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Abstract

We consider the stability of strict equilibrium under deterministic evolutionary
game dynamics. We show that if the correlation between strategies’ growth rates
and payoffs is positive and bounded away from zero in a neighborhood of a strict
equilibrium, then this equilibrium is locally stable.

1. Introduction

Evaluating the local stability of Nash equilibria is a basic issue in the study of deter-
ministic evolutionary game dynamics. Much of the literature on this topic has focused on
Maynard Smith and Price’s (1973) notion of an evolutionarily stable state (ESS), showing
that variants of this notion provide sufficient conditions for local stability under various
game dynamics. The analyses of local stability, which are based on either the construction
of Lyapunov functions or on linearization, depend on the particular functional forms of
the dynamics under consideration.1

This paper considers the local stability of strict equilibrium. Since strict equilibria are
ESSs, local stability results for the latter apply immediately to the former. Moreover, near
a strict equilibrium, most agents are playing a strict best response, so for dynamics under
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which a popular optimal strategy must become more popular still, strict equilibria are
locally stable.

It is nevertheless worth asking whether local stability of strict equilibrium can be
established under weaker conditions. As we noted earlier, stability results for ESS impose
conditions on dynamics’ functional forms that may be difficult to verify in applications.
Furthermore, when most agents are already playing a particular strategy, requiring this
strategy to continue to grow in popularity is not completely innocuous, particularly when
alternative strategies yield comparable if somewhat lower payoffs.

We therefore ask whether weaker conditions relating strategies’ growth rates and
payoffs are sufficient for stability of strict equilibrium. One possibility is to ask only
that strategies’ growth rates and payoffs be positively correlated.2 The weakness of
this condition is reflected in its constraining all strategies’ growth rates using a single
inequality; even optimal strategies may become less common, provided that this loss
is balanced by the growth of other strategies with above-average payoffs. In potential
games, positive correlation is precisely what is needed to ensure that the value of potential
increases over time, and hence that local maximizers of potential are locally stable.3 It is
thus natural to ask whether some version of this condition is sufficient for local stability
of strict equilibria.

In this paper, we introduce a slight strengthening of positive correlation which we
call strong positive correlation. A dynamic satisfies this condition in some region of the
state space if throughout this region, whenever the dynamic is not at rest, the correlation
between strategies’ growth rates and payoffs is bounded away from zero. Our main result
shows that if a dynamic satisfies strong positive correlation in a neighborhood of a strict
equilibrium, then this equilibrium is Lyapunov stable, and it is asymptotically stable as
long as there is a neighborhood of the equilibrium containing no other rest point. While
strong positive correlation allows the strict equilibrium strategy to decline in popularity
at some states arbitrarily close to the equilibrium, local stability of the equilibrium is still
assured.

2Conditions of this sort are considered by Friedman (1991), Swinkels (1993), Sandholm (2001), and
Demichelis and Ritzberger (2003).

3See Sandholm (2001).

–2–



2. The Model

2.1 Population games

For most of the paper we focus on strategic interactions in a single unit-mass population
of agents. We extend our results to multipopulation games is in Section 5.

In the single-population framework, we denote by S = {1, . . . ,n} the finite set of
strategies available to each agent. We call X = {x ∈ Rn :

∑
i∈S xi = 1}, the simplex inRn, the

set of population states; for each x ∈ X, x describes the fraction of agents playing strategy
i. For each i ∈ S, we denote by ei the ith standard basis vector in Rn, which represents the
pure population state in which all agents play action i, as well as the mixed representation
of pure action i.

Let TX = {z ∈ Rn :
∑

i∈S zi = 0} denote the tangent space of the simplex. If we define
the matrix Φ ∈ Rn×n by Φ = I − 1

n11′, where 1 ∈ Rn denotes the vector of ones, then Φ

represents the orthogonal projection ofRn onto TX. For any vector π, the projected vector
Φπ = π − ( 1

n
∑

i∈S πi)1 is obtained from π by reducing each component by the average of
the components of π. Also, let TX(x) = {z ∈ TX : [xi = 0⇒ zi ≥ 0] for all i ∈ S} denote the
tangent cone of X at state x ∈ X. This set contains those directions in which the state may
move from x without immediately leaving the set X.

We identify a population game with a Lipschitz continuous payoff function F : X→ Rn.
Here Fi(x) is the payoff obtained by action i players at population state x.

The simplest population games are obtained by matching a population of agents to
play a symmetric two-player normal form game A ∈ Rn×n, in which Ai j is the payoff an
i player receives when matched against a j player. The induced population game F is
defined by F(x) =

∑
j∈S Ai jx j = (Ax)i, or equivalently, by F(x) = Ax.

2.2 Evolutionary dynamics

An evolutionary dynamic is a method of assigning each population game F a differential
equation

(D) ẋ = VF(x)

that is defined and forward invariant on the state space X. To ensure the latter properties,
we require the function VF : X→ TX to be Lipschitz continuous and satisfy VF(x) ∈ TX(x)
for all x ∈ X. When we introduce examples of evolutionary dynamics below, we assume
that the functions used to define these dynamics are continuous as well; these examples

–3–



play no direct role in our main result.

3. Strong positive correlation

Positive correlation is a basic monotonicity condition for evolutionary game dynamics.
It is expressed most simply as follows:

(PC) For all x ∈ X,VF(x) , 0 implies that VF(x)′F(x) > 0.

Geometrically, condition (PC) requires that when the population is not at rest, the vector
of growth rates form an acute angle with the vector of payoffs. To obtain a game-theoretic
interpretation for this condition, regard the strategy set S = {1, . . . ,n} as a probability space
endowed with the uniform probability measure, so that vectors in Rn can be interpreted
as random variables taking values in R. Then as we explain below, condition (PC) can be
formulated equivalently as

(1) For all x ∈ X,VF(x) , 0 implies that Corr(VF(x),F(x)) > 0.

Thus positive correlation requires that whenever the population is not at rest, the correla-
tion between strategies’ growth rates and payoffs is positive.4

Our local stability result requires a slightly more demanding condition. We say that a
dynamic VF for game F satisfies strong positive correlation in Y ⊆ X if

There exists a c > 0 such that for all x ∈ Y,(SPC)

VF(x) , 0 implies that Corr(VF(x),F(x)) ≥ c.

Strong positive correlation requires that on the set Y, when the population is not at rest,
the correlation between growth rates and payoffs is bounded away from zero.

To express (SPC) in a more primitive form, recall that ΦF(x) is the projection of the
payoff vector F(x) onto TX, so that (ΦF)i(x) = Fi(x) − 1

n
∑

j∈S F j(x) is the difference between
strategy i’s payoff and the unweighted average of the strategies’ payoffs. In Appendix
A.1, we show that

(2) Corr(VF(x),F(x)) =
VF(x)′ΦF(x)
|VF(x)| |ΦF(x)|

,

4Under condition (1), VF(x) , 0 implies that F(x) is not proportional to the vector 1, since if it were, then
Corr(VF(x),F(x)) would be undefined. One could avoid undefined expressions by explicitly including a
requirement that F(x) , a1 as part of the consequent in (1).
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where | · | denotes the Euclidean norm onRn. The right-hand side of (2) is the cosine of the
angle between the growth rate vector VF(x) and the projected payoff vector ΦF(x). Thus,
while (PC) requires that the direction of motion form an acute angle with the projected
payoff vector whenever VF(x) , 0, (SPC) requires further that the cosine of this angle be
bounded away from zero, or equivalently, that the angle be bounded away from 90◦.

It is well known that many of the evolutionary dynamics studied in the literature satisfy
positive correlation. Families of dynamics satisfying this condition include monotone
imitiative dynamics,5

(3) ẋi = xiGF
i (x), where sgn(GF

i (x) − GF
j (x)) = sgn(Fi(x) − F j(x)),

sign-preserving excess payoff dynamics,6

(4) ẋi = τi(F̂(x)) − xi
∑
j∈S
τ j(F̂(x)), where sgn(τi(π̂)) = sgn([π̂i]+),

and pairwise comparison dynamics,7

(5) ẋi =
∑
j∈S

x jρ ji(F(x)) − xi
∑
j∈S
ρi j(F(x)), where sgn(ρi j(π)) = sgn([π j − πi]+).

Proposition 3.1, which is proved in Appendix A.2, verifies that all dynamics from these
families also satisfy strong positive correlation near strict equilibria.

Proposition 3.1. All monotone imitative dynamics (3), sign-preserving excess payoff dynamics
(4), and pairwise comparison dynamics (5) satisfy strong positive correlation (SPC) in a neighbor-
hood of any strict equilibrium.

Proposition 3.1 shows that condition (SPC) is satisfied by commonly studied dynamics
near strict equilibria. Still, this proposition is somewhat tangential to our main result,
which establishes that (SPC) implies local stability of strict equilibrium regardless of the
dynamic’s functional form.

5When GF
i (x) = F̂i(x) (see the next footnote), (3) is the replicator dynamic (Taylor and Jonker (1978)). Early

work on monotone imitative dynamics includes Nachbar (1990), Friedman (1991), Samuelson and Zhang
(1992), and Weibull (1995).

6Here F̂i(x) = Fi(x)−
∑

j∈S x jF j(x) is the excess payoff of strategy i over the average payoff in the population.
When τi(πi) = [πi]+, (4) is the BNN dynamic (Brown and von Neumann (1950)). Also see Skyrms (1990),
Swinkels (1993), Weibull (1996), Hofbauer (2000), and Sandholm (2005).

7When ρi j(π) = [π j − πi]+, (4) is the Smith (1984) dynamic. See also Sandholm (2010b).
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4. Local stability of strict equilibria

Pure population state ek is a strict equilibrium of game F if Fk(ek) > F j(ek) for all j , k.
It is well known that all Nash equilibria, and hence all strict equilibria, are rest points
of any dynamic that satisfies positive correlation (PC).8 Our main result shows that strict
equilibria are locally stable under any evolutionary dynamic satisfying strong positive
correlation (SPC).

Stating this result requires us to introduce notions of local stability. State x∗ ∈ X is Lya-
punov stable under ẋ = V(x) if for every neighborhood O of x∗ there exists a neighborhood
O′ of x∗ such that every solution that starts in O′ is contained in O. State x∗ is attracting if
there is a neighborhood Q of x∗ such that every solution that starts in Q converges to x∗.
Lastly, state x∗ is asymptotically stable if it is Lyapunov stable and attracting.

Theorem 4.1. Let ek be a strict equilibrium of F, and suppose that the dynamic (D) satisfies strong
positive correlation (SPC) in some neighborhood of ek in X. Define the function L : X→ R by

L(x) = (ek − x)′F(ek).

Then L(x) ≥ 0, with equality only when x = ek, and there is a neighborhood of ek on which L̇(x) ≤ 0,
with equality only when VF(x) = 0. Thus ek is Lyapunov stable under (D), and if ek is an isolated
rest point of (D), ek is asymptotically stable under (D).

The geometry behind Theorem 4.1 is pictured in Figure 1. In this figure, the projected
payoff vector ΦF(e1) is drawn with its tail at state e1. That e1 is a Nash equilibrium is
represented by the payoff vector lying in the normal cone of the state space X at state
e1. The normal cone, which we denote by NX(ek), is the set of vectors whose tails are
at e1 and that extend through points into the shaded region; by definition, these vectors
form obtuse or right angles with all vectors in the tangent cone TX(e1).9 That e1 is a strict
equilibrium is reflected in F(e1) lying in the interior of the normal cone; the fact that it is
nearly orthogonal to face e1e2 means that at state e1, the payoff to strategy 1 is only slightly
larger than the payoff to strategy 2.10

8See, for instance, Proposition 5.2.1 of Sandholm (2010c).
9In other words, the normal cone is the polar of the tangent cone: NX(x) ≡ TX(x)◦. In the present context,

we have NX(ek) = {v ∈ Rn : vk ≥ vi for all i ∈ S}. Since Figure 1 is two-dimensional, we cannot draw the
entire the three-dimensional set NX(e1), but only its projection Φ(NX(e1)) onto the two-dimensional tangent
space TX. The vectors pointing along the two boundaries of Φ(NX(e1)) are proportional to ( 1

2 ,
1
2 ,−1) (which

is itself orthogonal to face e1e2) and to ( 1
2 ,−1, 1

2 ) (which is orthogonal to e1e3). For more on normal cones and
Nash equilibria, see Lahkar and Sandholm (2008) or Sandholm (2010c, Sec. 2.3).

10To see this, note that vectors in TX orthogonal to face e1e2 are proportional to ( 1
2 ,

1
2 ,−1), while those

parallel to face e3e1 are proportional to (1, 0,−1).
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e1

e2 e3

Φ(NX(e1))

ΦF(e1)

L(x) = ℓ

Figure 1: Level sets of the Lyapunov function L.

By construction, the level sets of the Lyapunov function L(x) = (e1 − x)′F(e1) are or-
thogonal to the vector F(ek). In Figure 1, these level sets are represented by parallel gray
lines. The proof of the theorem uses a continuity argument to show that at each state x
in a neighborhood of strict equilibrium e1, the direction of motion VF(x), which by (SPC)
forms an acute angle with the payoff vector F(x), also forms an acute angle with the payoff

vector F(e1) that obtains at the strict equilibrium. In terms of the figure, this means that
when the state is near e1, motion under (D) leads the state to cross the level sets of L from
southeast to northwest.

At any interior state, this crossing of the level sets may occur in a southwesterly
direction, implying that the mass of agents playing strategy 1 is falling. But as the e1e2 face
is approached, the only way for the state to both continue to cross the level sets of L in
the correct direction and stay in the simplex is for the the vector of motion to turn sharply
in the direction of the equilibrium e1. Thus, to compensate for the weakness of condition
(SPC), the geometry of the state space near e1 plays a crucial role in ensuring the stability
of strict equilibrium.
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Proof. Once we establish the claims about the function L, the claims about stability
follow from standard results on Lyapunov functions (see, e.g., Sandholm (2010c, Sec. 7.B)).

To prove the first claim, observe that L(x) is the difference between the payoffs to pure
strategy k and mixed strategy x at pure state ek. Thus, that L(x) ≥ 0, with equality only
when x = ek, is immediate from the fact that ek is a strict equilibrium of F.

To prove the second claim, note first that since ek is a strict equilibrium, F(ek) is not
a constant vector, implying that ΦF(ek) , 0. Thus, since F is continuous, there is a
neighborhood O of ek in X on which ΦF(x)/|ΦF(x)| is continuous, and in particular on
which

(6)
∑
i∈S

∣∣∣∣∣ΦFi(x)
|ΦF(x)|

−
ΦFi(ek)
|ΦF(ek)|

∣∣∣∣∣ < c
2
.

We may suppose that O is contained in the neighborhood where the implication in con-
dition (SPC) holds. Thus if VF(x) , 0 and x ∈ O, inequality (6) and condition (SPC) imply
that

VF(x)′ΦF(ek)
|VF(x)| |ΦF(ek)|

=
∑
i∈S

VF
i (x)
|VF(x)|

ΦFi(ek)
|ΦF(ek)|

=
∑
i∈S

VF
i (x)
|VF(x)|

ΦFi(x)
|ΦF(x)|

+
∑
i∈S

VF
i (x)
|VF(x)|

Ç
ΦFi(ek)
|ΦF(ek)|

−
ΦFi(x)
|ΦF(x)|

å
> c −

c
2

=
c
2
.(7)

Now, the time derivative of L under (D) is

(8) L̇(x) = ∇L(x)′ẋ = −F(ek)′VF(x) = −VF(x)′ΦF(ek),

where the last equality holds because VF(x) ∈ TX and Φ is the orthogonal projection onto
TX. Thus L̇(x) = 0 if VF(x) = 0, and if VF(x) , 0 and x ∈ O, (8) and (7) imply that

L̇(x) < −
c
2
|VF(x)| |ΦF(ek)| < 0.

This completes the proof of the theorem. �

–8–



5. Multipopulation Games

We conclude the paper by presenting the extension of Theorem 4.1 to multipopulation
games.

To define a multipopulation game, we suppose that there are p > 1 populations of
agents, with population p ∈ P = {1, . . . , p} having mass mp > 0. Agents in population p
choose pure strategies from the set Sp = {1, . . . ,np

}, and the total number of pure strategies
available in all populations is n =

∑
p∈P np. Aggregate behavior in population p is repre-

sented by a population state in Xp = {xp
∈ Rnp

+ :
∑

i∈Sp xp
i = mp

}, where xp
i ∈ R+ represents

the mass of players in population p choosing strategy i ∈ Sp. We let ep
k denote the kth stan-

dard basis vector in Rnp , so that mpep
k ∈ Xp is the state in which all members of population

p choose strategy k ∈ Sp. The tangent spaces TXp and tangent cones TXp(xp) are defined as
in the single-population case. Elements of X =

∏
p∈P Xp = {x = (x1, . . . , xp) ∈ Rn

+ : xp
∈ Xp
},

the set of social states, describe behavior in all p populations at once.
We identify a multipopulation game with its Lipschitz continuous payoff function

F : X → Rn. The component Fp
i : X → R denotes the payoff function for strategy i ∈ Sp,

while Fp : X→ Rnp denotes the payoff functions for all strategies in Sp.
An evolutionary dynamic assigns each multipopulation game F a differential equation

(Dp) ẋp = VF,p(x) for all p ∈ P .

To ensure existence and uniqueness of solutions and the forward invariance of the state
space X, each function VF,p : X → TXp is required to be Lipschitz continuous and satisfy
VF,p(x) ∈ TXp(xp) for all x ∈ X.

The dynamic (Dp) satisfies strong positive correlation on Y ⊆ X if

There exists a c > 0 such that for all x ∈ Y and p ∈ P ,(SPCp)

VF,p(x) , 0 implies that Corr(VF,p(x),Fp(x)) ≥ c.

That is, the earlier condition (SPC) must hold population by population.
In the multipopulation context, pure social state x∗ = (m1ep

k1 , . . . ,mpep
kp ) is a strict equi-

librium of F if Fp
kp(x∗) > Fp

i (x∗) for all i ∈ Sp r {kp
} and p ∈ P . The following theorem is the

direct analogue of Theorem 4.1, and has a similar proof.

Theorem 5.1. Let x∗ = (m1ep
k1 , . . . ,mpep

kp ) be a strict equilibrium of F, and suppose that the
dynamic (Dp) satisfies strong positive correlation (SPCp) in some neighborhood of x∗ in X. Define
the function L : X→ R by
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L(x) =
∑
p∈P

(mpep
kp − xp)′Fp(x∗).

Then L(x) ≥ 0, with equality only when x = x∗, and there is a neighborhood of x∗ on which
L̇(x) ≤ 0, with equality only when VF(x) = 0. Thus x∗ is Lyapunov stable under (Dp), and if x∗ is
an isolated rest point of (Dp), x∗ is asymptotically stable under (Dp).

A. Appendix

A.1 Derivation of equation (2)

Let z ∈ TX and y ∈ Rn. Viewing these vectors as random variables on the probability
space S with P({i}) = 1

n for all i ∈ S, we have

Ez =
∑
i∈S

1
nzi = 0,

Var(z) = Ez2 =
∑
i∈S

1
nz2

i = 1
n |z|

2 ,

Var(y) = Var(Φy), and

Cov(z, y) = Cov(z,Φy) = E(z(Φy)) = 1
nz′Φy.

Thus if VF(x) , 0 and ΦF(x) , 0,

Corr(VF(x),F(x)) =
Cov(VF(x),F(x))

√
Var(VF(x))

√
Var(F(x))

=
Cov(VF(x),ΦF(x))

√
Var(VF(x))

√
Var(ΦF(x))

=
1
nVF(x)′ΦF(x)√

1
n |V

F(x)|2
√

1
n |ΦF(x)|2

=
VF(x)′ΦF(x)
|VF(x)| |ΦF(x)|

.

A.2 Proof of Proposition 3.1

Let ek be a strict equilibrium of F. Then F(ek) is nonconstant, so ΦF(ek) , 0. Therefore, by
the continuity of F there is a neighborhood O ⊆ X of ek on which |ΦF(x)| is bounded away
from zero. We also have that VF(x)′ΦF(x) = VF(x)′F(x) = VF(x)′F̂(x), because VF(x) ∈ TX
and Φ is the orthogonal projection onto TX. In light of these facts, it is enough to establish
that for each class of dynamics, there is a neighborhood Q ⊆ O of ek and a c > 0 such that
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(9)
VF(x)′F(x)
|VF(x)|

=
VF(x)′F̂(x)
|VF(x)|

≥ c

for all x ∈ Q with VF(x) , 0. Since ek is a rest point of all of the dynamics we consider, it is
enough to establish (9) for all x ∈ Q r {ek}.

We start with monotone imitative dynamics (3). Since ek is a strict equilibrium, Fk(ek) >
Fi(ek) for all i , k, and F̂k(ek) = 0; also, since ek is a rest point, GF

k (ek) = 0. Thus F̂i(ek) < 0
for i , k, and GF

i (ek) < 0 for i , k by the monotonicity condition in (3). We can therefore
choose a neighborhood Q ⊆ O of ek and positive constants f and g such that F̂i(x) ≤ − f
and GF

i (x) ≤ −g for all i , k and x ∈ Q, and such that k is the unique optimal strategy
throughout Q; this last requirement implies that F̂k(x) ≥ 0 and GF

k (x) ≥ 0 on Q. Moreover,
since GF is continuous and X is compact, there is a finite constant γ such that |GF

i (x)| ≤ γ
for all i , k and x ∈ X. Thus, since xkGF

k (x) = −
∑

i,k xiGF
i (x) for all x ∈ X, we find that for

all x ∈ Q r {ek},

VF(x)′F̂(x)
|VF(x)|

≥

∑
i,k xiGF

i (x)F̂i(x)»
(xkGF

k (x))2 +
∑

i,k(xiGF
i (x))2

=

∑
i,k xiGF

i (x)F̂i(x)»
(
∑

i,k xiGF
i (x))2 +

∑
i,k(xiGF

i (x))2

≥
g f
∑

i,k xi»
2γ2(

∑
i,k xi)2

=
g f
√

2γ
.

We next consider sign-preserving excess payoff dynamics (4). Since ek is a strict equilib-
rium, there is a neighborhood Q ⊆ O of ek and a positive constant d such that Fk(x)−Fi(x) ≥ d
and F̂i(x) ≤ 0 for all i , k and x ∈ Q. The second inequality and sign-preservation imply
that τi(F̂(x)) = 0 for all i , k and x ∈ Q. So for all x ∈ Q r {ek},

VF(x)′F(x)
|VF(x)|

=

∑
i∈S(τi(F̂(x)) − xi

∑
j∈S τ j(F̂(x)))Fi(x)√∑

i∈S(τi(F̂(x)) − xi
∑

j∈S τ j(F̂(x)))2

=
(1 − xk)τk(F̂(x))Fk(x) −

∑
i,k xiτk(F̂(x))Fi(x)»

((1 − xk)τk(F̂(x)))2 +
∑

i,k(xiτk(F̂(x)))2

=
τk(F̂(x))

∑
i,k xi(Fk(x) − Fi(x))»

τk(F̂(x))2((1 − xk)2 +
∑

i,k(xi)2)

≥
τk(F̂(x))(1 − xk)d
√

2τk(F̂(x))(1 − xk)
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=
d
√

2
.

Finally, we consider pairwise comparison dynamics (5). To begin, note that by the
sign-preservation requirement in (5),

VF(x)′F(x) =
∑
j∈S

(∑
i∈S

xiρi j(F(x)) − x j
∑
i∈S
ρ ji(F(x))

)
F j(x)

=
∑
j∈S

∑
i∈S

Ä
xiρi j(F(x))F j(x) − x jρ ji(F(x))F j(x)

ä
=
∑
j∈S

∑
i∈S

xiρi j(F(x))
Ä
F j(x) − Fi(x)

ä
=
∑
i∈S

Ç
xi
∑
j∈S
ρi j(F(x))[F j(x) − Fi(x)]+

å
,

where the last equality follows from sign preservation. Since ek is a strict equilibrium,
there is a neighborhood Q ⊆ O of ek and a positive constant d such that Fk(x) − Fi(x) ≥ d
for all i , k and x ∈ Q. Sign preservation and the continuity of ρ then imply that there is
a positive constant r such that ρik(F(x)) ≥ r and ρki(F(x)) = 0 for all i , k and x ∈ Q, and
hence that

VF(x)′F(x) ≥
∑
i∈S

xiρik(F(x))[Fk(x) − Fi(x)]+ ≥ (1 − xk)rd

for x ∈ Q. They also imply that for such x,

∑
i∈S

VF
i (x)2 =

Ç∑
j,k

x jρ jk(F(x))
å2

+
∑
i,k

Ç ∑
j : F j(x)<Fi(x)

x jρ ji(F(x)) − xi
∑

j : F j(x)>Fi(x)
ρi j(F(x))

å2

.

Since ρ and F are continuous and X is compact, it follows that there is a finite constant R
such that for x ∈ Q,

∑
i∈S

VF
i (x)2

≤ n((1 − xk)R)2.

We therefore conclude that for x ∈ Q r {ek},

VF(x)′F(x)
|VF(x)|

≥
(1 − xk)rd
√

n(1 − xk)R
=

rd
√

nR
.

This completes the proof of the proposition. �
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