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Abstract 
 

 We derive some simple formulas for limiting stationary 
distributions for models of stochastic evolution in two-
strategy population games.  As an application of these 
formulas, we investigate the robustness of equilibrium 
selection results to the assumption that the level of noise in 
agents’ choice rules is vanishingly small. 
 Keywords:  evolutionary game theory, stochastic 
stability, equilibrium selection. 
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1.  Introduction 
 
 In this paper, we revisit stochastic evolution and equilibrium selection in binary 
choice games, a topic studied by Kandori, Mailath, and Rob (1993), Blume (1993, 2003), 
and Binmore and Samuelson (1997), among many others.  Compared to the existing 
literature, this paper offers two innovations.  First, instead of restricting attention to 
equilibrium selection in random matching games with two stable monomorphic Nash 
equilibria, one corresponding to each pure strategy, we allow nonlinear “playing the 
field” games possessing any finite number of Nash equilibria.  Second, rather than just 
determining the stochastically stable state, we derive a formula that describes the entire 
limiting stationary distribution, and show that this formula takes an exceptionally 
simple form under the two best-known specifications of the agents’ choice rules:  the 
mutation model of Kandori, Mailath, and Rob (1993), and the logit model of Blume 
(1993). 
 Our stochastic stability analysis follows the approach of Binmore and Samuelson 
(1997), Young (1998, Sec. 4.5) and Benaim and Weibull (2003):  we fix the noise level in 
the agents’ choice rules, and consider the limit of the stationary distributions as the 
population size grows large.  In doing so, we adopt Binmore and Samuelson’s (1997) 
view that economic agents make mistakes at nonnegligible rates.   
 One reason for the common focus on vanishingly small mutation rates in 
evolutionary models is tractability:  for instance, by taking noise levels to zero, one can 
take advantage of Freidlin and Wentzell’s (1998) methods for computing limiting 
stationary distributions.  A possible defense of the vanishing noise assumption is that 
limiting stationary distributions will be close to the stationary distributions that obtain 
at small noise levels; if this is true, then equilibrium selection results established in the 
limit are robust.  Robustness of this sort is also important because it serves to mitigate 
the well-known waiting time critique:  since the time spans necessary for the 
equilibrium selection results to be meaningful increase sharply as the noise level falls, 
results that are robust to higher noise levels are more likely to have economic relevance.   
 The approach to stochastic stability we take in this paper enables us to address this 
question of robustness in a direct fashion, by comparing stochastic stability results 
obtained at fixed noise levels to those obtained by taking these levels to zero.  As a 
simple application of our formulas, we obtain a nonrobustness result:  for every positive 
noise level , one can construct a game in which a monomorphic equilibrium is selected 
at noise levels below , while an interior equilibrium is selected at noise levels above .  
But we also derive two positive results.  First, we prove that the “opposite” of the 
previous example cannot be constructed:  if an interior equilibrium x* is selected for 
small values of , then no state that is more asymmetric than x* can be selected for 
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larger values of .  Second, we show that whenever the only candidates for stability are 
the monomorphic states, analyses of the small noise limit are robust to the introduction 
of nonnegligible noise levels.  
 
2.  The Model 
 
2.1  Two-Strategy Population Games 
 
 Each agent in a large population chooses between two strategies, 0 and 1.  The 
population state x  [0, 1] represents the proportion of agents choosing strategy 1.  
Payoffs are denoted by F: [0, 1]    R

2 , where Fi(x) is the payoff to strategy i  {0, 1} at 
population state x.  We assume that each payoff function is piecewise continuous, and 
that F1 – F0 changes sign at most finitely many times on [0, 1].1  (For some simple 
examples, see Section 5.) 
 
2.2  Choice Rules 
 
 Suppose that a population of N agents recurrently plays the game F described 
above.  At each time t   T

N  = {0,   
1
N ,   

2
N , … }, one agent is drawn at random from the 

population and given the opportunity to switch strategies.2  When an agent receives a 
revision opportunity, he chooses a new strategy by employing a choice rule  = ( 01, 10), 
where ij:  [0, 1]    R

2   [0, 1].  Here, ij(x, ) represents the probability that an agent 
playing strategy i who receives a revision opportunity opts to switch to strategy j; we 
assume that this probability is a continuous function of the current state x and current 
payoff vector , and that 01 and 10 are bounded away from zero. 
 
2.3  The Evolutionary Process 
 
 A game F, a population size N, and a choice rule  together induce a Markov chain 

  {Xt
N }

t TN  on the discrete state space  U
N  = {0,   

1
N , … , 1}  [0, 1].  Since only one agent is 

given the opportunity to switch strategies in each period,   {Xt
N }  is a birth and death chain:  

                                                
1  The Nash equilibria of F are (i) the interior states x at which F1(x) = F2(x); (ii) state 0, if F0(0)  F1(0); 
and (iii) state 1, if F1(1)  F0(1).  Imagine a continuous-time deterministic evolutionary dynamic on [0, 1] 
that respects payoffs in F.  If payoffs are continuous, the stable states of the dynamic are those Nash 
equilibria where F1 crosses F0 from above, where we interpret this statement in an appropriate way at the 
monomorphic states.  If payoffs are discontinuous, we must add to this list those states   x̂  at which both 

  limx x̂
(F1(x) – F0(x)) > 0 (assuming   x̂   0) and   limx x̂

(F1(x) – F0(x)) < 0 (assuming   x̂   1).  In either case, the 
assumption that the sign of F1 – F0 changes finitely often ensures that both the number of Nash equilibria 
and the number of stable states are finite. 
2  Having the period length equal the inverse of the population size is the natural time scale, since it 
fixes each agent’s expected rate of revision at one opportunity per time interval of unit length.  However, 
since our interest in this paper is in stationary distributions, this assumption plays no role. 
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if the state at time t is x, then the state at time t +   
1
N  must be x –   

1
N , x, or x +   

1
N .   

 The transition probabilities of   {Xt
N }  are easy to derive.  For the state to increase by 

one increment, the randomly drawn agent must initially play strategy 0, and must 
decide to switch to strategy 1; hence 
 

   px  
  
P X

t+ 1
N
= x + 1

N Xt = x( )  = (1 – x) 01(x, F(x)). 
 
Similarly, the state decreases by one increment if the randomly drawn agent initially 
plays strategy 1 and switches to strategy 0: 
 

   qx  
  
P X

t+ 1
N
= x 1

N Xt = x( )  = x 10(x, F(x)). 
 
In the next two sections, we show that by keeping separate the terms in px and qx 
corresponding to arrivals of revision opportunities and to choices of strategies, we can 
derive simple formulas for the limiting stationary distribution of   {Xt

N } . 
 
3.  Limiting Stationary Distributions 
 
 Given our lower bound on the choice probabilities 01 and 10, the Markov chain 

  {Xt
N }  is aperiodic and irreducible, and so has a unique stationary distribution  μ

N .  This 
distribution describes the long run behavior of   {Xt

N }  in two distinct ways:  it is the 
limiting distribution of this process, and it also describes the limiting empirical 
distribution of the process with probability one (see, e.g., Durrett (2005)). 
 Our main result characterizes the limiting stationary distribution of   {Xt

N }  in terms of 
the payoff function F and choice rule .  To state this result, we define the entropy 
function h: [0, 1]  R to be the continuous concave function 
 

   
  
h(x) =

x log x + (1 x)log(1 x)( ) if x (0,1);
0 if x = 0 or x = 1.

 

 
We then define the function m: [0, 1]  R by 
 

   m(x) = 
  

log 01(y,F(y))

10(y,F(y))0

x
dy  + h(x). 

 
Theorem 1 shows that for each state x, the value of m(x) describes the exponential 
growth rate of  μx

N  relative to that of   μ0
N . 

 
Theorem 1:  Suppose x  [0, 1] is rational.  Then considering only population sizes N for which 
Nx is an integer, we have that 
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lim
N

1
N

log
μx

N

μ0
N  = m(x). 

 
In other words, when N is large, the ratio   μx

N/μ0
N  is of order exp(Nm(x)). 

 
 Proof:  Fix a population size N and a population state x   U

N  – {0, 1}.  (The result is 
trivial when x = 0, and a minor modification of the argument to follow proves the result 
when x = 1.)  It is well known that the stationary distribution of the birth and death 
chain   {Xt

N }  is of the form 
 

   
 
μ x

N  = 
  
μ0

N
pk 1

N

qk
Nk=1

Nx

. 

 
(see Durrett (2005), p. 297).  Therefore, 
 

   
  
log

μx
N

μ0
N  = 

  
log

pk 1
N

qk
Nk=1

Nx

 = 
  

log
k=1

Nx pk 1
N

qk
N

 =
  

log
k=1

Nx pk
N

qk
N

+ log
p0

px

. 

 
Since x < 1 is fixed and 01 is bounded away from zero, 
 

   
  
log

p0

px

= 
  
log 01(0,F(0))

(1 x) 01(x,F(x))
 

 
is a finite constant, allowing us to conclude that 
 

   
  
lim
N

1
N

log
μx

N

μ0
N  = 

  
lim
N

1
N

log
k=1

Nx pk
N

qk
N

 

        = 
  

log
(1 y)

y
01(y,F(y))

10(y,F(y))0

x
dy  

        = 
  

log 01(y,F(y))

10(y,F(y))
+ log(1 y) log y

0

x
dy  

        = 
  

log 01(y,F(y))

10(y,F(y))0

x
dy  + h(x).   

 
 The idea of converting the usual formula for the stationary distribution into a 
Riemann sum, and then using this sum to describe the limiting stationary distribution 
in terms of an integral, is not new:  both Binmore and Samuelson (1997) and Blume 
(2003) employ this technique.  But by distinguishing arrivals of revision opportunities 
from choices of strategies in the transition probabilities px and qx, we are able to express 
the stationary distribution as the sum of two terms:  a term that depends on payoffs and 
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the choice rule, and an entropy term.  This separation is very useful in performing 
explicit computations, as the examples in the next section show. 
 To understand the role of the entropy function in the limiting stationary 
distribution, consider a situation in which switching probabilities are constant and are 
equal in each direction:  01  10  s  (0, 1].  In this case, evolution is driven entirely by 
the random assignment of revision opportunities, creating a tendency for the Markov 
chain   {Xt

N }  to move toward the center of the unit interval.  It is easy to verify that in this 
case, the stationary distribution  μ

N  is simply the binomial(N,   
1
N ) distribution, scaled 

down by a factor of N so as to place its mass on the set  U
N  = {0,   

1
N , … , 1}.  According to 

a well-known result from large deviations theory (see Durrett (2005, p. 74)), this 
distribution satisfies 
 
   

  
lim
N

1
N logμN ([x,1])  =   x log(2x) + (1 x)log(2(1 x)( )  = h(x) – log 2 

 
whenever x  [ 

1
2 , 1), with virtually all of the mass in the interval [x, 1] accruing from 

states very close to x.3  This limit result accords exactly with Theorem 1 above. 
 
4.  Examples 
 
 We now use Theorem 1 to describe the limiting stationary distributions generated by 
the two best-known specifications of agents’ choice rules:  those of Kandori, Mailath, 
and Rob (1993) and Blume (1993).  Each of these choice rules is parameterized by a noise 
level  > 0, representing the degree to which the rule deviates from exact optimization. 
 
Example 1:  The mutation model.  Kandori, Mailath, and Rob (1993) study stochastic 
evolution under the choice rule 
 

   

  

ij(x, ) =

1 if j > i ,

if j < i ,

arbitrary if j = i ,

 

 
where   (0, 1).  Notice that under this rule, 
 

   
  
log 01(x,F(x))

10(x,F(x))
 = 

  
log

1
sgn F1(x) F0(x)( ) . 

 
whenever F0(x) and F1(x) differ.   Therefore, 
 

                                                
3  Since   h( 1

2
)  = log 2, the shift by log 2 in the previous formula ensures that   limN

1

N
logμ

N ([1
2 ,1])  = 0. 
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lim
N

1
N

log
μx

N

μ0
N  = 

  
log

1
0

x
sgn F1(y) F0(y)( )dy  + h(x) 

         = 
  
log

1
l(x) + h(x) . 

 
Here, l is the best response potential function for F, defined by 
 
   l(x) =   [0,x] B1( ) [0,x] B0( )  =   2 [0, x] B1( ) x , 
 
where  is Lebesgue measure and Bi = {y  [0, 1]: Fi(y) > Fj(y)} is the set of states at which 
strategy i is optimal.   
 The value of l(x) is the difference between the measures of two sets:  the set of states 
in the interval [0, x] where strategy 1 is optimal, and the set of states in [0, x] where 
strategy 0 is optimal.4  Thus, the function l provides a generalization of the “mutation 
counting” arguments introduced by Kandori, Mailath, and Rob (1993) for the case of 2 x 
2 coordination games:  in essence, the function l keeps a running total of net number of 
mutations to move from state x to state 0 (cf Corrolary 2 below).  The mutation rate  
determines the relative weights placed on l(x) and on the entropy h(x) in the limiting 
stationary distribution.  § 
 
Example 2:  The logit model.  Our other basic choice rule is the logit choice rule of Blume 
(1993): 
 

   

  

ij(x, ) =
exp( 1

j )

exp( 1
k )

k {0,1}

, 

 
where   (0, ).  Under this rule, 
 

   
  
log 01(x,F(x))

10(x,F(x))
 = 

  
log

exp( 1F1(x))
exp( 1F0(x))

 =   
1 F1(x) F0(x)( ) , 

 
so 
 

   
  
lim
N

1
N

log
μx

N

μ0
N  = 

  
1 F1(y) F0(y)( )

0

x
dy  + h(x) 

        =  
1 f (x) + h(x) . 

 

                                                
4  To graph l, place the point of a pencil at the origin; as the point proceeds to the right, move it upward 
at rate 1 whenever strategy 1 is optimal, and move it downward at rate 1 whenever strategy 0 is optimal. 



–7– 

In this last expression, the function 
 

   f(x) = 
  

F1(y) F0(y)( )dy
0

x
 

 
is the potential function for the game F (see Sandholm (2001)).  As in the previous 
example, the relative weights placed on potential f(x) and entropy h(x) in the limiting 
stationary distribution are determined by the noise level .   
 Interestingly, the function   

1 f (x) + h(x)  is also quite useful for analyzing logit 
evolution in potential games with more than two strategies—see Hofbauer and 
Sandholm (2005) and Benaim and Sandholm (2005).  § 
 
5.  Equilibrium Selection with Fixed and Vanishing Noise 
 
5.1  Stochastic Stability and Limit Stochastic Stability 
 
 We now use Theorem 1 and Examples 1 and 2 to derive equilibrium selection 
results.  To begin, we follow Binmore and Samuelson (1997), Young (1998, Sec. 4.5), and 
Benaim and Weibull (2003) by fixing the noise level  and considering the limit of the 
stationary distributions  μ

N  as the population size N grows large.  We call state x*  [0, 
1] (uniquely) stochastically stable if 
 
   

  
lim
N

μN = {x*}, 
 
where the limit refers to convergence in distribution, and where {x*} represents a point 
mass at state x*.  Put differently, x* is stochastically stable if nearly all the mass in the 
measure  μ

N  lies in an arbitrarily small neighborhood of x* once N is large enough. 
 With this definition in hand, the corollary below follows directly from Theorem 1. 
 
Corollary 1:  If the function m has a unique maximizer x*, then x* is stochastically stable. 
 
 Like Binmore and Samuelson (1997), we believe that in most situations, errant 
choices are made with sufficient frequency to be best modeled using a fixed positive 
noise level.  But for reasons noted in the Introduction, it is common in the literature on 
stochastic evolution to focus on the limiting case of vanishing noise.  With this in mind, 
we call the state x* limit stochastically stable (LSS) if it is the limit of stochastically stable 
states as the amount of noise in agents’ decisions goes to zero.  Formally, x* is LSS if 
 
   

  
lim

0
lim
N

μN ,  = {x*}. 
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The next corollary is an immediate consequence of our previous results. 
 
Corollary 2: (i)  If the best response potential function l has a unique maximizer x*, then x* is 
LSS in the mutation model. 
 (ii)  If the potential function f has a unique maximizer x*, then x* is LSS in the logit model. 
 
 We now apply Corollary 2 to two examples.  The first is the canonical one. 
 
Example 3:  Random matching in normal form coordination games and risk dominance.  
Suppose that agents are randomly matched to play a symmetric normal form game with 
payoff matrix 
 

   A =
 

a b

c d
. 

 
Then F0(x) = (1 – x)a + xb and F1(x) = (1 – x)c + xd, so the potential function for F is f(x) = 

  
1
2 a b c + d( )x2 (a c)x .  If we assume that a > c and b > d, then F is a coordination 
game with Nash equilibria at states 0, 1, and x* = (a – c)/(a – b – c + d).  Since the best 
response regions for strategies 0 and 1 are separated by state x*, the best response 
potential function for F is l(x) =   x x* x* . 
 In a symmetric 2 x 2 coordination game, strategy 1 is said to be risk dominant if x* < 

 
1
2 , or, equivalently, if c + d > a + b.  Since l is convex with l(0) = 0 and l(1) = 1 – 2x*, state 
1 is LSS in the mutation model if and only if it is risk dominant.  Moreover, since f is 
convex with f(0) = 0 and f(1) =   

1
2 c + d a b( ) , state 1 is LSS in the logit model if and 

only if it is risk dominant.  Thus, in coordination games based on random matching, 
mutation LSS and logit LSS agree.  § 
 
 The other example is borrowed from Blume (2003).  Once again, our formulas make 
the analysis trivial. 
 
Example 4:  A nonlinear coordination game.  Consider a nonlinear coordination game with 
payoff functions F0(x) = 1 and F1(x) =  ax2 , where a > 1.  This game has potential function 
f(x) =   

1
3 ax3 x , Nash equilibria at states 0, 1, and x* = 

  
1
a

, and best response potential 
function l(x) =   x x* x* .  State 1 is LSS in the mutation model if x* <  

1
2 , which is true 

whenever a > 4.  On the other hand, state 1 is LSS in the logit model whenever this state 
maximizes f on [0, 1]; since f is convex, this is true whenever   

1
3 a  – 1 = f(1) > f(0) = 0, or, 

equivalently, whenever a > 3.   
 The reason for this discrepancy is easy to see.  In the mutation model, only the signs 
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of payoff differences matter; in the logit model, the magnitudes of these differences are 
important as well.  Thus, since   F1 F0  tends to be larger when strategy 1 is optimal, 
state 1 is selected more readily under logit choice than under mutations.  § 
 
5.2  On the Robustness of the Small Noise Limit 
 
 While the last two examples show that our formulas ease the computation of LSS 
states, we can also apply them to more subtle questions.  In this final section, we use our 
formulas to investigate the robustness of limit stochastic stability to nonvanishing noise 
levels. 
 
Example 5:  A jump in the stochastically stable state at a low noise level.  Consider a game 
with payoff functions F0(x) = 0 and F1(x) = 81  x

2  – 108x +  
203
6 .  This game has Nash 

equilibria at states x*  .5031, y*  .8302, and 1.  The potential function for F is f(x) = 

  27x3  –   54x2 +   
203
6 x , and the local maximizers of f are states x* and 1.  Since  1.2082   

f(x*) < f(1)  –1.1667, state 1 is limit stochastically stable in the logit model. 
 On the other hand, if we fix a positive noise level , then the stochastically stable 
state is the maximizer of m(x), or, equivalently, the maximizer of m(x) = f(x) + h(x).  If  
= .1, then the local maximizers of m occur at x   .5031  x* and z   1; since –1.1389 = 
m(x ) > m(z )  –1.1667, x  is logit stochastically stable at noise level .1.  In fact, the 

switch from selecting state x  to selecting state z  occurs at a noise level of approximately 
.05993.  § 
 
 This example is easily extended to a general result on the sensitivity of stochastically 
stable states to low noise levels, which we state here without proof. 
 
Corollary 3:  Consider either the mutation model or the logit model of choice.  For all  > 0, 
there is a game F in which state  

1
2  is stochastically stable at all noise levels above , and a state 

close to 1 is stochastically stable at all noise levels below .  
 
Corollary 3 tells us that any strictly positive noise level may be enough to disrupt an 
LSS state.  Thus, without specific information about payoffs in the game in question, the 
robustness of the LSS selection to variations in the noise level is uncertain. 
 In Example 5, lowering the noise level caused the stochastically stable state to jump 
from a point in the interior of the unit interval to a point near the boundary.  The 
direction of this jump is no accident.  Recall from Examples 1 and 2 that by lowering the 
noise level, we reduce the weight on entropy in the function m.  Since the entropy 
function is concave and symmetric about  

1
2 , lowering the noise level favors states that 
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are closer to the boundary.   
 Two positive results immediately follow.   
 
Corollary 4:  Consider either the mutation model or the logit model of choice. 
 (i)  Suppose that state x* is LSS.  Then no state outside the interval from 1 – x* to x* is 
stochastically stable at any positive noise level. 
 (ii)  Suppose that state x   1 is stochastically stable at noise level .  Then states near 1 
are stochastically stable at all smaller noise levels, and states near 0 are not stochastically stable 
at any noise level. 
 
 Corollary 4(i) says that if some interior state x* is limit stochastically stable, then no 
state that is more asymmetric than x* is stochastically stable at any positive noise level.  
Thus, if all candidate stable states besides x* are closer to the endpoints of the unit 
interval than x*, a limiting analysis that selects x* also rules out the selection of the other 
candidate stable states at all positive noise levels.  Corollary 4(ii) tells us that when the 
only candidate stable states are the monomorphic states, limit stochastic stability is 
robust:  if one monomorphic state is stochastically stable at some noise level, the other 
monomorphic state is not stochastically stable at any noise level.  Corollary 4(ii) does 
not tell us whether the stochastically stable state will jump to an interior position at 
some sufficiently high noise level, but this can always be determined through a direct 
application of the formulas from Section 4. 
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