Online Appendix to "Stable Games and their Dynamics"

Josef Hofbauer ${ }^{*}$ and William H. Sandholm ${ }^{\dagger}$

January 10, 2009

O. 1 Analysis of the War of Attrition

In this section, we prove that random matching of a single population to play a war of attrition generates a stable game. Recalling the description in Example 2.4, we see that the payoff matrix for the war of attrition is

$$
A=\left(\begin{array}{cccc}
\frac{v}{2}-c_{1} & -c_{1} & \cdots & -c_{1} \\
v-c_{1} & \frac{v}{2}-c_{2} & \cdots & -c_{2} \\
\vdots & \vdots & \ddots & \vdots \\
v-c_{1} & v-c_{2} & \cdots & \frac{v}{2}-c_{n}
\end{array}\right)
$$

Reasoning as in Example 2.3, we consider the symmetric matrix

$$
\hat{A}=A+A^{\prime}=v \mathbf{1 1}-2\left(\begin{array}{cccc}
c_{1} & c_{1} & \cdots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{2} \\
\vdots & \vdots & \ddots & \vdots \\
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right)=v \mathbf{1 1}-2 C
$$

[^0]where the matrix C can be decomposed as
\[

C=\left($$
\begin{array}{cccc}
c_{1} & c_{1} & \cdots & c_{1} \\
c_{1} & c_{1} & \cdots & c_{1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{1} & c_{1} & \cdots & c_{1}
\end{array}
$$\right)+\left($$
\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & c_{2}-c_{1} & \cdots & c_{2}-c_{1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & c_{2}-c_{1} & \cdots & c_{2}-c_{1}
\end{array}
$$\right)+\cdots+\left($$
\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & c_{n}-c_{n-1}
\end{array}
$$\right)
\]

Thus, if $z \in T X$, then

$$
\begin{aligned}
z^{\prime} \hat{A} z & =v z^{\prime} 11^{\prime} z-2 z^{\prime} C z \\
& =\left(v-2 c_{1}\right) z^{\prime} 11^{\prime} z-2 \sum_{k=2}^{n} \sum_{i=k}^{n} \sum_{j=k}^{n}\left(c_{k}-c_{k-1}\right) z_{i} z_{j} \\
& =-2 \sum_{k=2}^{n}\left(c_{k}-c_{k-1}\right)\left(\sum_{i=k}^{n} z_{i}\right)^{2} \\
& \leq 0
\end{aligned}
$$

so $F(x)=A x$ is a stable game.

O. 2 Cycling in Stable Games

Proposition O.2.1. Consider the EPT dynamic (E) generated by revision protocol (9) in standard Rock-Paper-Scissors.
(i) When $\varepsilon<.1094$, there are initial conditions from which solutions to (E) converge to periodic orbits.
(ii) Fix $\delta>0$. When ε is sufficiently small, solutions to (E) from all initial conditions that are not within δ of the equilibrium x^{*} converge to periodic orbits.

For intuition, consider Figure 1, which presents a portion of a solution to the dynamic (E) generated by (9) in standard RPS when $\varepsilon=\frac{1}{10}$. Scissors earns a positive payoff as soon as this trajectory crosses segment $a x^{*}$, and becomes the sole strategy that does so once segment $e_{P} x^{*}$ is reached. However, protocol (9) puts very little probability on Scissors until Paper, the strategy it beats, yields a payoff close to zero. As a result, the solution heads almost directly towards state e_{P} until Scissors becomes the sole strategy earning a payoff of ε. This extends the phase during which the solution approaches the vertex e_{P} before turning towards e_{S}. By symmetry, the same phenomenon occurs near the other two vertices, and as a result, the solution never strays far from the boundary of the simplex.

Figure 1: The proof of Proposition O.2.1.

Considering a zero-sum game simplifies the proof of the existence of cycles, but is not necessary for the result to hold: cycles occur under this dynamic even in strictly stable games. In Figure 2, we present solutions to the dynamic generated by protocol (9) with $\varepsilon=\frac{1}{10}$ in both standard RPS $(w=1, l=1)$ and good $\operatorname{RPS}(w=3, l=2)$. In each case, convergence to a periodic orbit occurs from most initial conditions.

Proof of Proposition O.2.1. Since standard RPS is zero-sum, we have that $\hat{F}(x)=F(x)-$ $1 x^{\prime} F(x)=F(x)$: excess payoffs and original payoffs are always the same. This fact simplifies the analysis below.

Consider the trajectory that starts from some initial state $x^{0}=\left(\alpha, \frac{1-\alpha}{2}, \frac{1-\alpha}{2}\right)$ that lies on segment $e_{R} x^{*}$ and satisfies $\alpha>\underline{\alpha}=\frac{1+\varepsilon}{3-3 \varepsilon}$ (see Figure 1). This trajectory travels clockwise around the simplex. Our main task is to obtain an lower bound on the distance of this solution from state x^{*} when the solution crosses segment $e_{P} x^{*}$. Doing so enables us to bound the action of the Poincaré map of the dynamic on $e_{R} x^{*}$, which in turn lets us use the Poincaré-Bendixson Theorem to demonstrate the existence of a periodic orbit.

When the current state lies in the triangle with vertices e_{R}, x^{*}, and $a=\left(0, \frac{1}{2}, \frac{1}{2}\right)$, as it does at x^{0}, only strategy P has a positive payoff, so the target state under dynamic V is $\tau(F(x))=e_{P}$. Therefore, the trajectory from x^{0} leaves triangle $e_{R} x^{*} a$ at state $x^{1}=\left(\frac{2 \alpha}{1+3 \alpha}, \frac{1-\alpha}{1+3 \alpha}\right.$,

Figure 2: Cycling in standard and good Rock-Paper-Scissors games.
$\left.\frac{2 \alpha}{1+3 \alpha}\right)$. Since $\alpha>\underline{\alpha}=\frac{1+\varepsilon}{3-3 \varepsilon}, x^{1}$ lies on the interior of segment $a z$, where $z=\left(\frac{1+\varepsilon}{3}, \frac{1-2 \varepsilon}{3}, \frac{1+\varepsilon}{3}\right)$. For future reference, we observe that z is the intersection of segments $a x^{*}$ and $b c$, where b $=\left(\frac{1+\varepsilon}{2}, \frac{1-\varepsilon}{2}, 0\right)$ and $c=(\varepsilon, 0,1-\varepsilon)$.

In triangle $e_{P} x^{*} a$, only strategies P and S earn positive payoffs. By construction, $\tau_{S}(F(x))=\varepsilon^{2}\left[F_{S}(x)\right]_{+}$as long as the payoff to P is at least ε, which is the case in triangle $e_{R} b c$. The intersection of these two triangles is the triangle $a z c$. When the current state x is in this region, the target state is always a point $\left(0, \tau_{P}(F(x)), \tau_{R}(F(x))\right)$ at which

$$
\begin{aligned}
\tau_{S}(F(x)) & =\frac{\tau_{S}(F(x))}{\tau_{S}(F(x))+\tau_{P}(F(x))} \\
& =\frac{\left[F_{S}(x)\right]_{+} g^{\varepsilon}\left(F_{P}(x)\right)}{\left[F_{S}(x)\right]_{+} g^{\varepsilon}\left(F_{P}(x)\right)+\left[F_{P}(x)\right]_{+} g^{\varepsilon}\left(F_{R}(x)\right)} \\
& \leq \frac{1 \times \varepsilon^{2}}{\left(1 \times \varepsilon^{2}\right)+(\varepsilon \times 1)} \\
& =\frac{\varepsilon}{\varepsilon+1}
\end{aligned}
$$

Now the ray from point x^{1} through point $d=\left(0, \frac{\varepsilon}{1+\varepsilon}, \frac{1}{1+\varepsilon}\right)$ intersects segment $b c$ at x^{2} $=\left(\frac{2 \alpha \varepsilon(2+\varepsilon)}{3 \alpha(1+2 \varepsilon)-1}, \frac{\varepsilon(1+\alpha-4 \alpha \varepsilon)}{3 \alpha(1+2 \varepsilon)-1}, \frac{\alpha\left(3+\varepsilon+2 \varepsilon^{2}\right)-\varepsilon-1}{3 \alpha(1+2 \varepsilon)-1}\right)$. Hence, the inequality above implies that the solution trajectory from x^{1} (and hence the one from x^{0}) hits segment $z c$ at a point between x^{2} and c.

Finally, consider the behavior of solution trajectories passing through the polygon $c e_{P} x^{*} z$. In this region, the target point is always on segment $e_{S} e_{P}$. In fact, once the solution hits segment $e_{P} x^{*}$, strategy S becomes the sole strategy earning a positive payoff, so the
target point must be e_{S}. Thus, the solution starting from x^{2} must hit $e_{P} x^{*}$ no closer to x^{*} than $x^{3}=\left(\frac{2 \alpha \varepsilon(2+\varepsilon)}{(1+\varepsilon) 3 \alpha(1+2 \varepsilon)-1}, \frac{2 \alpha \varepsilon(2+\varepsilon)}{(1+\varepsilon) 3 \alpha(1+2 \varepsilon)-1}, \frac{\alpha\left(3+\varepsilon+2 \varepsilon^{2}\right)-\varepsilon-1}{(1+\varepsilon) 3 \alpha(1+2 \varepsilon)-1}\right)$, the point where a ray from x^{2} through e_{S} crosses segment $e_{P} x^{*}$. Since the solution starting from x^{0} hits segment $z c$ to the right of x^{2}, it too must hit $e_{P} x^{*}$ to the right of x^{3}. We have thus established a lower bound of $\beta(\alpha)$ $=\frac{\alpha\left(3+\varepsilon+2 \varepsilon^{2}\right)-\varepsilon-1}{(1+\varepsilon) 3(1+2 \varepsilon)-1}$ on the value of x_{P} at the point where the solution starting from $x^{0}=\left(\alpha, \frac{1-\alpha}{2}\right.$, $\frac{1-\alpha}{2}$) intersects segment $e_{P} x$.

The function β is an increasing hyperbola whose asymptotes lie at $\alpha=\frac{1}{3+9 \varepsilon+6 \varepsilon^{2}}$ and $\beta=$ $\frac{3+\varepsilon+2 \varepsilon^{2}}{3+9 \varepsilon+6 \varepsilon^{2}}$. It intersects the 45° line at

$$
\alpha_{ \pm}=\frac{2+\varepsilon+\varepsilon^{2} \pm \sqrt{1-8 \varepsilon-10 \varepsilon^{2}-4 \varepsilon^{3}+\varepsilon^{4}}}{3+9 \varepsilon+6 \varepsilon^{2}}
$$

whenever the expression under the square root is positive. This is true whenever $\varepsilon<.1094$. In this case, $\left(\alpha_{-}, \alpha_{+}\right) \subset\left(\frac{1}{3}, 1\right)$, and β is above the 45° line on the former interval. Hence, any solution that begins at a point $x^{0}=\left(\alpha, \frac{1-\alpha}{2}, \frac{1-\alpha}{2}\right)$ with $\alpha>\max \left\{\underline{\alpha}, \alpha_{-}\right\}$will hit segment $e_{P} x^{*}$ at some point y with $y_{P}>\beta(\alpha) \in\left(\alpha, \alpha_{+}\right)$. It then follows from the symmetry of the game and of the choice rule that that the region bounded on the inside by the solution from x^{0} to y, its 120° and 240° rotations about x^{*}, and the pieces of $e_{P} x^{*}, e_{S} x^{*}$, and $e_{R} x^{*}$ that connect the three solutions, and on the outside by the boundary of X is a trapping region for the dynamic V. By Proposition 4.1, the only rest point of the dynamic is the Nash equilibrium x^{*}, which lies outside of this region. Therefore, the Poincaré-Bendixson Theorem (Hirsch and Smale (1974, Theorem 11.4)) implies that every solution with an initial condition in the region converges to a periodic orbit. If we take ε to zero, $\underline{\alpha}$ and α_{-}approach $\frac{1}{3}$, which implies that the radius of the ball around x^{*} from which convergence to a periodic orbit is not guaranteed vanishes. This completes the proof of the proposition.

References

Hirsch, M. W. and Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, San Diego.

[^0]: *Department of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria. e-mail: josef.hofbauer@univie.ac.at; website: http://homepage.univie.ac.at/josef.hofbauer.
 ${ }^{\dagger}$ Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, USA. e-mail: whs@ssc.wisc.edu; website: http://www.ssc.wisc.edu/~whs.

