
Strategic Learning and Its Limits by H. Peyton Young∗

William H. Sandholm†‡

November 6, 2007

While the cardinal role of game theory in economic analysis is no longer challenged, a
fundamental question about the standard methods of game-theoretic prediction remains:
why should we expect players’ behavior to conform with some notion of equilibrium
play? The traditional approach to this problem is to ask whether agents can arrive at
equilibrium through a purely introspective process. By now, various epistemic conditions
ensuring equilibrium play are available, but these conditions seem overly demanding for
most applications.

The other leading approach to justifying equilibrium play is to ask whether agents can
learn to behave as equilibrium concepts predict over the course of a repeated interaction.
One can divide research on this question into two main strands. Models from evolution-
ary game theory study the behavior of large populations of agents whose decision rules
condition on current strategic conditions, and ask whether or not the agents’ aggregate
behavior will come to resemble a Nash equilibrium.1 Alternatively, models of learning in
games consider whether a small group of players, one for each role in the game, ultimately
will behave in accordance with equilibrium predictions.

The theory of learning in games is the subject of Peyton Young’s delightful new mono-
graph, Strategic Learning and Its Limits. In this slim volume, Young manages not only to
survey the major developments in the field over the past fifteen years, but also to present
in a clear and concise fashion some of the mathematical techniques that underpin this area
of research. The learning literature has reached a level of maturity at which a taking of
stock is in order, and Young provides a masterly synthesis of what has been achieved to
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date. Anyone seeking a brief but substantive overview of what this literature has taught
us will read this book with pleasure.

Chapters 1 through 6 of Strategic Learning and Its Limits offer a thorough presentation
of models of heuristic learning, in which agents use simple myopic rules to learn to play
repeated normal form games.2 Young classifies these models in two groups according to
the sorts of information agents consider when making decisions. Models in which players
concentrate on their own past payoffs can be exceedingly simple: indeed, the players need
not even be aware that they are playing a game. In contrast, when players aim to predict
opponents’ future behavior, it is natural for them to attend to opponents’ past play. Past
play models are often more sophisticated than past payoffmodels, as they require players
to possess (possibly naive) theories about how opponents act.

To begin, Young considers reinforcement learning, the simplest sort of past payoffmodel.
Here every player assigns each of his strategies a positive weight, a weight that is increased
each time the strategy is played; his choices in each period are random, with probabilities
determined by the strategy weights. While reinforcement learning schemes are optimal
in stationary environments, there are few classes of games in which they always converge
to equilibrium. But Young notes that these schemes share two basic properties with more
successful learning procedures: namely, probabilistic choice and “sluggish adaptation”
(that is, inertia in the updating of choice probabilities).

In Chapters 2 through 4, Young studies more sophisticated past payoffmodels based on
the elimination of regret. Consider a single agent who faces a repeated decision problem:
in each period, the agent makes a choice from a finite set of actions A and then obtains
a payoff. As of period t, the agent’s regret for (not having chosen) action a is defined as
the difference between two terms: the average payoff he would have obtained had he
chosen a in periods 1 through t, and the average payoff he actually obtained during those
periods. A strategy for this repeated decision problem satisfies no regret (or is consistent)
if it ensures that for any sequence of payoff realizations, the agent’s regret for each of his
actions becomes nonpositive as t approaches infinity. Returning to the context of repeated
games, it is easy to show that if each player follows a no-regret strategy, then the time
average of play must converge to the set of coarse correlated equilibria: this concept is the
generalization of correlated equilibrium obtained when players’ decisions about whether
to follow the proposed correlated strategy are made at the ex ante stage.

2A more narrowly focused overview of heuristic learning can be found in Sergiu Hart’s 2003 Walras-
Bowley lecture (Hart (2005)). For an earlier book-length treatment of the learning literature, one that also
covers models of learning in extensive form games, see Fudenberg and Levine (1998). For more technical
presentation of models of adaptive learning and prediction with many pointers to the computer science and
statistics literatures, see Cesa-Bianchi and Lugosi (2006).
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It is natural to ask next whether one can prove a stronger convergence result, under
which average behavior converges the set of correlated equilibria. To do so, one must
replace the no-regret criterion with something more demanding, so that agents’ behav-
ior will satisfy not only the ex ante notion of optimality posited by coarse correlated
equilibrium, but also the interim notion posited by correlated equilibrium. This stronger
criterion, called conditional no regret (or conditional consistency), requires that for any se-
quence of payoff realizations, the following statement is true: for each action a that the
agent played with nonnegligible frequency, the agent would not have been better off hav-
ing always played an alternative action a′ in place of a. By construction, the connection
between conditional no regret and correlated equilibrium is precisely analogous to that
between no regret and coarse correlated equilibrium.

After finishing his treatment of no regret models, Young turns his attention to models
of learning in which agents focus on past play, beginning in Chapter 5 with calibrated
learning. Consider an agent who is about to view an infinite sequence of observations
from the finite set O. Before each observation appears, the agent makes a forecast about
its realization, a forecast that takes the form of a probability distribution on O. Roughly
speaking, an agent’s forecast over an infinite sequence of observations is calibrated if the
following statement is true: if the agent’s forecast is p in a nonnegligible number of
periods, then the empirical distribution of outcomes in those periods is close to p. More
demandingly, an agent’s forecasting procedure is calibrated if it generates calibrated forecasts
for any possible sequence of observations. If all players in a repeated game choose myopic
best responses to calibrated forecasts, their time-averaged behavior converges to the set
of correlated equilibria.

Young’s presentation of these ideas, including both the early analyses of Hannan (1957)
and Blackwell (1956a,b) and the more recent ones of Foster and Vohra (1993, 1997, 1998),
Fudenberg and Levine (1995, 1999) and Hart and Mas-Colell (2000, 2001), is clear, concise,
and complete. The cornerstone of Young’s presentation is Blackwell’s Approachability The-
orem; this generalization of the Minmax Theorem to games with vector-valued payoffs is
of cardinal importance throughout the theory of heuristic learning in games.

In Chapter 6, Young considers models of fictitious play. In the basic model of Brown
(1951), each player selects myopic best responses to his beliefs about his opponents’
strategies, where these beliefs specify that each opponent will play the mixed action
defined by his time-averaged behavior. If one assumes that payoffs are subjected to small
random shocks, as in the stochastic fictitious play model of Fudenberg and Kreps (1993),
then period-by-period behavior becomes stochastic, introducing the possibilities of both
convergence of period-by-period behavior and elimination of regret.
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The last two chapters of Strategic Learning and Its Limits offer tastes of recent work in
other branches of the learning literature. In Chapter 7, Young considers rational learning,
the branch that comes closest to traditional economic modeling. Rational learning models
ask how Bayesian rational players—that is, players who form prior beliefs, update them
in the face of past experience using Bayes’ rule, and choose strategies in a dynamically
optimal fashion—might learn to play a game. Young reviews the two central results in this
literature, the Nash convergence theorem of Kalai and Lehrer (1993) and the impossibility
theorem of Nachbar (1997), and then presents more recent work on the impossibility of
rational learning of mixed equilibria. In Chapter 8, Young turns to models of random
search with independent verification. Here each agent begins with a hypothesis about the
stage game mixed strategy profile used by his opponents. The agent plays a myopic best
response to this hypothesis until the evidence provided by past play leads him to reject
it, in which case another hypothesis is formed at random. Such models allow agents
to coordinate on stage game Nash equilibria in a high proportion of periods over long
enough time spans. But as the initial period of play involves a random exploration of the
set of mixed strategy profiles, random search models have limited predictive power when
the time span of interest is of moderate duration.

While Young classifies learning models in terms of their reliance on past payoffs
or past play, it is more fruitful to divide his book somewhat differently, into learning
models that can be analyzed using approachability theory, and other models of learning
games. Given Young’s aim of finding learning models that converge to equilibrium in
all games, this division is natural. The greatest successes in attaining this goal rely on
repeated game strategies derived from worst-case analyses of repeated multicriterion
decision problems; approachability theory allows one to conduct these analyses in an
astonishingly uncomplicated way.

In his early chapters, where he interweaves the theories of approachability and learning
in games, Young achieves an impressive balance between readability and precision, and
I expect this exposition to become a standard reference on its subject. Given their page
counts, Young’s treatments of other models in the later chapters cannot provide a similar
level of detail. Therefore, rather than surveying all of the relevant models in a cursory
way, Young wisely chooses to present a few representative models in depth. In so doing,
he is able to provide the reader with an appreciation for a wide swath of the literature.
All told, Strategic Learning and Its Limits offers an exemplary introduction to recent work
on learning in games.
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