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O.1. Imitative protocols, mean dynamics, and equilibrium selection

In this section, we consider stochastic evolution under two well-known imitative
protocols: imitation of success and imitation driven by dissatisfaction.1

Example O.1.1. Imitation of success. Suppose that when an agent receives a revision op-
portunity, he randomly samples an opponent, switching to the opponent’s strategy with
probability proportional to the difference between the opponent’s payoff and some fixed
baseline m ∈ R. This protocol is described by the conditional imitation probabilities

ri j(π) = λ(π j −m) for j , i, (O.1)

whereλ > 0 and m are chosen to ensure that conditions (B) and (1) both hold. If there are no
mutations, then substituting into equation (M0) and simplifying shows that finite-horizon
behavior under this protocol is described by the mean dynamic

ẋ = λx (1 − x )(F1(x ) − F0(x )). (O.2)

This is the replicator dynamic of Taylor and Jonker [4], with the constant λ representing a
uniform change in speed. _
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1Early analyses of these protocols include Björnerstedt and Weibull [1], Weibull [5], and Hofbauer [2].



Example O.1.2. Imitation driven by dissatisfaction. Suppose that a revising agent compares
his own payoff to some aspiration level M ∈ R. He then opts to switch strategies with
probability proportional to the amount by which his payoff is deficient, switching to
the strategy of a randomly chosen opponent in this event. This rule is captured by the
conditional imitation probabilities

ri j(π) = λ(M − πi) for j , i, (O.3)

where λ > 0 and M are such that (B) and (1) both hold. If there are no mutations,
substituting into equation (M0) and simplifying shows that this protocol too generates the
replicator dynamic (O.2) as its mean dynamic. _

Since protocols (O.1) and (O.3) generate the same mean dynamic, the deterministic
approximation theorem described in Section 3 implies that in large populations, the finite-
horizon aggregate behavior trajectories generated by the two protocols are essentially
indistinguishable. Despite this strong agreement, we now use our results from Section
4 to show that infinite-horizon behavior under protocols (O.1) and (O.3) can be quite
different: the two protocols can generate different stochastically stable states, even in very
simple games.

Example O.1.3. Consider a population of agents matched to play the symmetric normal
form game

A =

h h
b B


with b < h < B, which we call Boar Hunt. The strategies in this coordination game are
hunting for Hare (strategy 0) and hunting for Boar (strategy 1). Hare yields a certain
payoff of h, while coordinating on Boar yields the highest possible payoff of B. If a
population of agents are matched to play Boar Hunt, the resulting population game has
payoffs F0(x ) = h and F1(x ) = b(1 − x ) + Bx . In addition to the all-Hare (x = 0) and
all-Boar (x = 1) equilibria, there is a mixed equilibrium in which fraction x ∗ = h−b

B−b of the
population chooses Boar. Note that either strategy in Boar Hunt can be risk dominant.

If committed agents are present, Theorems 4.2 and 4.3 tell us that the state that is
stochastically stable in the large population limit is the one that maximizes the ordinal
potential function J. It is easy to check that since F is a coordination game, the ordinal
potentials induced by protocols (O.1) and (O.3) are strictly convex. Thus, if J(1) < J(0) ≡ 0,
x = 0 is stochastically stable, while if J(1) > 0, state x = 1 is stochastically stable.
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Figure 1: The ordinal potentials ∆JS (dashed) and ∆JD (solid) when m = 0, b = 1, h = 2, B = 3, and M = 4.

This criterion is easy to evaluate. Under imitation of success (O.1), the value of the
ordinal potential function at x = 1 is

JS(1) =

∫ 1

0
log

F1(y ) −m
F0(y ) −m

dy = log
B −m
h −m

+
b −m
B − b

log
B −m
b −m

− 1.

Under imitation driven by dissatisfaction (O.3), this value is

JD(1) =

∫ 1

0
log

M − F0(y )
M − F1(y )

dy = log
M − h
M − B

+
M − b
B − b

log
M − B
M − b

+ 1.

To make this example more concrete, let us fix m = 0, b = 1, h = 2, B = 3, and M = 4.
Then the mixed Nash equilibrium of F is x ∗ = h−b

B−b = 1
2 , implying that neither strategy is

strictly risk dominant; obviously, the all-Boar equilibrium x = 1 is payoff dominant. The
functions ∆JS and ∆JD are graphed in Figure 1. Since JS(1) = 3

2 log 3 − log 2 − 1 ≈ −.0452,
imitation of success leads to the selection of the payoff dominated all-Hare equilibrium,
x = 0. But since and JD(1) = −JS(1) ≈ .0452, imitation driven by dissatisfaction leads
to the selection of the payoff dominant all-Boar equilibrium, x = 1. Clearly, the same
qualitiative results obtain in any game with similar payoff values, implying that either
protocol can select or fail to select a strictly risk dominant equilibrium.

How do the differences between the protocols lead to the different equilibrium se-
lections? In general, the identity of the stochastically stable state is determined by the
relative unlikelihoods of excursions between equilibria: here, from all-Hare to all-Boar,
and from all-Boar to all-Hare. The mean dynamic (M0), computed as the differences be-
tween the probability px ≈ x (1 − x )r01(F(x )) of a switch from 0 to 1 and the probability
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qx ≈ x (1−x )r10(F(x )) of a switch from 1 to 0, provides some information about the relative
unlikelihoods of excursions. But the stationary distribution (8), being the limiting distri-
bution of the Markov process, is determined by products of ratios of the one-step transition
probabilities. Ultimately, the stationary distribution weights depend on the ratios of the
imitation probabilities r01(·) and r10(·), or, equivalently, on the differences between the
logarithms of r01(·) and r10(·). This is evident in the definition (11) of the ordinal potential
function J, which allows us to write J(1) as

J(1) =

∫ 1

0
log r01(F(y )) dy −

∫ 1

0
log r10(F(y )) dy . (O.4)

Equation (O.4) says that the stochastically stable state is determined by comparing the
averages over population states x of log r01(F(x )) and log r10(F(x )). Since we are averaging
logarithms of imitation probabilities, the manner in which the levels of dispersion of these
probabilities depend on the direction of imitation—from Hare to Boar or from Boar to
Hare—plays a basic role in explaining infinite-horizon behavior.

As x varies from 0 to 1, the payoff to Hare is constant at F0(x ) = 2, while the payoff

to Boar, F1(x) = 2x + 1, is uniformly distributed between 1 and 3. Under imitation of
success (O.1), the conditional imitation probabilities are given by r01(x ) = λ(F1(x ) −m) =

λF1(x ) and r10(x ) = λ(F0(x ) − m) = 2λ.2 If we view F1(x ) as a random variable with
a uniform[1, 3] distribution, then r01(x ) has a uniform[λ, 3λ] distribution. Thus, since the
logarithm function is concave, Jensen’s inequality implies that the first integral in (O.4) is
smaller than the second, and hence that the all-Hare equilibrium is stochastically stable.
Intuitively, the conditional imitation probabilities in each direction have the same mean,
but only those from Hare to Boar are variable. This implies that the Hare to Boar transition
is less likely than its opposite, and so that the all-Hare equilibrium is selected.

Under imitation driven by dissatisfaction (O.3), the conditional imitation rates are
given by r01(x ) = λ(M − F0(x )) = 2λ and r10(x ) = λ(4 − F1(x )). This time, the condi-
tional imitation probabilities from Hare to Boar are fixed, while those from Boar to Hare
are variable; the latter transition is therefore less likely, and the all-Boar equilibrium is
stochastically stable. _

Maruta [3] also considers a stochastic evolutionary model in which decision rules
focusing on the payoff of the current strategy favor selection of the payoff dominant
equilibrium, while decision rules focusing on the payoff of the alternative strategy favor
selection of the “safe” equilibrium. Maruta’s [3] model differs from ours in a number of

2Recall that the constant λ > 0 was introduced in (O.1) to ensure that r01(x ) and r10(x ) are less than 1.

–4–



important respects: for example, choices in his model are not based on imitation, and his
analysis concerns the small noise limit rather than the large population limit.

O.2. The proof of Theorem 4.1

When there are no committed agents and a mutation rate of ε as described in protocol
(3), the stationary distribution of the stochastic evolutionary process takes the form

µN,ε
x

µN,ε
0

=

Nx∏
j=1

pN,ε
( j−1)/N

qN,ε
j/N

=

Nx∏
j=1

N− j+1
N

(
(1 − ε) j−1

N−1 r01(FN( j−1
N )) + ε

)
j

N

(
(1 − ε) N− j

N−1 r10(FN( j
N )) + ε

) . (O.5)

To prove the first statement in part (i), we expand equation (O.5) with x = 1 to obtain

µN,ε
1

µN,ε
0

=
Nε

(1 − ε)r10(FN( 1
N )) + ε

·

N−1∏
j=2

N − j + 1
j

·
(1 − ε) j−1

N−1 r01(FN( j−1
N )) + ε

(1 − ε) N− j
N−1 r10(FN( j

N )) + ε
·

(1 − ε)r01(FN(N−1
N )) + ε

Nε

=

N−1∏
j=1

N − j
j
·

(1 − ε) j
N−1 r01(FN( j

N )) + ε

(1 − ε) N− j
N−1 r10(FN( j

N )) + ε
.

Since the Nε terms cancel, none of the terms in the final product converge to zero or
infinity. Indeed, we have

lim
ε→0

log
µN,ε

1

µN,ε
0

= log

N−1∏
j=1

N − j
j
·

j
N−1 r01(FN( j

N ))
N− j
N−1 r10(FN( j

N ))

 =

N−1∑
j=1

log
r01(FN( j

N ))

r10(FN( j
N ))

,

so bound (B) and the bounded convergence theorem imply that

lim
N→∞

lim
ε→0

1
N

log
µN,ε

1

µN,ε
0

= lim
N→∞

N − 1
N
·

1
N − 1

N−1∑
j=1

log
r01(FN( j

N ))

r10(FN( j
N ))

= J(1).

To prove the second statement in part (i), observe that for x ∈ X N
− {0, 1},

µN,ε
x

µN,ε
0

=
Nε

(1 − ε)r10(FN( 1
N )) + ε

·

Nx∏
j=2

N − j + 1
j

·
(1 − ε) j−1

N−1 r01(FN( j−1
N )) + ε

(1 − ε) N− j
N−1 r10(FN( j

N )) + ε

by equation (O.5). Since all terms except the initial Nε approach positive constants as ε
approaches zero, µN,ε

x /µN,ε
0 is in Θ(ε). The analysis of µN,ε

x /µN,ε
1 is similar.

To prove part (ii) of the theorem, we note from equation (O.5) that
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1
N

log
µN,ε

x

µN,ε
0

=
1
N

Nx∑
j=1

log
N − j + 1

N
− log

j
N

+ log
(1 − ε) j−1

N−1 r01(FN( j−1
N )) + ε

(1 − ε) N− j
N−1 r10(FN( j

N )) + ε

 .
Comparing this equation to equation (19) and the subsequent arguments, it is easy to
verify that the remainder of the proof is identical to that of Theorem 4.3(ii). �

O.3. The proof of the Theorem (4.4)

By substituting the committed agents protocol (4) with cN
i = Nγi into equations (6) and

(7), we obtain the one-step transition probabilities

pN
x = (1 − x ) · N(x +γ1)

N(1+γT)−1r01(FN(x )) and

qN
x = x · N(1−x +α0)

N(1+γT)−1 r10(FN(x )),

whereγT = γ0+γ1. Inserting these expressions into equation (8), we find that the stationary
distribution of the process {XN

t } is given by

µN
x

µN
0

=

Nx∏
j=1

pN
( j−1)/N

qN
j/N

=

Nx∏
j=1

N− j+1
N ·

j+Nγ1−1
N(1+γT)−1 r01(FN( j−1

N ))
j

N ·
N− j+Nγ0

N(1+γT)−1 r10(FN( j
N ))

. (O.6)

It follows that

1
N

log
µN

x

µN
0

=
1
N

Nx∑
j=1

log
r01(FN( j−1

N ))

r10(FN( j
N ))

+ log

N− j+1
N ·

j+Nγ1−1
N(1+γT)−1

j
N ·

N− j+Nγ0

N(1+γT)−1


= JN(x ) +

1
N

Nx∑
j=1

(
log N− j+1

N − log j
N + log j+Nγ1−1

N(1+γT)−1 − log N− j+Nγ0

N(1+γT)−1

)
. (O.7)

The proof of Theorem 4.2 shows that JN converges uniformly to J. Moreover, applying
the dominated convergence theorem as in the proof of Theorem 4.3 shows that the second
term of (O.7) converges uniformly to∫ x

0

(
log(1 − y ) − log y + log y+γ1

1+γT
− log 1−y+γ0

1+γT

)
dy

= −x log x − (1 − x ) log(1 − x ) + (x + γ1) log(x + γ1) − γ1 logγ1

+ (1 − x + γ0) log(1 − x + γ0) − (1 + γ0) log(1 + γ0)
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= Lγ(x ).

Thus since J γ(x ) = J(x ) + Lγ(x ), we find that

lim
N→∞

max
x ∈X N

∣∣∣∣∣∣ 1
N

log
µN

x

µN
0

− J γ(x )

∣∣∣∣∣∣ = 0.

The proof is completed by combining this conclusion with a slight variation on the last
part of the proof of Theorem 4.2. �
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