2
N , . . . , 1},

µN
x

µN
0

=

Nx∏
j=1

pN
( j−1)/N

qN
j/N

=

Nx∏
j=1

(1 − j−1
N )

j
N

·

1
R ρ01(F( j−1

N ), j−1
N )

1
R ρ10(F( j

N ), j
N )

.

Theorem. The stationary distribution for the evolutionary process {XN
t } on X N is

µN
x

µN
0

=

Nx∏
j=1

(N − j + 1)
j

·
ρ01(F( j−1

N ), j−1
N )

ρ10(F( j
N ), j

N )
for x ∈ { 1

N ,
2
N , . . . , 1},

with µN
0 determined by the requirement that

∑
x ∈X N µN

x = 1.



Example (Stag Hunt).

A =

h h
0 s

 s > h > 0.

FH(x ) = h and FS(x ) = sx .

Three Nash equilibria: x = 1, x = 0, x ∗ = h
s .

Let h = 2 and s = 3, so that x ∗ = 2
3 .
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Example (A nonlinear Stag Hunt).

FH(x ) = h and FS(x ) = sx 2,

Three Nash equilibria: x = 0, x = 1, x ∗ =
√

h/s.

Let h = 2 and s = 7, so that x ∗ =
√

2/7 ≈ .5345.
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Waiting Times and Infinite Horizon Prediction

Example (Toss and Switch once more).

pN
x = 1

2 (1 − x ), qN
x = 1

2x .

N = 100 N =1,000 N =10,000
x = .45 2.0389 2.2588 2.2977
x = .50 2.9378 4.0891 5.2403

Table 5: Expected wait to reach state x from state 0 in Toss and Switch.

Mean dynamic: ẋ = 1
2 − x

Solutions: x t = 1
2 + (x 0 −

1
2 ) e−t

Time for mean dynamic to go from x = 0 to x = .45: T = log 10 ≈ 2.3026.

Time for mean dynamic to go from x = 0 to x = .50: T = ∞.



Example (Stag Hunt once more).

(55) A =

2 2
0 3

 x ∗ = 2
3

Under BRM(.10) protocol, stationary distribution puts most weight near x = .05.

N = 100 N =1,000 N =10,000
ε = .1 3.03 × 1017 7.33 × 10171 1.59 × 101720

ε = .01 1.23 × 1050 2.60 × 10492 1.43 × 104920

Table 6: Expected wait to go from x = .95 to x ∗ = 2
3 under BRM(ε).

Estimated age of the universe: 4.33 × 1017 seconds.



Discussion: Waiting times and infinite-horizon prediction

1. Relevance for economic modeling

2. Relevance for biological modeling

3. Alternative models

(i) local interactions

(ii) aggregate noise



Model Adjustments for Finite Populations

Finite-Population Games

S = {1, . . . ,n} set of strategies
X N = {x ∈ X : Nx ∈ Zn

} N agent state space
FN : X N

→ Rn N agent finite-population game
FN

i (x) ∈ R payoff to strategy i at x ∈ X N

X N
i = {x ∈ X N : xi > 0} where FN

i actually needs to be defined

x ∈ X N is a Nash equilibrium of FN if

[xi > 0⇒ FN
i (x) ≥ FN

j (x + 1
N (e j − ei))] for all i, j ∈ S.

A sequence of finite-population games {FN
}
∞

N=N0
converges uniformly to F :X→ Rn if

(56) lim
N→∞

max
x∈X N

∣∣∣FN(x) − F(x)
∣∣∣ = 0.



Clever Payoff Evaluation

If a population has N members, an agent who switches from i to j when the state is
x changes the state to x + 1

N (e j − ei).

If this agent wants to compare his current payoff FN
i (x) to the payoff he will obtain

after switching, the relevant comparison is not to FN
j (x), but rather to FN

j (x+ 1
N (e j−ei)).

Agents who account for this when deciding whether to switch strategies use clever
payoff evaluation.

Those who do not use simple payoff evaluation.



X N
−

= {z ∈ Rn
+ :

∑
i∈S zi = N−1

N and Nz ∈ Zn
} set of diminished population states

Given a game FN : X N
→ Rn, define the clever payoff function F̌N : X N

−
→ Rn by

(57) F̌N
k (z) = FN

k (z + 1
N ek).

F̌N(z) describes the current payoff opportunities of an agent whose opponents’ be-
havior distribution is z ∈ X N

−
.

An agent using revision protocol ρ = ρ(π, x) in game FN is clever
if at state x, his conditional switch rate from i to j is not ρi j(FN(x), x), but

(58) ρi j(F̌N(x − 1
N ei), x).



Committed Agents and Imitative Protocols

Imitative processes are not irreducible.

To make them so, we can add one (or more) committed agent for each strategy in
S = {1, . . . ,n}.

Example. Suppose that a standard agent who receives a revision opportunity picks
an opponent at random and imitates him: that is, let ri j ≡ 1, so that ρi j(π, x) = x j.

Without committed agents, the resulting stochastic evolutionary process converges
with probability 1 to one of the n pure states e1, . . . , en.

But with a single committed agent for each strategy, the process {XN
t } is irreducible.

In fact, the process is reversible, and its stationary distribution is the uniform
distribution on X N.



Proof. Let x ∈ X N and y = x + 1
N (e j − ei).

Then z = x − 1
N ei = y − 1

N e j ∈ X N
−

represents the behavior of the revising player’s
opponents.

PN
xy = xi ·

Nx j + 1
N + n − 1

=
Nzi + 1

N
·

Nz j + 1
N + n − 1

=
Nz j + 1

N
·

Nzi + 1
N + n − 1

= y j ·
Nyi + 1

N + n − 1
= PN

yx.



Exponential Protocols and Potential Games

Finite-Population Potential Games

A finite-population game FN : X N
→ Rn is a potential game if it admits

a full potential function: a function f N : X N
∪ X N

−
→ R such that

(59) FN
i (x) = f N(x) − f N(x − 1

N ei) for all x ∈ X N and i ∈ S.

Thus the payoff to i is the ith “discrete partial derivative” of 1
N f N.

(There is an equivalent definition using potential functions defined only on X N.)



Exponential Revision Protocols

Definition. We call ρ : Rn
→ Rn×n

+ a direct exponential protocol with noise level η if

(60) ρi j(π) =
exp(η−1ψ(πi, π j))

di j(π)
,

where the functions ψ : R2
→ R and d : Rn

→ (0,∞)n×n satisfy

ψ(πi, π j) − ψ(π j, πi) = π j − πi, and(61)

di j(π) = d ji(π).(62)

positive dependence on candidate payoff: ψ(πi, π j) = π j

negative dependence on current payoff: ψ(πi, π j) = −πi

positive dependence on payoff difference: ψ(πi, π j) = 1
2 (π j − πi)

positive dependence on positive payoff difference: ψ(πi, π j) = [π j − πi]+

negative dependence on negative payoff difference: ψ(πi, π j) = −[π j − πi]−



Different choices of the function d can be used to reflect different reference groups
that agents employ when considering a switch.

di j(π) = d ji(π) says that when an i player considers switches to strategy j, he employs
the same comparison group as a j player who considers switching to i.

Suppose ψ(πi, π j) = π j.

If agents use the full set of strategies as the comparison group: logit protocol

di j(π) =
∑
k∈S

exp(η−1πk) ⇒ ρi j(π) =
exp(η−1π j)∑

k∈S exp(η−1πk)
.

If the comparison group only contains the current and candidate strategies:
pairwise logit protocol

di j(π) = exp(η−1πi) + exp(η−1π j) ⇒ ρi j(π) =
exp(η−1π j)

exp(η−1πi) + exp(η−1π j)
.



Exercise. Show that ρ is a direct exponential protocol if and only if

(63) η log
ρi j(π)
ρ ji(π)

= π j − πi for all π ∈ Rn.

Definition. ρ : Rn
× X→ Rn×n

+ an imitative exponential protocol with noise level η if

(64) ρi j(π, x) = x j
exp(η−1ψ(πi, π j))

di j(π, x)
,

where the functions ψ : R2
→ R and d : Rn

× X→ (0,∞)n×n satisfy conditions (61) and

(65) di j(π, x) = d ji(π, x).



Reversibility and Stationary Distributions

Theorem. Let FN be a finite population potential game with potential function f N, and
suppose that agents are clever and follow a direct exponential protocol with noise level η.
Then the stochastic evolutionary process {XN

t } is reversible with stationary distribution

(66) µN
x =

1
KN

N!∏
k∈S

(Nxk)!
exp(η−1 f N(x))

for x ∈ X N, where KN is determined by the requirement that
∑

x∈X N µN
x = 1.



Proof. Let x ∈ X N and y = x + 1
N (e j − ei).

Let z = x − 1
N ei = y − 1

N e j ∈ X N
−

.

Then z is both the distribution of opponents for an i player at state x, and the
distribution of opponents of a j player at state y.

Thus, in both cases, a clever player who is revising will consider the payoff vector
F̌N(z) defined by F̌N

k (z) = FN
k (z + 1

N ek).

Write π̌ = F̌N(z).



By the definition of the potential function f N,

(67) f N(y) − f N(x) = FN
j (y) − FN

i (x) = F̌N
j (z) − F̌N

i (z) = π̌ j − π̌i.

So:

µN
x PN

xy = µN
x · xi ρi j(π̌)

=
1

KN
N!∏

k∈S
(Nxk)!

exp
(
η−1 f N(x)

)
· xi

exp
(
η−1ψ(π̌i, π̌ j)

)
di j(π̌)

=
1

KN
(N − 1)!∏
k∈S

(Nzk)!
exp

(
η−1( f N(y) − π̌ j + π̌i)

) exp
(
η−1(ψ(π̌ j, π̌i) + π̌ j − π̌i)

)
d ji(π̌)

=
1

KN
N!∏

k∈S
(Nyk)!

exp
(
η−1 f N(y)

)
· y j

exp
(
η−1ψ(π̌ j, π̌i)

)
d ji(π̌)

= µN
y · y j ρ ji(π̌)

= µN
y PN

yx.



Theorem. Let FN be a finite population potential game with potential function f N. Suppose
that there are N clever agents who follow an imitative exponential protocol with noise level
η, and that there is one committed agent for each strategy. Then the stochastic evolutionary
process {XN

t } is reversible with stationary distribution

(68) µN
x =

1
κN exp(η−1 f N(x))

for x ∈ X N, where κN is determined by the requirement that
∑

x∈X N µN
x = 1.

Compare to the case of direct exponential protocols:

(79) µN
x =

1
KN

N!∏
k∈S

(Nxk)!
exp(η−1 f N(x))



Limiting Stationary Distributions and Stochastic Stability

Idea: For tractable analyses and clean equilibrium selection results, study
stationary distributions µN,η as N and/or η are taken to their limiting values.

Two questions:

Stochastic stability (which states are such that all neighborhoods retain mass?)

Asymptotics of stationary distribution (at all states).



Definitions of Stochastic Stability

Small Noise Limits

Fix the population size N, and take the noise level η to zero.

Because N is fixed, each stationary distribution in the collection {µN,η
}η∈(0,η̄] is a

probability measure on the same finite state space, X N.

We call state x ∈ X N stochastically stable in the small noise limit if

(69) lim
η→0

µ
N,η
x > 0.



A less demanding (but more useful) notion of stochastic stability:

Suppose that for some rN
x ≥ 0,

(70) − lim
η→0

η logµN,η
x = rN

x

(
⇔ µ

N,η
x = exp(−η−1(rN

x + o(1)))
)
.

In words, rN
x is the exponential rate of decay of µN,η

x as η−1 approaches infinity.

(Note: the book leaves off the minus sign in (70), so that rN
x ≤ 0.)

State x ∈ X N weakly stochastically stable in the small noise limit if

(71) − lim
η→0

η logµN,η
x = 0.

In words, as η−1 approaches infinity, µN,η
x does not vanish at an exponential rate.

Proposition. Every stochastically stable state is weakly stochastically stable.



Large Population Limits

As the population size N grows, the state spaces X N vary!

We call state x ∈ X is stochastically stable in the large population limit
if for every open set O ⊆ X containing x, we have

(72) lim
N→∞

µN,η(O) > 0.



A less demanding (but more useful) notion of stochastic stability.

Suppose that for some continuous function rη : X→ R+

(73) lim
N→∞

max
x∈X N

∣∣∣∣− ηN logµN,η
x − rη(x)

∣∣∣∣ = 0.

Equivalently,

(74) µ
N,η
x = exp

(
−η−1N (rη(x) + o(1))

)
uniformly in x ∈ X N,

If rη(x) = 0, we call state x weakly stochastically stable in the large population limit.

Proposition. Suppose that condition (73) holds for some continuous function rη. Then
every stochastically stable state is weakly stochastically stable.



Double Limits

We call state x ∈ X stochastically stable in the small noise double limit
if for every open set O ⊆ X containing x, we have

(75) lim
N→∞

lim
η→0

µN,η(O) > 0.

We call state x ∈ X stochastically stable in the large population double limit
if for every open set O ⊆ X containing x, we have

(76) lim
η→0

lim
N→∞

µN,η(O) > 0.



The less demanding notions.

Suppose that for some continuous function r : X→ R+ we have

(77) lim
N→∞

lim
η→0

max
x∈X N

∣∣∣∣− ηN logµN,η
x − r(x)

∣∣∣∣ = 0.

This describes the small noise double limit: for N large, the exponential rate of
decay of µN,η

x as η−1 approaches infinity is approximately Nr(x).

Similarly, if there is a continuous function r̂ : X→ R+ such that

(78) lim
η→0

lim
N→∞

max
x∈X N

∣∣∣∣− ηN logµN,η
x − r̂(x)

∣∣∣∣ = 0,

This is the large population double limit: for small η, as N approaches infinity, the
exponential rate of decay of the stationary distributions weights on states near x is
approximately η−1r̂(x).

For either double limit, we say that state x is weakly stochastically stable
if its limiting rate of decay, r(x) or r̂(x), is equal to zero.



(77) lim
N→∞

lim
η→0

max
x∈X N

∣∣∣∣− ηN logµN,η
x − r(x)

∣∣∣∣ = 0.

(78) lim
η→0

lim
N→∞

max
x∈X N

∣∣∣∣− ηN logµN,η
x − r̂(x)

∣∣∣∣ = 0,

If r(·) and r̂(·) are identical, then the asymptotics of µN,η in the two double limits
agree in a very strong sense.

Double Limits: A Counterexample

The game: Hawk-Dove (two strategies; the unique Nash equlibrium is mixed)

The revision protocol: Imitation with mutations

The SNDL (77) selects a pure state.

The LPDL (78) selects the Nash equilibrium.



Exponential Protocols and Potential Games

Theorem. Let FN be a finite population potential game with potential function f N, and
suppose that agents are clever and follow a direct exponential protocol with noise level η.
Then the stochastic evolutionary process {XN

t } is reversible with stationary distribution

(79) µ
N,η
x =

1
KN

N!∏
k∈S

(Nxk)!
exp(η−1 f N(x))

for x ∈ X N, where KN is determined by the requirement that
∑

x∈X N µN
x = 1.

What are the asymptotics of µN,η in the various limits?

Definition: for g : C→ R, define ∆g : C→ R− by

∆g(x) = g(x) −max
y∈C

g(y).



The Small Noise Limit

(80)
µ

N,η
x

µ
N,η
y

=

∏
k∈S (Nyk)!∏
k∈S (Nxk)!

exp
(
η−1

(
f N(x) − f N(y)

))

lim
η→0

η log
µ

N,η
x

µ
N,η
y

= lim
η→0

((
f N(x) − f N(y)

)
+ η log

(∏
k∈S (Nyk)!∏
k∈S (Nxk)!

))
(81)

= f N(x) − f N(y).

Theorem.

(82) lim
η→0

η logµN,η
x = ∆ f N(x) for all x ∈ X N.



The Large Population Limit

We need to consider a sequence of potential games {FN
}
∞

N=N0
that “settles down”.

We suppose that the rescaled potential functions { 1
N f N
}
∞

N=N0
converge uniformly to

a limit function f : X→ R.

This is necessary but not sufficient for uniform convergence of {FN
}
∞

N=N0

To account for the multinomial term in µN,η, we need the logit potential function

f η(x) = f (x) − η
∑
i∈S

xi log xi

h(x) = −
∑

i∈S xi log xi is the entropy function,
which measures the “randomness” of a probability distribution x. (Set 0 log 0 ≡ 0.)

Theorem.

(83) lim
N→∞

max
x∈X N

∣∣∣∣ ηN logµN,η
x − ∆ f η(x)

∣∣∣∣ = 0.



f η in 123 Coordination with η = 1.5, η = .6, η = .2



(84)
µ

N,η
x

µ
N,η
e1

=
N!∏

i∈S
(Nxi)!

exp
(
η−1

(
f N(x) − f N(e1)

))
.

Stirling’s formula: N! ≈
√

2πN NN exp(−N).

µ
N,η
x

µ
N,η
e1

≈ exp
(
η−1

(
f N(x) − f N(e1)

)) √
2πN NN exp(−N)∏

i∈S

√
2πNxi (Nxi)Nxi exp(−Nxi)

(⇒)

= exp
(
η−1

(
f N(x) − f N(e1)

)) ∏
i∈S

x−(Nxi+ 1/2)
i

 · 1
(2πN)(n−1)/2

η

N
log

µ
N,η
x

µ
N,η
e1

≈
1
N

f N(x) −
1
N

f N(e1) − η
∑
i∈S

xi log xi −
η

N
n − 1

2
log 2πN.(⇒)

(⇒) lim
N→∞

max
x∈X N

∣∣∣∣∣∣∣ ηN log
µ

N,η
x

µ
N,η
e1

−
(

f η(x) − f η(e1)
)∣∣∣∣∣∣∣ = 0.



Double Limits

(82) lim
η→0

η logµN,η
x = ∆ f N(x) for all x ∈ X N.

(83) lim
N→∞

max
x∈X N

∣∣∣∣ ηN logµN,η
x − ∆ f η(x)

∣∣∣∣ = 0.

The double limits agree:

Corollary.

(i) lim
N→∞

lim
η→0

max
x∈X N

∣∣∣∣ ηN logµN,η
x − ∆ f (x)

∣∣∣∣ = 0 and

(ii) lim
η→0

lim
N→∞

max
x∈X N

∣∣∣∣ ηN logµN,η
x − ∆ f (x)

∣∣∣∣ = 0.



Noisy Best Response Protocols in Two-Strategy Games

Notation for two-strategy games:

x ≡ x1

X N = {0, 1
N , . . . , 1} ⊂ [0, 1].

F(x ) (vs. F(x));

ρ(π, x ) (vs. ρ(π, x))



Noisy best response protocols:

(85) ρ
η
i j(π) = ση(π j − πi),

Basic requirement:

lim
η→0

ση(a) =

1 if a > 0,

0 if a < 0.

Additional structure:

The unlikelihood (or cost) of switching to a strategy with payoff disadvantage d is

(86) κ(d) = −lim
η→0

η log ση(−d).

Equivalently:

ση(−d) = exp
(
−η−1(κ(d) + o(1))

)
.



κ(d) = −lim
η→0

η log ση(−d).(86)

ση(−d) = exp
(
−η−1(κ(d) + o(1))

)
.(⇔)

Definition. A noisy best response protocol is regular if

(i) the limit in (86) exists for all d ∈ R, with convergence uniform on compact intervals;
(ii) κ is nondecreasing;
(iii) κ(d) = 0 whenever d < 0;
(iv) κ(d) > 0 whenever d > 0.



Example (Best response with mutations).

ση(a) =

1 − exp(−η−1) if a > 0,

exp(−η−1) if a ≤ 0. (η = −(log ε)−1)

If d ≥ 0, then −η log ση(−d) = 1. Thus

κ(d) =

1 if d ≥ 0,

0 if d < 0.

Example (Logit choice).

ση(a) =
exp(η−1a)

exp(η−1a) + 1
.

If d ≥ 0, then −η log ση(−d) = d + η log(exp(−η−1d) + 1). Thus

κ(d) =

d if d > 0,

0 if d ≤ 0.



Example (Probit choice).

ση(a) = P(
√
ηZ + a >

√
ηZ′),

where Z and Z′ are independent and standard normal. Then

(87) ση(a) = Φ
(

a
√

2η

)
,

where Φ is the standard normal distribution function.

Well known approximation: for z < 0, Φ(z) is of order exp(−z2

2 ).

Thus −η log ση(−d) = −η log Φ
(
−d
√

2η

)
≈ −η · −d2

4η = 1
4 d2, so

κ(d) =


1
4 d2 if d > 0,

0 if d ≤ 0.



The Small Noise Limit

For convenience, we again assume clever payoff evaluation.

Define the relative unlikelihood function

κ̃(d) = κ(d) − κ(−d) = lim
η→0

(
−η log ση(−d) + η log ση(d)

)
.

Define IN : X N
→ R by

(88) IN(x ) =

Nx∑
j=1

κ̃
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
,

Theorem. If agents are clever and employ a regular noisy best response protocol with
unlikelihood function κ, then

(89) lim
η→0

η logµN,η
x = ∆IN(x ) for all x ∈ X N.



Idea of proof:

By the birth and death chain formula:

η log
µ

N,η
x

µ
N,η
0

= η log

 Nx∏
j=1

(N − j + 1)
j

·
ρ
η
01(F̌N( j−1

N ), j−1
N )

ρ
η
10(F̌N( j−1

N ), j
N )

(90)

=

Nx∑
j=1

(
−η log ση

(
FN

0 ( j−1
N ) − FN

1 ( j
N )

)
+ η log ση

(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
+ η log N− j+1

j

)
.

Thus

lim
η→0

η log
µ

N,η
x

µ
N,η
0

=

Nx∑
j=1

(
κ
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
− κ

(
FN

0 ( j
N ) − FN

1 ( j−1
N )

))
=

Nx∑
j=1

κ̃
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
= IN(x).



10.6 The Large Population Limit

Suppose {FN
}
∞

N=N0
converges uniformly to F, where F : [0, 1]→ R2 is continuous.

Let F∆(x ) ≡ F1(x ) − F0(x ).

Let σ̃η(a) =
ση(a)
ση(−a)

. (relative choice probability function)

Define Iη : [0, 1]→ R by

(91) Iη(x ) =

∫ x

0
η log σ̃η(F∆(y )) dy − η (x log x + (1 − x ) log(1 − x )

)
.

Theorem. If agents are clever and employ regular noisy best response protocol ση, then

lim
N→∞

max
x ∈X N

∣∣∣∣ ηN logµN,η
x − ∆Iη(x )

∣∣∣∣ = 0.



F∆(x ) ≡ F1(x ) − F0(x ); σ̃η(a) =
ση(a)
ση(−a)

.

Idea of proof:

η log
µ

N,η
x

µ
N,η
0

=

Nx∑
j=1

(
−η log ση

(
FN

0 ( j−1
N ) − FN

1 ( j
N )

)
+ η log ση

(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
+ η log N− j+1

j

)
=
η

N

Nx∑
j=1

(
log σ̃η

(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
+ log N− j+1

N − log j
N

)
.

By the dominated convergence theorem,

lim
N→∞

η

N
log

µ
N,η
x

µ
N,η
0

=

∫ x

0
η
(
log σ̃η

(
F1(y ) − F0(y )

)
+ log(1 − y ) − log(y )

)
dy

=

∫ x

0
η log σ̃η

(
F∆(y )

)
dy − η (x log x + (1 − x ) log(1 − x )

)
= Iη(x)



Double Limits

σ̃η(a) =
ση(a)
ση(−a)

κ̃(a) = lim
η→0

η log σ̃η(a)

SNL: IN(x ) =

Nx∑
j=1

κ̃
(
FN

∆ ( j
N )

)
LPL: Iη(x ) =

∫ x

0
η log σ̃η(F∆(y )) dy − η (x log x + (1 − x ) log(1 − x )

)
.

Define the ordinal potential function I(x ) =

∫ x

0
κ̃(F∆(y )) dy

Theorem.

(i) lim
N→∞

lim
η→0

max
x ∈X N

∣∣∣∣ ηN logµN,η
x − ∆I(x )

∣∣∣∣ = 0 and

(ii) lim
η→0

lim
N→∞

max
x ∈X N

∣∣∣∣ ηN logµN,η
x − ∆I(x )

∣∣∣∣ = 0.



Example (Best response with mutations).

κ(d) = 1d≥0 ⇒ Isgn(x ) =

∫ x

0
sgn

(
F∆(y )

)
dy signum potential function

Example (Logit choice).

κ(d) = [d]+ ⇒ I1(x ) =

∫ x

0
F∆(y ) dy (standard) potential function

Example (probit choice).

κ(d) = 1
4 [d]2

+ ⇒ I2(x ) =

∫ x

0

1
4

〈
F∆(y )

〉2
dy quadratic potential function

where 〈a〉2 = sgn(a) a2.



Example (Stag Hunt revisited).

A =

h h
0 s



0.0 0.2 0.4 0.6 0.8 1.0
–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
–1.0

–0.8

–0.6

–0.4

–0.2

0.0

h = 2, s = 3 h = 2, s = 5

The ordinal potentials ∆Isgn (blue), ∆I1 (purple), and ∆I2 (yellow).



Example (Nonlinear Stag Hunt revisited). FH(x ) = h, FS(x ) = sx 2, x ∗ =
√

h/s.

0 .5 1
0

2

4

6

8

Payoffs and mixed equilibria when h = 2 and s = 5, 5.75, 7, and 8.5.



0.0 0.2 0.4 0.6 0.8 1.0

–1.5

–1.0

–0.5

0.0

(i) h = 2, s = 5
0.0 0.2 0.4 0.6 0.8 1.0

–1.5

–1.0

– 0.5

0.0

(ii) h = 2, s = 5.75

0.0 0.2 0.4 0.6 0.8 1.0

–1.5

–1.0

– 0.5

0.0

(iii) h = 2, s = 7
0.0 0.2 0.4 0.6 0.8 1.0

–1.5

–1.0

–0.5

0.0

(iv) h = 2, s = 8.5

Figure 2: The ordinal potentials ∆Isgn (blue), ∆I1 (purple), and ∆I2 (yellow).



Risk Dominance, Stochastic Dominance, and Stochastic Stability

Suppose that F is a coordination game: there is a state x ∗ ∈ (0, 1) such that

sgn(∆F(x )) = sgn(x − x ∗) for all x , x ∗.

Are there simple conditions that characterize stochastic stability?

Strategy i is risk dominant if its basin of attraction is bigger than that of strategy j.

Corollary. Suppose that F is linear. Then state ei is stochastically stable under every noisy
best response protocol if and only if strategy i is risk dominant in F.

Corollary. Suppose that ση is the BRM rule. Then state ei is stochastically stable under
every noisy best response protocol if and only if strategy i is risk dominant in F.



What about games with nonlinear payoffs?

Strategy i stochastically dominant if for every a ≥ 0,
the set of states where i has a payoff advantage of at least a is larger than
the set of states where j has a payoff advantage of at least a.

Theorem. State ei is stochastically stable under every noisy best response protocol if and
only if strategy i is stochastically dominant in F.



Trees and Stochastic Stability

We now develop tools for analyzing nonreversible cases.

The Markov Chain Tree Theorem

{Xt} irreducible Markov chain
X finite state space
P ∈ RX×X

+ transition matrix
µ ∈ RX

+ unique stationary distribution: µ′P = µ′.

View X as a set of nodes to be connected with directed edges (x, y) ∈ X × X , x , y.

Then a directed graph g on X can be identified with a set of directed edges.



Four special types of directed graphs:

A walk from x to y is a directed graph {(x, x1), (x1, x2), . . . , (xl−1, y)} whose directed
edges traverse a route connecting x to y.

A path from x to y , x is a walk from x to y with no repeated nodes.

A cycle is a walk from x to itself that contains no other repeated nodes.

A tree with root x (or an x-tree) is a directed graph with no outgoing edges from x,
exactly one outgoing edge from each y , x, and a unique path from each y , x to x.

Let Tx denote the set of x-trees on X , and define the vector ν ∈ RX
+ by

(92) νx =
∑
τx∈Tx

∏
(y,z)∈τx

Pyz.

Theorem (The Markov Chain Tree Theorem). ν ∝ µ.



νx =
∑
τx∈Tx

∏
(y,z)∈τx

Pyz.

Proof. Let Gx be the set of directed graphs γx on X such that

(i) each y ∈ X has exactly one outgoing edge in γx;

(ii) γx contains a unique cycle; and

(iii) the unique cycle contains x.

Two representations of Gx:

(93) Gx =
⋃
y,x

⋃
τy∈Ty

τy ∪ {(y, x)};

(For each τy tree with y , x, add an edge from y to x.)

(94) Gx =
⋃
τx∈Tx

⋃
y,x

τx ∪ {(x, y)}.

(For each τx tree and each y , x, add an edge from x to y.)



Gx =
⋃
y,x

⋃
τy∈Ty

τy ∪ {(y, x)};(93)

Gx =
⋃
τx∈Tx

⋃
y,x

τx ∪ {(x, y)}.(94)

Recall that νx =
∑
τx∈Tx

∏
(y,z)∈τx

Pyz. Define ψx =
∑
γx∈Gx

∏
(y,z)∈γx

Pyz.

Then by (93) and (94),
∑
y,x

νyPyx = ψx = νx

∑
y,x

Pxy.

Add νxPxx to each side:
∑
y∈X

νyPyx = νx.

Put differently, ν′P = ν′.



Stationary Distribution Asymptotics via Trees (Freidlin-Wentzell)

η ∈ (0, η̄] noise level
{Xη

t } irreducible Markov chain
X common finite state space
Pη ∈ RX×X

+ transition matrix
µη ∈ RX

+ unique stationary distribution: (µη)′P = (µη)′.

Assume that transition probabilities Pηxy have well defined rates of decay, or costs:

cxy = −lim
η→0

η log Pηxy (⇔ Pηxy = exp(−η−1(cxy + o(1))) )

What can we say about the rates of decay of the stationary distribution weights µηx?



cxy = −lim
η→0

η log Pηxy cost of a step from x to y

C(τx) =
∑

(y,z)∈τx

cyz cost of tree τx

Cx = min
τx∈Tx

C(τx) minimal cost of an x-tree

¯
Cx = Cx −min

y∈X
Cy normalization: min

x∈X ¯
Cx = 0

C∗ = min
x∈X

Cx

Theorem. −lim
η→0

η logµηx =
¯
Cx.

States x with
¯
Cx = 0 are said to be weakly stochastically stable.

If x is the unique weakly stochastically stable state, then lim
η→0

µ
η
x = 1.

If lim sup
η→0

µ
η
x > 0, then x is weakly stochastically stable.



Sketch of proof. Recall that Pηxy = exp(−η−1(cxy + o(1))).∏
(y,z)∈τx

Pηyz =
∏

(y,z)∈τx

exp(−η−1(cxy + o(1)))

= exp(−η−1(C(τx) + o(1))).
Thus

ν
η
x =

∑
τx∈Tx

∏
(y,z)∈τx

Pηyz

=
∑
τx∈Tx

∏
(y,z)∈τx

exp(−η−1(C(τx) + o(1)))

= exp(−η−1(Cx + o(1))). (exercise!)

Since ν ∝ µ by the Markov chain tree theorem,

−lim
η→0

η log
µ
η
x

µ
η
y

= −lim
η→0

η log
(

exp(−η−1(Cx + o(1)))
exp(−η−1(Cy + o(1)))

)
= Cx − Cy.



Since ν ∝ µ by the Markov chain tree theorem,

−lim
η→0

η log
µ
η
x

µ
η
y

= −lim
η→0

η log
(

exp(−η−1(Cx + o(1)))
exp(−η−1(Cy + o(1)))

)
= Cx − Cy.

When Cy = C∗, we have −lim
η→0

η logµηy = 0 (since the mass must go somewhere).

Fixing such a y, we have

−lim
η→0

η logµηx = −lim
η→0

η log
µ
η
x

µ
η
y

+ η logµηy


= Cx − C∗ + 0

=
¯
Cx.



Two-Strategy Games Revisited

Notation for two-strategy games: x ≡ x1; X N = {0, 1
N , . . . , 1} ⊂ [0, 1]; F(x ); ρ(π, x ).

Noisy best response protocols and unlikelihood functions:

ρ
η
i j(π) = ση(π j − πi),

κ(d) = −lim
η→0

η log ση(−d).

Example (Best response with mutations).

ση(a) =

1 − exp(−η−1) if a > 0,

exp(−η−1) if a ≤ 0.
⇒ κ(d) =

1 if d ≥ 0,

0 if d < 0.

Example (Logit choice).

ση(a) =
exp(η−1a)

exp(η−1a) + 1
⇒ κ(d) =

d if d > 0,

0 if d ≤ 0.



The small noise limit

Assume agents are clever.

κ̃(d) = κ(d) − κ(−d),

IN(x ) =

Nx∑
j=1

κ̃
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
,

−∆IN(x ) = max
y∈X N

IN(y ) − IN(x ) ≥ 0.

Theorem. − lim
η→0

η logµN,η
x = −∆IN(x ).



Analysis via trees:

Let Cx be the minimal cost of an x -tree.

Let
¯
Cx = Cx −min

y∈X
Cy .

Then by the Freidlin-Wentzell theorem, −lim
η→0

η logµηx =
¯
Cx .

The only finite cost x -tree is

x0 1

Cx = C(τx ) =

Nx −1∑
j=0

c j/N,( j+1)/N +

N∑
j=Nx +1

c j/N,( j−1)/N

=

Nx −1∑
j=0

κ
(
FN

0 ( j
N ) − F1( j+1

N )
)

+

N∑
j=Nx +1

κ
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
.



Example: Stag Hunt, BRM protocol. (Assume indifferent agents do not switch.)

A =

h h
0 s

 . h = 4, s = 7 ⇒ x ∗ = 4
7 .

0 1

1 1 1 1 1 1 10 0 0 0 0 0 0 0

8
15

9
15

C(τ0) = 7

0

1 0 0 0 0 0 0

1

1 1 1 1 1 1 1 1

8
15

9
15

C(τ1) = 9

∴ state 0 is stochastically stable



Example: Stag Hunt, logit protocol

A =

h h
0 s

 . h = 4, s = 7 ⇒ x ∗ = 4
7 .

0 1

0 1 2 30 0 0 0 0 0 0 0

8
15

1
2

3
2

5
2

9
15

C(τ0) = 10 1
2

0

0 0 0 0 0 0 0

1

4 3 2 1

8
15

9
15

1
2

3
2

5
2

7
2

C(τ1) = 18

∴ state 0 is stochastically stable



Do the analyses agree? It’s enough to show that
¯
Cx = −∆IN(x ).

Cx = C(τx ) =

Nx −1∑
j=0

κ
(
FN

0 ( j
N ) − F1( j+1

N )
)

+

N∑
j=Nx +1

κ
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
.

Cy = C(τy ) =

Ny−1∑
k=0

κ
(
FN

0 ( k
N ) − F1( k+1

N )
)

+

N∑
k=Ny+1

κ
(
FN

1 ( k
N ) − FN

0 ( k−1
N )

)
.

Cx − Cy =

Ny∑
j=Nx +1

κ
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
−

Ny−1∑
k=Nx

κ
(
FN

0 ( k
N ) − F1( k+1

N )
)

(⇒)

=

y∑
j=Nx +1

κ̃
(
FN

1 ( j
N ) − FN

0 ( j−1
N )

)
= IN(y ) − IN(x ).

(⇒)
¯
Cx = −∆IN(x ).



Stationary Distribution Asymptotics via Trees on Recurrent Classes

Let P∗ be a transition matrix satisfying P∗xy > 0 ⇔ cxy = 0.

Let X ∗ ⊆ X be the set of recurrent states associated with P∗.

We assume for convenience that all recurrent classes are singletons.

By definition, there is a zero-cost path from every state in X to a state in X ∗.

This suggest thats we can conduct the tree analysis using trees on X ∗.

This can be very useful, since X ∗ is typically much smaller than X .



φ = (φ0, . . . φ`) ∈ X ` a path through X
c(φ) =

∑`−1
k=0 cφk,φk+1 cost of a path

Φ(x, y) set of paths from x ∈ X to y ∈ X
C(x, y) = min{c(φ) : φ ∈ Φ(x, y)} cost of a transition form x to y

For x∗ ∈ X ∗, let Tx∗ be the set of x∗-trees on X ∗.

C(τx∗) =
∑

(y∗,z∗)∈τ∗x

C(y∗, z∗) cost of tree τx∗

Define C : X → R+ as follows:

Cx∗ = min
τx∗∈Tx∗

C(τx∗)

Cx = min
x∗∈X ∗

(
Cx∗ + C(x∗, x)

)
Let

¯
C(x) = Cx −min

x∈X
Cx

Theorem. −lim
η→0

η logµηx =
¯
Cx. (cf. Catoni (1999))



Radius-Coradius Theorems

There are sufficient conditions for stochastic stability that do not require trees.

The radius of x∗ ∈ X ∗ is the difficulty of going from x∗ to another recurrent class:

rad(x∗) = min
y∗,x∗

C(y∗, z∗).

Let Φ∗(y∗, z∗) be the set of paths through X ∗ from y∗ to z∗.

The coradius is the maximal difficulty of getting to x∗ from another recurrent class:

corad(x∗) = max
y∗,x∗

min
φ∗∈Φ∗(y∗,x∗)

C(φ∗).

Φ∗(x∗, y∗) set of paths through X ∗ from x∗ to y∗

C(φ∗) =
∑`−1

k=0 C(φ∗k , φ
∗
k+1) cost of a path through X ∗

Theorem. If rad(x∗) > corad(x∗), then x∗ is uniquely stochastically stable.

A variety of weaker sufficient conditions exist.



Half-Dominance and BRM

Roughly speaking, strategy i is strongly half-dominant if for some α < 1
2 ,

i is the unique best response whenever xi ≥ α.

Theorem. Suppose clever agents play a finite-population game FN using the BRM rule.
If strategy i is strongly half-dominant in FN, then state ei is uniquely stochastically stable.

Idea of proof.

rad(ei) < N(1 − α).

corad(ei) > Nα.

Thus rad(ei) > corad(ei), so ei is uniquely stochastically stable.


