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Abstract

We study a class of population games called stable games. These games are charac-
terized by self-defeating externalities: when agents revise their strategies, the improve-
ments in the payoffs of strategies to which revising agents are switching are always
exceeded by the improvements in the payoffs of strategies which revising agents are
abandoning. We prove that the set of Nash equilibria of a stable game is globally
asymptotically stable under a wide range of evolutionary dynamics. Convergence
results for stable games are not as general as those for potential games: in addition to
monotonicity of the dynamics, integrability of the agents’ revision protocols plays a
key role.

1. Introduction

This paper studies a class of population games that we call stable games. These games
are characterized by a condition we call self-defeating externalities, which requires that
when agents revise their strategies, the improvements in the payoffs of strategies to which
revising agents are switching are always exceeded by the improvements in the payoffs of
strategies which revising agents are abandoning. Our main results show that the set of
Nash equilibria of a stable game is globally asymptotically stable under a wide range of
evolutionary dynamics, including the BNN dynamic, the best response dynamic, and the
Smith dynamic. Related global stability results hold for the logit, replicator, and projection
dynamics. But we argue that convergence results for stable games are not as general as
those for potential games: in addition to monotonicity of the dynamics, integrability of
the agents’ revision protocols plays a key role.
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Our treatment of stable games builds on ideas from a variety of fields. From the
point of view of mathematical biology, one can view stable games as a generalization
of the class of symmetric normal form games with an interior ESS (Maynard Smith and
Price (1973), Maynard Smith (1982)) to settings with multiple populations and nonlinear
payoffs. Indeed, for games with an interior Nash equilibrium, the ESS condition reduces
to the negative definiteness of the payoff matrix, and this latter property characterizes
the “strictly stable” games in this symmetric normal form setting.1 Bishop and Cannings
(1978) show that the war of attrition satisfies the weaker semidefiniteness condition that
characterizes stable games. Stable single population games appear in the work of Akin
(1990), and stable multipopulation games with linear payoff functions are studied by
Cressman et al. (2001). Stable games can be found in the transportation science literature
in the work of Smith (1979, 1984) and Dafermos (1980), where they are used to extend the
network congestion model of Beckmann et al. (1956) to allow for asymmetric externalities
between drivers on different routes. Alternatively, stable games can be understood as a
class of games that preserves many attractive properties of concave potential games: in a
sense to be made explicit soon, stable games preserve the concavity of these games without
requiring the existence of a potential function at all. Stable games can also be viewed as
examples of objects called monotone operators from the theory of variational inequalities.2

Finally, as we explain in Section 2.4, stable games are related to the diagonally concave
games introduced by Rosen (1965).

To analyze the behavior of deterministic evolutionary dynamics in stable games, we
first derive these dynamics from an explicit model of individual choice. This model is
specified in terms of revision protocols, which determine the rates at which an agent who is
considering a change in strategies opts to switch to his various alternatives. Most of our
presentation focuses on a general class of dynamics called target dynamics, under which
the rate at which an agent switches to any given strategy is independent of his current
strategy choice. The name of this class of dynamics comes from their simple geometric
description: for each current population state, the dynamics specify a target state toward
which the current state moves, as well as a rate at which the target state is approached. To
this we add the additional restriction that the rates at which agents switch to alternative
strategies can be expressed as a function of the excess payoff vector: a vector whose ith
component is the difference the ith strategy’s payoff and the population’s average pay-
off. Dynamics with these properties are prominent in the literature: three fundamental

1Conversely, symmetric normal form games with such a negative definite payoff matrix have a unique
ESS which is also the unique Nash equilibrium; see Hofbauer and Sigmund (1988).

2See Minty (1967), Kinderlehrer and Stampacchia (1980), Harker and Pang (1990), John (1998), and
Nagurney (1999).
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evolutionary dynamics—the BNN dynamic (Brown and von Neumann (1950)), the best
response dynamic (Gilboa and Matsui (1991)), and the logit dynamic (Fudenberg and
Levine (1998))—are of this form.

As a point of comparison, we note that in potential games, dynamics satisfying a
mild monotonicity condition called positive correlation converge to equilibrium from all
initial conditions.3 The same cannot be said for stable games: in Section 6, we construct a
dynamic that satisfies positive correlation but that fails to converge in some stable games.

The reason that convergence need not occur can be explained as follows. Stable games
have the following attractive geometric property: if one starts at any nonequilibrium
state and then moves in the direction defined by the current vector of payoffs, distance
from equilibrium either falls or remains constant.4 For their part, dynamics that satisfy
positive correlation always move in a direction that forms an acute angle with the vector of
payoffs. It follows that in most cases, many permissible directions of motion lead away
from equilibrium; if these directions tend to be followed, convergence will fail to occur.

By introducing an additional restriction on dynamics—namely, integrability of the
revision protocol—one can eliminate this source of trouble. As we argue in Section 6,
integrability implies that on average, the vectors of motion under the dynamic must
deviate from the vectors of payoffs in the direction of Nash equilibrium. Since the payoff

vectors of a stable game aim towards the equilibrium set, monotonicity and integrability
together generate convergence to equilibrium.

We convert this intuition into formal convergence results for stable games in Section
5, where we introducing suitable Lyapunov functions for the dynamics we study. A
somewhat similar approach is followed in analyses of potential games, where all dynamics
that satisfy positive correlation ascend the game’s potential function. However, unlike
potential games, stable games do not come equipped with an all-purpose Lyapunov
function. To prove convergence results, we must construct a suitable Lyapunov function
for each dynamic we wish to consider.

Again, integrability of the revision protocol is essential to completing the argument.
By definition, integrability requires that the rates at which agents switch strategies can be
described as a gradient of a scalar-valued function, which we call a revision potential. For
each dynamic we consider, including the BNN, best response, and logit dynamics, this
revision potential is the key ingredient in the construction of the Lyapunov function.

3A potential game is a game that admits a scalar-valued potential function that encodes the incentives
of all players at once. This function serves as a strict Lyapunov function for a wide range of evolutionary
dynamics. See Monderer and Shapley (1996), Hofbauer and Sigmund (1988), and Sandholm (2001, 2008a).

4Put differently, every Nash equilibrium of a stable game is a so-called globally neutrally stable state
(GNSS)—see Section 3.
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The convergence theorems for stable games proved in this paper extend and unify a
variety of existing results: Hofbauer (2000) proves convergence results for a variety of
dynamics in symmetric normal form games with an interior ESS, while Hofbauer and
Sandholm (2007) establish global convergence of perturbed best response dynamics in
all stable games. Building on these analyses, the present paper shows how integrability
of revision protocols is a common thread running through these and other convergence
results. Between this study and existing analyses of specific dynamics,5 convergence
in stable games has now been established for six basic dynamics from the evolutionary
literature. Section 7.3 presents a summary of these results.

Our use of integrability was inspired by the work of Hart and Mas-Colell (2001) on
heuristic learning in repeated play of normal form games. These authors construct a class
of consistent repeated game strategies: strategies which ensure that in the long run, and
for all possible sequences of opponents’ plays, the payoff that a player obtains is as high
as the best payoff he could have obtained had he known the empirical frequencies of
his opponents’ choices in advance.6 The class of repeated game strategies that Hart and
Mas-Colell (2001) consider are based on decision rules to be applied in each period of
play. The inputs to these rules are vectors describing the performance of each strategy
versus the time average of opponents’ past play, normalized by the average payoffs
actually obtained; the outputs are vectors of choice probabilities. Hart and Mas-Colell
(2001) show that decision rules satisfying three conditions—continuity, monotonicity,
and integrability—ensure consistent play. In this paper, we show that the integrability
property introduced by Hart and Mas-Colell (2001) in an heuristic learning framework
is also fruitful in an evolutionary setting, despite substantial differences in the contexts,
questions posed, and requisite analytical techniques.

2. Definition, Characterization, and Examples

2.1 Population Games

Let P = {1, . . . , p}, be a society consisting of p ≥ 1 populations of agents. Agents in
population p form a continuum of mass mp > 0. Masses capture the populations’ relative
sizes; if there is just one population, we assume that its mass is one.

5See Smith (1984), Hofbauer et al. (1979), Zeeman (1980), Akin (1990), Aubin (1991), Cressman et al.
(2001), Nagurney and Zhang (1997), Sandholm et al. (2008), and Section 7.2 below.

6The original papers on consistency are Hannan (1957) and Blackwell (1956). This topic was reintroduced
to the learning in games literature by Fudenberg and Levine (1995, 1998). See Foster and Vohra (1999) for
historical notes, and Young (2004) and Cesa-Bianchi and Lugosi (2006) for recent textbook treatments.
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The set of strategies available to agents in population p is denoted Sp = {1, . . . ,np
}, and

has typical elements i, j, and (in the context of normal form games) sp. We let n =
∑

p∈P np

equal the total number of pure strategies in all populations.
During game play, each agent in population p selects a (pure) strategy from Sp. The

set of population states (or strategy distributions) for population p is thus Xp = {xp
∈ Rnp

+ :∑
i∈Sp xp

i = mp
}. The scalar xp

i ∈ R+ represents the mass of players in population p choosing
strategy i ∈ Sp. Elements of X =

∏
p∈P Xp = {x = (x1, . . . , xp) ∈ Rn

+ : xp
∈ Xp
}, the set of social

states, describe behavior in all p populations at once.
The tangent space of Xp, denoted TXp, is the smallest subspace of Rnp that contains all

vectors describing motions between population states in Xp. In other words, if xp, yp
∈ Xp,

then yp
− xp
∈ TXp, and TXp is the span of all vectors of this form. It is not hard to see that

TXp = {zp
∈ Rnp :

∑
i∈Sp zp

i = 0} contains exactly those vectors in Rnp whose components
sum to zero; the restriction on the sum embodies the fact that changes in the population
state leaves the population’s mass constant. Changes in the full social state are elements
of the grand tangent space TX =

∏
p∈P TXp.

It will prove useful to specify notation for the orthogonal projections onto the subspaces
TXp

⊂ Rnp and TX ⊂ Rn. The former is given by the matrix Φ = I − 1
np 11′ ∈ Rnp

×np ,
where 1 ∈ Rnp is the vector of ones; the latter is given by the block diagonal matrix
Φ = diag(Φ, . . . ,Φ) ∈ Rn×n.

We generally take the sets of populations and strategies as fixed and identify a game
with its payoff function. A payoff function F : X → Rn is a continuous map that assigns
each social state a vector of payoffs, one for each strategy in each population. Fp

i : X→ R
denotes the payoff function for strategy i ∈ Sp while Fp : X → Rnp denotes the payoff

functions for all strategies in Sp. When p = 1, we omit the redundant superscript p from
all of our notation.

State x ∈ X is a Nash equilibrium, denoted x ∈ NE(F), if every strategy in use at x is an
optimal strategy. We can express this requirement in a number of equivalent ways:

x ∈ NE(F)⇔ [xp
i > 0⇒ Fp

i (x) ≥ Fp
j (x)] for all i, j ∈ Sp and p ∈ P

⇔ (xp)′Fp(x) ≥ (yp)′Fp(x) for all yp
∈ Xp and p ∈ P

⇔ (y − x)′F(x) ≤ 0 for all y ∈ X.

2.2 Stable Games

We call the population game F : X→ Rn a stable game if

(S) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.
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If the inequality in condition (S) holds strictly whenever x , y, we say that F is strictly
stable, while if this inequality always binds, we say that F is null stable.

For a first intuition, imagine for the moment that F is a full potential game: in other
words, that F ≡ ∇ f (x) for some scalar-valued full potential function f : Rn

+ → R.7 In this
case, condition (S) is simply the requirement that the potential function f be concave. Our
definition of stable games thus extends the defining property of concave potential games
to games whose payoffs are not integrable.

Stable games whose payoffs are differentiable can be characterized in terms of the
action of their derivative matrices DF(x) on TX × TX.

Theorem 2.1. Suppose the population game F is C1. Then F is a stable game if and only if it
satisfies self-defeating externalities:

(S’) DF(x) is negative semidefinite with respect to TX for all x ∈ X.

Theorem 2.1 is a direct consequence of the definition of the derivative DF(x) and the
Fundamental Theorem of Calculus. For the intuition behind condition (S’), note that the
condition can be restated as

z′DF(x)z ≤ 0 for all z ∈ TX and x ∈ X.

This requirement is in turn equivalent to

∑
p∈P

∑
i∈Sp

zp
i

∂Fp
i

∂z
(x) ≤ 0 for all z ∈ TX and all x ∈ X.

To interpret this expression, recall that the displacement vector z ∈ TX describes the
aggregate effect on the population state of strategy revisions by a small group of agents.

The derivative
∂Fp

i
∂z (x) represents the marginal effect that these revisions have on the payoffs

of agents currently choosing strategy i ∈ Sp. Condition (S’) considers a weighted sum of
these effects, with weights given by the changes in the use of each strategy, and requires
that this weighted sum be negative.

Intuitively, a game exhibits self-defeating externalities if the improvements in the
payoffs of strategies to which revising players are switching are always exceeded by the
improvements in the payoffs of strategies which revising players are abandoning. For
example, suppose the tangent vector z takes the form z = ep

j − ep
i , representing switches by

7A potential game is defined by the weaker requirement thatΦF ≡ ∇ f for a potential function f defined
on domain X; see Example 2.8 below, and especially Sandholm (2008a).
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some members of population p from strategy i to strategy j. In this case, the requirement

in condition (S’) reduces to
∂Fp

j

∂z (x) ≤
∂Fp

i
∂z (x): that is, any performance gains that the switches

create for the newly chosen strategy j are dominated by the performance gains created for
the abandoned strategy i.

2.3 Examples

We now illustrate the definition of stable games through a series of examples. These
examples are not needed in the analysis to follow, and could be skipped on a first reading.

Our first four examples consider a single population whose members are randomly
matched to play a symmetric two-player normal form game, defined by a strategy set
S = {1, . . .,n} and a payoff matrix A ∈ Rn×n. Ai j is the payoff a player obtains when he
chooses strategy i and his opponent chooses strategy j; this payoff does not depend on
whether the player in question is called player 1 or player 2. Random matching in A
generates the linear population game F(x) = Ax, whose derivative matrices DF(x) = A are
independent of x.

Example 2.2. Games with an interior evolutionarily or neutrally stable state. State x ∈ X is
an evolutionarily stable state (or an evolutionarily stable strategy, or simply an ESS) of A
(Maynard Smith and Price (1973)) if

x′Ax ≥ y′Ax for all y ∈ X; and(i)

x′Ax = y′Ax implies that x′Ay > y′Ay.(ii)

Condition (i) says that x is a symmetric Nash equilibrium of A. Condition (ii) says that
x performs better against any alternative best reply y than y performs against itself.
(Alternatively, (i) says that no y ∈ X can strictly invade x, and (i) and (ii) together say that
if y can weakly invade x, then x can strictly invade y—see Section 3 below.) If we weaken
condition (ii) to

(ii’) If x′Ax = y′Ax, then x′Ay ≥ y′Ay,

then a state satisfying conditions (i) and (ii’) is called a neutrally stable state (NSS) (Maynard
Smith (1982)).

Suppose that the ESS x lies in the interior of X. Then as x is an interior Nash equilibrium,
all pure and mixed strategies are best responses to it: for all y ∈ X, we have that x′Ax =

y′Ax, or, equivalently, that (x− y)′Ax = 0. Next, we can rewrite the inequality in condition
(ii) as (x − y)′Ay > 0. Subtracting this last expression from the previous one yields
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(x − y)′A(x − y) < 0. But since x is in the interior of X, all tangent vectors z ∈ TX are
proportional to x − y for some choice of y ∈ X. Therefore, z′DF(x)z = z′Az < 0 for all
z ∈ TX, and so F is a strictly stable game. Similar reasoning shows that if A admits an
interior NSS, then F is a stable game. §

Example 2.3. Rock-Paper-Scissors. In Rock-Paper-Scissors, Paper covers Rock, Scissors cut
Paper, and Rock smashes Scissors. If a win in a match generates a benefit of w > 0, a
loss imposes a cost of −l < 0, and a draw is a neutral outcome, we obtain the symmetric
normal form game

A =


0 −l w
w 0 −l
−l w 0


with w, l > 0. When w = l, we refer to A as (standard) RPS; when w > l, we refer to A as
good RPS, and when w < l, we refer to A as bad RPS. In all cases, the unique symmetric
Nash equilibrium of A is (1

3 ,
1
3 ,

1
3 ).

To determine the parameter values for which this game generates a stable population
game, define d = w− l. Since y′Ay = 1

2 y′(A + A′)y, it is enough to see when the symmetric
matrix Â = A + A′, whose diagonal elements equal 0 and whose off-diagonal elements
equal d, is negative semidefinite with respect to TX. Now Â has one eigenvalue of 2d
corresponding to the eigenvector 1, and two eigenvalues of −d corresponding to the
orthogonal eigenspace TX. Thus, z′Âz = −dz′z for each z ∈ TX. Since z′z > 0 whenever
z , 0, we conclude that F is stable if and only if d ≥ 0. In particular, good RPS is strictly
stable, standard RPS is null stable, and bad RPS is neither. §

Example 2.4. Wars of attrition. In a war of attrition (Bishop and Cannings (1978)), strategies
represent amounts of time committed to waiting for a scarce resource. If the two players
choose times i and j > i, then the j player obtains the resource, worth v, while both players
pay a cost of ci: once the first player leaves, the other seizes the resource immediately.
If both players choose time i, the resource is split, so payoffs are v

2 − ci each. We allow
the resource value v ∈ R to be arbitrary, and require the cost vector c ∈ Rn to satisfy
c1 ≤ c2 ≤ . . . ≤ cn. In the online appendix, we show that random matching in a war of
attrition generates a stable game. §

Example 2.5. Symmetric zero sum games. The symmetric game A is symmetric zero-sum if
A is skew-symmetric: that is, if A ji = −Ai j for all i, j ∈ S. This condition ensures that
under single population random matching, the total utility generated in any match is
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zero. Since payoffs in the resulting single population game are F(x) = Ax, we find that
z′DF(x)z = z′Az = 0 for all vectors z ∈ Rn, and so F is a null stable game. §

Next we consider an example based on random matching across two populations to
play a (possibly asymmetric) two-player normal form game. To define a p-player normal
form game, let Sp = {1, . . .,np

} denote player p’s strategy set, S =
∏

q∈P Sp the set of pure
strategy profiles, and Up : S→ R player p’s payoff function.

Example 2.6. Zero-sum games. A two-player game U = (U1,U2) is zero-sum if U2 = −U1, so
that the two players’ payoffs always add up to zero. Random matching of two populations
to play U generates the population game

F(x1, x2) =

 0 U1

(U2)′ 0

 x1

x2

 =

 0 U1

−(U1)′ 0

 x1

x2

 .
If z is a vector in Rn = Rn1+n2 , then

z′DF(x)z =
(
(z1)′ (z2)′

)  0 U1

−(U1)′ 0

 z1

z2

 = (z1)′U1z2
− (z2)′(U1)′z1 = 0,

so F is a null stable game. §

The previous example shows that random matching across multiple populations can
generate a null stable game. Proposition 2.7 reveals that null stable games are the only
stable games that can be generated in this way.

Proposition 2.7. Suppose F is a C1 stable game without own-population interactions: Fp(x) is
independent of xp for all p ∈ P . Then F is null stable: (y − x)′(F(y) − F(x)) = 0 for all x, y ∈ X.

Proof. Our proof is by induction on the number of populations. Let F be a two-
population stable game without own-population interactions. The absence of such inter-
actions implies that the diagonal blocks D1F1(x) and D2F2(x) of the derivative matrix DF(x)
are identically zero. Now if z = (z1, z2) ∈ TX and ẑ = (−z1, z2), then

z′DF(x)z = (z2)′D1F2(x)z1 + (z1)′D2F1(x)z2 = −ẑ′DF(x)ẑ

for all x ∈ X. But since F is stable, Theorem 2.1 tells us that z′DF(x)z ≤ 0 and that
ẑ′DF(x)ẑ ≤ 0, so it must be that z′DF(x)z = 0. Since x ∈ X and z ∈ TX were arbitrary, it
follows easily from the Fundamental Theorem of Calculus that F is null stable.

Continuing inductively, we suppose that the theorem is true for games played by p
populations, and consider games played by p + 1 populations. Fix a population p ∈
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{1, . . . , p + 1}, and let z = (zp, z−p) ∈ TX and ẑ = (−zp, z−p). Then together, the fact that
DpFp(x) is identically zero and the inductive hypothesis imply that

z′DF(x)z = (z−p)′DpF−p(x)zp + (zp)′D−pFp(x)z−p + (z−p)′D−pF−p(x)z−p

= (z−p)′DpF−p(x)zp + (zp)′D−pFp(x)z−p

= −ẑ′DF(x)ẑ

for all x ∈ X, allowing us to conclude as before that F is null stable. �

Proposition 2.7 tells us that within-population interactions are required to obtain a
strictly stable game. Thus, in random matching contexts, strictly stable games only occur
when there is matching within a single population, or when interactions are allowed to
occur both across and within populations (see Cressman et al. (2001)). But in general
population games—for instance, in congestion games—within-population interactions
are the norm, and strictly stable games are not uncommon. Our next two examples
illustrate this point.

Example 2.8. Concave potential games and nearby games. The population game F : X → Rn

is a potential game if it admits a potential function f : X → R satisfying ∇ f ≡ ΦF. If f is
concave, we say that F is a concave potential game. Leading examples of such games include
congestion games with increasing cost functions (which provide the basic game-theoretic
model of network congestion) and models of variable externality pricing.8

It is easy to verify that any concave potential game is a stable game. Let y − x ∈ TX.
Since the orthogonal projection matrixΦ is symmetric, we find that

(y − x)′(F(y) − F(x)) = (Φ(y − x))′(F(y) − F(x))

= (y − x)′(ΦF(y) −ΦF(x))

= (y − x)′(∇ f (y) − ∇ f (x))

≤ 0.

and so F is stable.
Since potential games are characterized by equalities, slightly altering the payoff func-

tions of a potential game often does not result in a new potential game. But since a strictly
stable game is defined by strict inequalities, nearby games are strictly stable games as well.
Combining these observations, we see that while perturbations of strictly concave poten-
tial games often fail to be potential games, they remain strictly stable games. This point is

8See Beckmann et al. (1956), Monderer and Shapley (1996), Hofbauer and Sigmund (1988), and Sandholm
(2001, 2005b).
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noted in the transportation science literature by Smith (1979) and Dafermos (1980), who
use stable games to model traffic networks exhibiting asymmetric externalities between
drivers on different routes. §

Example 2.9. Negative dominant diagonal games. We call the full population game F a negative
dominant diagonal game if it satisfies

∂Fp
i

∂xp
i

(x) ≤ 0 and

∣∣∣∣∣∣∂Fp
i

∂xp
i

(x)

∣∣∣∣∣∣ ≥ 1
2

∑
( j,q),(i,p)


∣∣∣∣∣∣∣∂Fq

j

∂xp
i

(x)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∂Fp
i

∂xq
j

(x)

∣∣∣∣∣∣∣


for all i ∈ Sp, p ∈ P , and x ∈ X. The first condition says that choosing strategy i ∈ Sp

imposes a negative externality on other users of this strategy. The second condition
requires that this externality exceed the average of (i) the total externalities that strategy i
imposes on other strategies and (ii) the total externalities that other strategies impose on
strategy i. These conditions are precisely what is required for the matrix DF(x) + DF(x)′ to
have a negative dominant diagonal. The dominant diagonal condition implies that all of
the eigenvalues of DF(x) + DF(x)′ are negative; since DF(x) + DF(x)′ is also symmetric, it
is negative semidefinite. Therefore, DF(x) is negative semidefinite too, and so F is a stable
game. §

2.4 Connections with Diagonally Concave Games

The idea of imposing a negative definiteness condition on a game’s payoff functions
was proposed earlier in an overlapping but distinct context by Rosen (1965). Rosen
(1965) considers p-player normal form games in which each player p ∈ P = {1, . . . , p}
chooses strategies from a convex, compact set Cp

⊂ Rnp . Player p’s payoff function
φp : C ≡

∏
p∈P Cp

→ R is assumed to be continuous in x and concave in xp. These
assumptions ensure the existence of Nash equilibrium.

To obtain a uniqueness result, Rosen (1965) introduces the function g : Rn
→ Rn defined

by gp(x) = ∇pφp(x), and calls the game with payoffs φ diagonally strictly concave if

(1) (y − x)′(g(y) − g(x)) < 0 for all x, y ∈ C.

Rosen (1965) proves that any diagonally strictly concave game satisfying mild smoothness
and nondegeneracy assumptions admits a unique Nash equilibrium.

To connect these ideas with stable games, note that any p-population game F without
own-population interactions is formally equivalent to a p-player normal form game in
which payoffs are linear in own strategies—namely, the normal form game with strategy
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sets Cp = Xp and payoff functions

φp(x) = (xp)′Fp(x−p).

In this case, we have g ≡ F, so comparing conditions (S) and (1) reveals thatφ is diagonally
concave (i.e., (1) always holds weakly) if and only if F is stable. However, since Fp is
independent of xp, Proposition 2.7 implies that F must be null stable, or, equivalently, that
Rosen’s (1965) condition (1) must always hold with equality.

Population games which include own-population interactions are not formally equiv-
alent to normal form games. Therefore, stable games with such interactions, including
all of the examples from Section 2.3 other than Example 2.6, fall outside of the class that
Rosen (1965) considers.

3. Equilibrium

We now present equilibrium concepts that are of basic importance for stable games.
We call x ∈ X a globally neutrally stable state (GNSS) if

(y − x)′F(y) ≤ 0 for all y ∈ X.

If this inequality holds strictly whenever y , x, we call x a globally evolutionarily stable state
(GESS). We let GNSS(F) and GESS(F) denote the sets of globally neutrally stable strategies
and globally evolutionarily stable strategies, respectively.

The inequalities used to define GNSS and GESS are the same ones used to define NSS
and ESS in symmetric normal form games (Example 2.2), but they are now required to
hold not just at those states y that are optimal against x, but at all y ∈ X. A version
of the GESS concept is used by Hamilton (1967) in his pioneering analysis of sex-ratio
selection, under the name “unbeatable strategy”. More recent appearances of this concept
in the evolutionary game theory literature can be found in Pohley and Thomas (1983)
and Joosten (1996). Analogues of the GNSS and GESS concepts are introduced in the
variational inequality and transportation science literatures by Minty (1967) and Smith
(1979), respectively.

Proposition 3.1 and Theorem 3.2 relate GNSS and GESS to Nash equilibrium. Versions
of these results are known in the variational inequality literature; see John (1998).

Proposition 3.1. (i) GNSS(F) is convex, and GNSS(F) ⊆ NE(F).
(ii) If x ∈ GESS(F), then NE(F) = {x}. Hence, if a GESS exists, it is unique.

–12–



Proof. Because GNSS(F) is an intersection of half spaces, it is convex. To prove the
second statement in part (i), suppose that x ∈ GNSS(F) and let y , x. Define xε =

εy + (1−ε)x. Since x is a GNSS, (x−xε)′F(xε) ≥ 0 for all ε ∈ (0, 1]. Simplifying and dividing
by ε yields (x − y)′F(xε) ≥ 0 for all ε ∈ (0, 1], so taking ε to zero yields (y − x)′F(x) ≤ 0. In
other words, x ∈ NE(F).

To prove part (ii), it is enough to show that if x is a GESS, then no y , x is Nash. But if
x ∈ GESS(F), then (x − y)′F(y) > 0, so y < NE(F). �

Proposition 3.1 tells us that every GNSS of an arbitrary game F is a Nash equilibrium.
Theorem 3.2 shows that more can be said if F is stable: in this case, the (convex) set of
globally neutrally stable states is identical to the set of Nash equilibria.

Theorem 3.2. (i) If F is a stable game, then NE(F) = GNSS(F), and so is convex.
(ii) If in addition F is strictly stable at some x ∈ NE(F) (that is, if (y− x)′(F(y)− F(x)) < 0 for

all y , x), then NE(F) = GESS(F) = {x}.

Proof. Suppose that F is stable, and let x ∈ NE(F). To establish part (i), it is enough to
show that x ∈ GNSS(F). So fix an arbitrary y , x. Since F is stable,

(2) (y − x)′(F(y) − F(x)) ≤ 0.

And since x ∈ NE(F), (y − x)′F(x) ≤ 0. Adding these inequalities yields

(3) (y − x)′F(y) ≤ 0,

As y was arbitrary, x is a GNSS.
Turning to part (ii), suppose that F is strictly stable at x. Then inequality (2) holds

strictly, so inequality (3) holds strictly as well. This means that x is a GESS of F, and hence
the unique Nash equilibrium of F. �

In geometric terms, population state x is a GESS if a small motion from any state y , x
in the direction of the payoff vector F(y) (or of the projected payoff vectorΦF(y)) moves
the state closer to x (see Figure 1). If we allow not only these acute motions, but also
orthogonal motions, we obtain the weaker notion of GNSS. This geometric interpretation
of GESS and GNSS will be important for understanding the behavior of evolutionary
dynamics in stable games.
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Figure 1: The geometric definition of GESS.

4. Target Dynamics and EPT Dynamics

The set of Nash equilibria of any stable game is geometrically simple: it is convex, and
typically a singleton. If a population of myopic agents recurrently play a stable game, will
they learn to behave in accordance with Nash equilibrium?

Before pursuing this question, we should emphasize that uniqueness of equilibrium,
while suggestive, does not imply any sort of stability under evolutionary dynamics.
Indeed, most of the games used to illustrate the possibility of nonconvergence are games
with a unique Nash equilibrium: see Shapley (1964), Jordan (1993), Gaunersdorfer and
Hofbauer (1995), Hofbauer and Swinkels (1996), and Hofbauer and Sandholm (2006). If
convergence results can be established for stable games, it is not just a consequence of
uniqueness of equilibrium; rather, the results must depend on the global structure of
payoffs in these games.

The analysis to follow requires a few additional definitions. The average payoff in
population p is given by Fp(x) = 1

mp

∑
i∈Sp xp

i Fp
i (x). The excess payoff to strategy i ∈ Sp,

defined by F̂p
i (x) = Fp

i (x) − Fp(x), is the difference between the strategy’s payoff and the
average payoff earned in population p. The excess payoff vector for population p is thus
F̂p(x) = Fp(x) − 1Fp(x), where 1 ∈ Rnp is the vector of ones.

Also, let ∆p = {y ∈ Rnp

+ :
∑

i∈Sp yp
i = 1} be the set of mixed strategies for population p.
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Then the map Bp : X⇒ ∆p, defined by

(4) Bp(x) = argmax
yp∈∆p

(yp)′Fp(x),

is population p’s best response correspondence.

4.1 Revision Protocols and Evolutionary Dynamics

We consider evolutionary dynamics derived from an explicit model of individual
choice. This model is defined in terms of revision protocols ρp : Rnp

× Xp
→ Rnp

×np

+ , which
describe the process through which agents in each population p make decisions. As time
passes, agents are chosen at random from the population and granted opportunities to
switch strategies. When a strategy i ∈ Sp player receives an opportunity, he switches to
strategy j ∈ Sp with probability proportional to the conditional switch rate ρp

ij(F
p(x), xp), a

rate that may depend on the payoff vector Fp(x) and the population state xp.
Aggregate behavior in population game F under protocolρ is described by the dynamic

(5) ẋp
i =

∑
j∈Sp

xp
jρ

p
ji(F

p(x), xp) − xp
i

∑
j∈Sp

ρp
ij(F

p(x), xp).

The first term captures the inflow of agents into strategy i from other strategies, while
the second term captures the outflow of agents from strategy i to other strategies. We
sometimes write (5) as ẋ = VF(x) to emphasize the dependence of the law of motion on
the underlying game.9

4.2 Target Dynamics

Until the final section of the paper, we focus on revision protocols of the form

ρp
ij(π

p, xp) = τp
j (π

p, xp),

In this formulation, the conditional switch rate from i to j is independent of the current
strategy i. In this case, the equation (5) takes the simpler form

(T) ẋp
i = mpτp

i (Fp(x), xp) − xp
i

∑
j∈Sp

τp
j (F

p(x), xp).

9For more on the foundations of deterministic evolutionary dynamics, see Björnerstedt and Weibull
(1996), Benaı̈m and Weibull (2003), and Sandholm (2003, 2008b).
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Figure 2: Target dynamics and positive correlation.

For reasons we explain next, we call evolutionary dynamics of this form target dynamics.
Target dynamics admit a simple geometric interpretation. If τp(Fp(x), xp) ∈ Rnp

+ is not
the zero vector, we can let

λp(Fp(x), xp) =
∑
i∈S

τp
i (Fp(x), xp) and σp

i (Fp(x), xp) =
τp

i (Fp(x), xp)
λp(Fp(x), xp)

,

and rewrite equation (T) as

(6) ẋp =

λ
p(Fp(x), xp) (mpσp(Fp(x), xp) − xp) if τp(Fp(x), xp) , 0,

0 otherwise.

Equation (6) tells us that the population state xp always moves in the direction of the target
state mpσp(Fp(x), xp), with motion toward the latter state proceeding at rate λp(Fp(x), xp).
Figure 2 illustrates this idea in the single population case.

4.3 EPT Dynamics

We further restrict the class of dynamics under consideration by only allowing condi-
tional switch rates to depend on the vector of excess payoffs:

τp
j (π

p, xp) = τp
j (π̂

p),
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where π̂p
i = πp

i (x) − 1
mp (xp)′πp represents the excess payoff to strategy i ∈ Sp. The target

dynamic (T) then take the simpler form

(E) ẋp
i = mpτp

i (F̂p(x)) − xp
i

∑
j∈Sp

τp
j (F̂

p(x)).

We call dynamics of this form excess payoff/target dynamics, or EPT dynamics for short.
It is worth observing that three of the most-studied dynamics in the literature are EPT

dynamics. If the protocol τp is of the form

τp
j (π̂

p) = [π̂p
j ]+,

then agents only switch to strategies with positive excess payoffs, doing so at rates pro-
portional to the magnitudes of excess payoffs. In this case, equation (E) becomes the
Brown-von Neumann-Nash dynamic of Brown and von Neumann (1950).10 If instead that
the protocol is of the form τp

≡Mp, where Mp is the maximizer correspondence

Mp(π̂p) = argmax
yp∈∆p

(yp)′π̂p,

equation (E) becomes the best response dynamic of Gilboa and Matsui (1991). Finally, if
τp
≡ Lp the logit choice function with noise level η > 0,

Lp
i (π̂p) =

exp(η−1π̂p
i )∑

j∈Sp exp(η−1π̂p
j )
,

then equation (E) becomes the logit dynamic of Fudenberg and Levine (1998). We summa-
rize these three examples in Table I.11

4.4 Nash Stationarity and Positive Correlation

In order to obtain convergence results for classes of evolutionary dynamics, one needs
to introduce properties that connect the behavior of the dynamics with payoffs in the
underlying game. If we let ẋ = VF(x) denote the law of motion associated with game F,
we can define two standard properties of evolutionary dynamics as follows:

(NS) Nash stationarity: VF(x) = 0 if and only if x ∈ NE(F).

10See also Skyrms (1990), Swinkels (1993), Weibull (1996), and Hofbauer (2000).
11The formulas for the best response and logit dynamics are easy to derive once one observes that

Mp(π̂p) = Mp(πp) and that Lp(π̂p) = Lp(πp): subtracting the same constant from each strategy’s payoff affects
neither the optimal strategies nor the logit choice probabilities.
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Revision protocol Evolutionary dynamic Name of dynamic

τp
j (π̂

p) = [π̂p
j ]+ ẋp

i = mp [F̂p
i (x)]+ − xp

i

∑
j∈Sp

[F̂p
j (x)]+ BNN

τp(π̂p) ∈Mp(π̂p) ẋp
∈ mpBp(x) − xp best response

τp(π̂p) = Lp(π̂p) ẋp
i = mp

exp(η−1Fp
i (x))∑

j∈Sp exp(η−1Fp
j (x))

− xp
i logit

Table I: Three EPT dynamics and their revision protocols.

(PC) Positive correlation: Vp
F(x) , 0 implies that Vp

F(x)′Fp(x) > 0.

In words, Nash stationarity (NS) states that the rest points of the dynamic are always
the Nash equilibria of the underlying game. For its part, positive correlation (PC) is a
mild monotonicity condition. It requires that whenever a population is not at rest, there
is always an acute angle between the current direction of motion and the current payoff

vector. We illustrate property (PC) in the single population case in Figure 2.12

Sandholm (2005a) identifies conditions under which EPT dynamics exhibit these two
properties.

Proposition 4.1 (Sandholm (2005a)). Suppose the EPT dynamic (E) is derived from a revision
protocol τp that is Lipschitz continuous and acute:

(A) τp(π̂p)′π̂p > 0 whenever π̂p
∈ Rnp

− Rnp

−
.

Then (E) satisfies Nash stationarity (NS) and positive correlation (PC).

Sandholm (2005a) calls EPT dynamics that satisfy the conditions of Proposition 4.1 excess
payoff dynamics; the BNN dynamic is the leading example of this class. The best response
and logit dynamics are not excess payoff dynamics: the protocol that defines the former
dynamic is discontinuous, while the protocol for the latter is not acute.13

In potential games, property (PC) is enough to guarantee that an evolutionary dynamic
converges to equilibrium from all initial conditions, as it ensures that the game’s potential

12Because we are representing a payoff vector of a three-strategy game in a two-dimensional picture, we
draw the projected payoff vector ΦF(x) ∈ TX in place of the actual payoff vector F(x). Since V(x) ∈ TX,
including the projection Φ does not affect the inner product in condition (PC).

13Still, the logit dynamic satisfies an analogue of positive correlation (PC) called virtual positive correlation;
see Hofbauer and Sandholm (2007).
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function serves as a Lyapunov function for the dynamic at issue. One might hope that
in like fashion, a general convergence result for stable games could be proved based on
monotonicity of the dynamic alone. Unfortunately, this is not the case: in Section 6, we
construct an example of an excess payoff dynamic that does not converge in a stable game.
Additional structure is needed to establish the desired convergence results.

4.5 Integrable Revision Protocols

We obtain this structure by imposing an additional condition on revision protocols:
integrability.

(I) There exists a C1 function γp : Rnp
→ R such that τp

≡ ∇γp.

We call the functions γp introduced in this condition revision potentials.
To give this condition a behavioral interpretation, it is useful to compare it to separability:

(S) τp
i (π̂p) is independent of π̂p

−i.

The latter condition is stronger than the former: if τp satisfies (S), then it satisfies (I) with

(7) γp(π̂p) =
∑
i∈Sp

∫ π̂
p
i

0
τp

i (s) ds.

Building on this motivation, Sandholm (2006) provides a game-theoretic interpretation
of integrability. Roughly speaking, integrability (I) is equivalent to a requirement that
in expectation, learning the weight placed on strategy j does not convey information
about other strategies’ excess payoffs. It thus generalizes separability (S), which requires
that learning the weight placed on strategy j conveys no information at all about other
strategies’ excess payoffs.

The results in the next section show that in combination, monotonicity and integrability
are sufficient to ensure global convergence in stable games. In Section 6, we provide
examples that explain the role played by integrability in establishing convergence results.

5. Global Convergence of EPT Dynamics

We noted earlier that in potential games, the potential function serves as a global
Lyapunov function for many evolutionary dynamics. Stable games, in contrast, do not
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come equipped with candidate Lyapunov functions. But if the revision protocol agents
follow is integrable, then the revision potential of this protocol provides a building block
for constructing a suitable Lyapunov function. Evidently, this Lyapunov function will
vary with the dynamic under study, even when the game under consideration is fixed.

Recall that a Lyapunov function Λ : X → R for the closed set A ⊆ X is a continuous
function that achieves its minimum throughout the set A and is nonincreasing along
solutions of (5). If the value of Λ is decreasing outside of A, Λ is called a strict Lyapunov
function. A variety of classical results from dynamical systems show that the existence of
a suitable Lyapunov function implies various forms of stability for the set A. Definitions
of the relevant notions of stability as well as precise statements of the results we need are
offered in Appendix A.1.

5.1 Integrable Excess Payoff Dynamics

Our first result concerns integrable excess payoff dynamics: that is, EPT dynamics (E)
whose protocols τp are Lipschitz continuous, acute, and integrable. The prototype for this
class is the BNN dynamic: its protocol τp

i (π̂p) = [π̂p
i ]+ is not only acute and integrable, but

also separable, and so admits potential function γp(π̂p) = 1
2

∑
i∈Sp[π̂p

i ]2
+ (cf equation (7)).

Theorem 5.1. Let F be a C1 stable game, and let VF be the evolutionary dynamic for F defined by
equation (E) from protocols τp that are Lipschitz continuous, acute (A), and integrable (I). Define
the C1 function Γ : X→ R by

Γ(x) =
∑
p∈P

mpγp(F̂p(x)).

Then Γ̇(x) ≤ 0 for all x ∈ X, with equality if and only if x ∈ NE(F). Thus NE(F) is globally
attracting, and if NE(F) is a singleton it is globally asymptotically stable. If each τp is also separable
(S), then Γ is nonnegative with Γ−1(0) = NE(F), and so NE(F) is globally asymptotically stable.

For future reference, observe that the value of the Lyapunov function Γ at state x is the
(mp-weighted) sum of the values of the revision potentials γp evaluated at the excess payoff

vectors F̂p(x). The proof of Theorem 5.1 can be found in Appendix A.2.

5.2 Perturbed Best Response Dynamics

Next, we revisit a convergence result of Hofbauer and Sandholm (2007) for perturbed
best response dynamics in the light of present analysis. Call the function vp : int(∆p)→ R
an admissible deterministic perturbation if it is differentiably strictly convex and infinitely
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steep at the boundary of ∆p. The perturbation vp induces a perturbed maximizer function
M̃p : Rn

→ int(∆p) defined by

M̃p(πp) = argmax
yp∈int(∆p)

(yp)′πp
− vp(yp).

The perturbed best response dynamic (Fudenberg and Levine (1998)) associated with these
functions is

(PBR) ẋp = mpM̃p(F̂p(x)) − xp.

The prototype for this class of dynamics, the logit dynamic, is obtained when vp is the
negated entropy function vp(yp) = η

∑
j∈Sp yp

j log yp
j .

Following the previous logic, we can assess the possibilities for convergence in stable
games by checking monotonicity and integrability. For the former, we note that while
perturbed best response dynamics (PBR) do not satisfy positive correlation (PC), they do
satisfy an analogue called virtual positive correlation.14 Moreover, the protocol τp = M̃p is
integrable; its revision potential,

µ̃p(πp) = max
yp∈int(∆p)

(yp)′πp
− vp(yp),

is the perturbed maximum function induced by vp.
Mimicking Theorem 5.1, we can attempt to construct Lyapunov functions for (PBR)

by composing the revision potentials µ̃p with the excess payoff functions F̂p. After some
manipulation, the Lyapunov function derived in Hofbauer and Sandholm (2007) can be
shown to be of this form, modulo the addition of perturbation terms.

Theorem 5.2 (Hofbauer and Sandholm (2007)). Let F be a C1 stable game, and consider a
perturbed best response dynamic (PBR) for F. Define the C1 function G̃ : X→ R by

G̃(x) =
∑
p∈P

mp
(
µ̃p(F̂p(x)) + vp( 1

mp xp)
)
,

Then ˙̃G(x) ≤ 0 for all x ∈ X, with equality if and only if x = x∗, the unique rest point of (PBR).
Thus, x∗ is globally asymptotically stable.

14Virtual positive correlation requires that Vp
F(x)′F̃p(x) > 0 whenever Vp

F(x) , 0, where the virtual payoff F̃p is
defined by F̃p(x) = Fp(x) − ∇vp( 1

mp xp).
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5.3 The Best Response Dynamic

Finally, we consider the best response dynamic. As we saw in Section 4.3, (BR) is the
EPT dynamic obtained by using the maximizer correspondence

Mp(π̂p) = argmax
yp∈∆p

(yp)′π̂p

as the revision protocol. Following Hofbauer (1995), we formulate this dynamic as the
differential inclusion

(BR) ẋp
∈ mpMp(F̂p(x)) − xp.

Let us now check the two conditions for convergence. Concerning monotonicity, one
can show that (BR) satisfies a version of positive correlation (PC) appropriate for differen-
tial inclusions.15 Moreover, the protocol Mp, despite being multivalued, is integrable in a
suitably defined sense, with its “potential function” being given by the maximum function

µp(πp) = max
yp∈∆p

(yp)′πp = max
i∈Sp

πp
i .

Note that if the payoff vector πp, and hence the excess payoff vector π̂p, have a unique
maximizing component i ∈ Sp, then the gradient of µp at π̂p is the standard basis vector ep

i .
But this vector corresponds to the unique mixed best response to π̂p, and so

∇µp(π̂p) = ep
i = Mp(π̂p).

One can account for multiple optimal components using a broader notion of differentia-
tion: for all π̂p

∈ Rn, Mp(π̂p) is the subdifferential of the convex function µp at π̂p.16

Having verified monotonicity and integrability, we again construct our candidate
Lyapunov function by plugging the excess payoff vectors into the revision potentials µp.
The resulting function G is very simple: it measures the difference between the payoffs
agents could obtain by choosing optimal strategies and their actual aggregate payoffs.

Theorem 5.3. Let F be a C1 stable game, and consider the best response dynamic (BR) for F. Define
the Lipschitz continuous function G : X→ R by

G(x) =
∑
p∈P

mpµp(F̂p(x)) = max
y∈X

(y − x)′F(x).

15See the last three lines of display (21) in Appendix A.3.
16See Hiriart-Urruty and Lemaréchal (2001), especially Example D.3.4.
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Then is nonnegative with Γ−1(0) = NE(F). Moreover, if {xt}t≥0 is a solution to (BR), then for
almost all t ≥ 0 we have that Ġ(xt) ≤ −G(xt). Therefore, NE(F) is globally asymptotically stable
under (BR).

Because (BR) is a discontinuous differential inclusion, the proof of Theorem 5.3 requires a
subtle technical argument. This proof is presented in Appendix A.3.

6. How Integrability Fosters Convergence

In this section, we explore the role of integrability in establishing global convergence
in stable games. We begin by introducing an excess payoff dynamic that is not integrable
and that leads to cycling in some stable games. This example allows us to identify what
properties of dynamics beyond monotonicity are needed to prove a general convergence
result. The remainder of the section explains how integrability gives us this missing
property.

Example 6.1. To keep the analysis of cycling as simple as possible, we focus on an elemen-
tary game: standard Rock-Paper-Scissors (cf Example 2.3).17 When the benefit of winning
a match and the cost of losing a match both equal 1, random matching in standard RPS
generates the population game

(8) F(x) =


FR(x)
FP(x)
FS(x)

 =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 =


xS − xP

xR − xS

xP − xR

 ,
whose unique Nash equilibrium is x∗ = ( 1

3 ,
1
3 ,

1
3 ). Figure 3 plots a selection of payoff vectors

of standard RPS, along with the Nash equilibrium x∗.18 At each state y, the payoff vector
F(y) is orthogonal to the segment from y to x∗, reflecting the facts that F is null stable and
that x∗ is a GNSS.

Fix ε > 0, and let gε: R→ R be a continuous decreasing function that equals 1 on (–∞,
0], equals ε2 on [ε,∞), and is linear on [0, ε]. Then define the revision protocol τ by

(9)


τR(π̂)
τP(π̂)
τS(π̂)

 =


[π̂R]+gε(π̂S)
[π̂P]+gε(π̂R)
[π̂S]+gε(π̂P)

 .
17A similar analysis can be used to establish cycling in bad RPS games: see the online appendix.
18Since the columns of the payoff matrix of standard RPS sum to zero, projected payoffs ΦF(x) = (I −

1
n 11′)F(x) equal payoffs F(x) in this game.
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R

PS

Figure 3: Payoff vectors and GNSS in standard RPS.

Under this protocol, the weight placed on a strategy is proportional to positive part of the
strategy’s excess payoff, as in the protocol for the BNN dynamic; however, this weight is
only of order ε2 if the strategy it beats in RPS has an excess payoff greater than ε.

It is easy to verify that protocol (9) is acute:

τ(π̂)′π̂ = [π̂R]2
+ gε(π̂S) + [π̂P]2

+ gε(π̂R) + [π̂S]2
+ gε(π̂P),

which is positive when π̂ ∈ Rn
− Rn

−
. Therefore, Proposition 4.1 implies that the corre-

sponding EPT dynamic (E) satisfies Nash stationarity (NS) and positive correlation (PC).
Nevertheless, we show in the online appendix that in the Rock-Paper-Scissors game (8),
this dynamic enters limit cycles from many initial conditions when ε is less than 1

10 . §

Protocol (9) has this noteworthy feature: the weights agents place on each strategy
depend systematically on the payoffs of the next strategy in the best response cycle. Of
course, this could not be if the protocol were separable in the sense of condition (S). The
results in the previous section verify that supplementing monotonicity with integrability
(I), a generalization of separability, is enough to ensure that cycling does not occur.

To provide a deeper understanding why cycling occurs in Example 6.1, it will be helpful
to review some earlier definitions and results. In a stable game, every Nash equilibrium
x∗ is a GNSS. Geometrically, this means that at every nonequilibrium state x, the projected
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payoff vector ΦF(x) forms an acute or right angle with the segment leading back to
x∗ (Figures 1 and 3). Meanwhile, our monotonicity condition for dynamics, positive
correlation (PC), requires that away from equilibrium, the direction of motion forms an
acute angle with the projected payoff vector (Figure 2). Combining these observations,
we see that if the law of motion ẋ = VF(x) tends to deviate from the projected payoffs ΦF
in an “outward” direction—that is, in a direction heading away from equilibrium—then
cycling will occur. On the other hand, if the deviations of VF from ΦF tend to be “inward”,
then solutions should converge to equilibrium.

By this logic, we should be able to guarantee convergence of EPT dynamics in stable
games by ensuring that the deviations of VF from ΦF are toward the equilibrium, at least
in some average sense. To make this link, let us recall a well-known characterization of
integrablility: the map τ : Rn

→ Rn is integrable if and only if its line integral over any
piecewise smooth closed curve C ⊂ Rn evaluates to zero:

(10)
∮

C
τ(π̂) · dπ̂ = 0.

Example 6.2. As in Example 6.1, let the population game F be generated by random
matching in standard RPS, as defined in equation (8). The unique Nash equilibrium of F
is the GNSS x∗ = ( 1

3 ,
1
3 ,

1
3 ). Game F has the convenient property that at each state x ∈ X, the

payoff vector F(x), the projected payoff vector ΦF(x), and the excess payoff vector F̂(x) are
all the same, a fact that will simplify the notation in the argument to follow.

Since F is null stable, we know that at each state x , x∗, the payoff vector F(x) is
orthogonal to the vector x∗ −x. In Figure 3, these payoff vectors point clockwise relative to
x∗. Since positive correlation (PC) requires that the direction of motion VF(x) form an acute
angle with F(x), dynamics satisfying (PC) also travel clockwise around the equilibrium.

To address whether the deviations of VF from F tend to be inward or outward, let C ⊂ X
be a circle of radius c ∈ (0, 1

√
6
] centered at the equilibrium x∗. This circle is parameterized

by the function ξ : [0, 2π]→ X, where

(11) ξα =
c
√

6


−2 sinα

√
3 cosα + sinα

−
√

3 cosα + sinα

 + x∗.

Here α is the clockwise angle between the vector ξα−x∗ and a rightward horizontal vector
(see Figure 4).

Since state ξα lies on the circle C, the vector x∗ − ξα can be drawn as a radius of C; thus,
the payoff vector πα ≡ F(ξα), which is orthogonal to x∗ − ξα, must be tangent to C at ξα, as
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=
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Figure 4: Integrability and inward motion of EPT dynamics in standard RPS.

shown in Figure 4. This observation is easy to verify analytically:

(12) πα = F(ξα) =
c
√

6


−2
√

3 cosα
−3 sinα +

√
3 cosα

3 sinα +
√

3 cosα

 =
√

3 d
dαξα.

If we differentiate both sides of identity (12) with respect to the angle α, and note that
d2

(dα)2ξα = −(ξα − x∗), we can link the rate of change of the payoff vector πα = F(ξα) to the
displacement of state ξα from x∗:

(13) d
dαπα =

√

3 d2

(dα)2ξα = −
√

3(ξα − x∗).

Now introduce an acute, integrable revision protocol τ. By combining integrability
condition (10) with equation (13), we obtain

(14) 0 =

∮
C
τ(π) · dπ ≡

∫ 2π

0
τ(πα)′

(
d

dαπα
)

dα = −
√

3
∫ 2π

0
τ(πα)′

(
ξα − x∗

)
dα.

If we write λ(π) =
∑

i∈S τi(π) and σi(π) = τi(π)
λ(π) as in Section 4.2, then because ξα − x∗ ∈ TX
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is orthogonal to x∗ = 1
31, we can conclude from equation (14) that

(15)
∫ 2π

0
λ(F(ξα))

(
σ(F(ξα)) − x∗

)′ (
ξα − x∗

)
dα = 0.

Equation (15) is a form of the requirement described at the start of this section: it asks
that at states on the circle C, the vector of motion under the EPT dynamic

(16) ẋ = VF(x) = λ(F(x))
(
σ(F(x)) − x

)
.

typically deviates from the payoff vector F(x) in an inward direction—that is, in the
direction of the equilibrium x∗.

To reach this interpretation of equation (15), note first that if the target state σ(F(ξα))
lies on or even near line L⊥(ξα), then motion from ξα toward σ(F(ξα)) is initially inward, as
shown in Figure 4.19 Now, the integrand in (15) contains the inner product of the vectors
σ(F(ξα)) − x∗ and ξα − x∗. This inner product is zero precisely when then the two vectors
are orthogonal, or, equivalently, when target state σ(F(ξα)) lies on L⊥(ξα). While equation
(15) does not require the two vectors to be orthogonal, it asks that this be true on average,
where the average is taken over states ξα ∈ C, and weighted by the rates λ(F(ξα)) at which
ξα approaches σ(F(ξα)). Thus, in the presence of acuteness, integrability implies that on
average, the dynamic (16) tends to point inward, toward the equilibrium x∗. §

7. Other Convergence Results

In this final section of the paper, we present convergence results for stable games for
dynamics that are not of the target form (T).

7.1 Pairwise Comparison Dynamics

Let us consider revision protocols based on pairwise comparisons of payoffs:

ρp
ij(π

p, xp) = φp
ij(π

p
j − π

p
i ), φp

ij : R→ R+ Lipschitz continuous.

Note that unlike the target protocols considered in the previous sections, the protocol
considered here conditions on the agent’s current strategy. Substituting this protocol into

19Target state σ(F(ξα)) lies below L(ξα) by virtue of positive correlation (PC), which in turn follows from
the acuteness of τ—see Proposition 4.1.
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equation (5) yields dynamics of the form

(17) ẋp
i =

∑
j∈Sp

xp
jφ

p
ji(F

p
i (x) − Fp

j (x)) − xp
i

∑
j∈Sp

φp
ij(F

p
j (x) − Fp

i (x)).

If one sets φp
ij(π

p
j −π

p
i ) = [πp

j −π
p
i ]+, then equation (17) becomes the Smith dynamic (Smith

(1984)). More generally, Sandholm (2008b) calls (17) a pairwise comparison dynamic if the
protocols φp satisfy sign preservation:

(SP) sgn
(
φp

ij(π
p
j − π

p
i )
)

= sgn
(
[πp

j − π
p
i ]+

)
.

In words: the conditional switch rate from i ∈ Sp to j ∈ Sp is positive if and only if j earns a
higher payoff than i. Sandholm (2008b) shows that like excess payoff dynamics, pairwise
comparison dynamics satisfy Nash stationarity (NS) and positive correlation (PC), and so
converge in potential games.

Smith (1984) proves that his dynamic converges to Nash equilibrium from all initial
conditions in every stable game. We now show that while global convergence in stable
games does need not occur under all pairwise comparison dynamics, it does obtain if an
additional condition is satisfied. We call this condition impartiality:

(18) φp
ij(π

p
j − π

p
i ) = φp

j (π
p
j − π

p
i ) for some functions φp

j : R→ R+.

Impartiality requires that the function of the payoff difference that describes the condi-
tional switch rate from i to j does not depend on an agent’s current strategy i. This
condition introduces at least a superficial connection with EPT dynamics (E), as both
restrict the dependence of agents’ decisions on their current choices of strategy.

Theorem 7.1 shows that when paired with the monotonicity condition (SP), incumbent
independence ensures global convergence to Nash equilibrium in stable games.

Theorem 7.1. Let F be a C1 stable game, and let (17) be an impartial pairwise comparison dynamic
for F. Define the C1 function Ψ : X→ R+ by

Ψ(x) =
∑
p∈P

∑
i∈Sp

∑
j∈Sp

xp
iψ

p
j (F

p
j (x) − Fp

i (x)), where ψp
k(d) =

∫ d

0
φp

k(s) ds

is the definite integral of φp
k . Then Ψ is nonnegative with Ψ−1(0) = NE(F). Moreover, Ψ̇(x) ≤ 0

for all x ∈ X, with equality if and only if x ∈ NE(F), and so NE(F) is globally asymptotically stable
under (17).

The proof of Theorem 7.1 is presented in Appendix A.4.
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To understand the role played by impartiality, notice that according to equation (17), the
rate of outflow from strategy i under a pairwise comparison dynamic is xp

i

∑
k∈Sp φ

p
ik(π

p
k−π

p
i ).

Thus, the percentage rate of outflow from i,
∑

k∈Sp φ
p
ik(π

p
k −π

p
i ), varies with i.20 It follows that

strategies with high payoffs can nevertheless have high percentage outflow rates: even if
πp

i > π
p
j , one can still have φp

ik > φ
p
jk for k , i, j. Having good strategies lose players more

quickly than bad strategies is an obvious impediment to convergence to Nash equilibrium.
Impartiality places controls on these percentage outflow rates. If the conditional

switch rates φp
j are monotone in payoffs, then impartiality ensures that better strategies

have lower percentage outflow rates. If the conditional switch rates are not monotone,
but merely sign-preserving (SP), impartiality still implies that the integrated conditional
switch rates ψp

k are ordered by payoffs. According to our analysis, this control is enough
to ensure convergence of pairwise comparison dynamics to Nash equilibrium in stable
games.

7.2 The Replicator and Projection Dynamics

Convergence results for stable games are also available for two other evolutionary
dynamics. A simple extension of existing results21 shows that in strictly stable games,
interior solutions of the replicator dynamic (Taylor and Jonker (1978)) reduce “distance”
from and eventually converge to the unique Nash equilibrium x∗, where the notion of
“distance” from equilibrium is defined in terms of relative entropies (see Table II below).
Under the projection dynamic of Nagurney and Zhang (1997), Euclidean distance from
x∗ decreases along each solution trajectory, again ensuring convergence. However, unlike
the convergence results developed here, the convergence results for the replicator and
projection dynamics do not seem robust to changes in the underlying revision protocols.
Moreover, the stability results are weaker for these two dynamics: asymptotic stability is
guaranteed only for strictly stable games, whereas for null stable games only Lyapunov
stability holds; indeed, closed orbits are known to occur in the latter case. See Lahkar and
Sandholm (2008) and Sandholm et al. (2008) for further discussion.

7.3 Summary

In Table II, we summarize the convergence results for six basic evolutionary dynamics
in stable games by presenting the Lyapunov function for each dynamic for the single

20By contrast, under excess payoff dynamics all strategies’ percentage outflow rates are the same and
equal to

∑
k∈Sp β

p
k(F̂p(x)), while under the best response dynamic these rates are all fixed at 1.

21See Hofbauer et al. (1979), Zeeman (1980), Akin (1990, Theorem 6.4), Aubin (1991, Section 1.4), and
Cressman et al. (2001).
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Dynamic Lyapunov function (p = 1)

BNN Γ(x) = 1
2

∑
i∈S[F̂i(x)]2

+

best response G(x) = max
i∈S

F̂i(x)

logit G̃(x) = max
y∈int(X)

(
y′F̂(x) − η

∑
i∈S yi log yi

)
+ η

∑
i∈S xi log xi

Smith Ψ(x)= 1
2

∑
i∈S

∑
j∈S

xi[F j(x)−Fi(x)]2
+

replicator Hx∗(x) =
∑

i∈S(x∗) x∗i log
x∗i
xi

projection Ex∗(x) =
∣∣∣x − x∗

∣∣∣2
Table II: Lyapunov functions for six basic deterministic dynamics in stable games.

population case. Each of the dynamics listed in the table is also known to converge in
potential games. While convergence in potential games follows immediately from the
monotonicity of the dynamics, this paper has shown that additional structure is beyond
monotonicity is needed to prove convergence in stable games.

A. Appendix

A.1 Stability for Dynamical Systems via Lyapunov Functions

We call the closed set A ⊆ X Lyapunov stable if for every neighborhood O of A there
exists a neighborhood O′ of A such that every solution {xt}t≥0 to (5) that starts in O′ is
contained in O: that is, x0 ∈ O′ implies that xt ∈ O for all t ≥ 0. A is attracting if there is a
neighborhood Q of A such that every solution to (5) that starts in Q converges to A: that
is, x0 ∈ Q implies that limt≥0 dist(xt,A) = 0. A is globally attracting if it is attracting with
Q = X. Finally, the set A is asymptotically stable if it is Lyapunov stable and attracting, and
it is globally asymptotically stable if it is Lyapunov stable and globally attracting.

We now state three auxiliary theorems that establish global and local stability results
for dynamics that are forward invariant on the compact set X and that admit Lyapunov
functions. We consider dynamics satisfying one of these two regularity conditions:

(D1) ẋ = V(x), where V is Lipschitz continuous;
(D2) ẋ ∈ V(x), where V is upper hemicontinuous, nonempty, compact valued,

and convex valued.
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Theorem A.1. Let X̃ ⊆ X, and let the C1 function L: X̃ → R+ be such that L(x) approaches
infinity whenever x approaches X − X̃. Let {xt}t≥0 be a solution of (D1) with x0 ∈ X̃. If L̇(xt) ≤ 0
for all t ∈ [0,∞), then {xt}t≥0 converges to the set {x ∈ X̃ : L̇(x) = 0}.

Theorem A.2. Let L : X → R+ be Lipschitz continuous. Let {xt}t≥0 be a solution of (D2). If
L̇(xt) ≤ −L(xt) for almost all t ∈ [0,∞), then {xt}t≥0 converges to the set {x ∈ X : L(x) = 0}.

Theorem A.3. Let A ⊆ X be closed, and let O ⊆ X be a neighborhood of A. Let L : O → R+ be
Lipschitz continuous and satisfy L−1(0) = A. If each solution {xt}t≥0 of (D1) (or of (D2)) satisfies
L̇(xt) ≤ 0 for almost all t ∈ [0,∞), then A is Lyapunov stable.

Each of these theorems is an easy extension of standard results. Theorems A.1 and
A.2 are versions of Theorem 7.6 of Hofbauer and Sigmund (1988), and Theorem A.3 is a
version of Theorem 9.3.1 of Hirsch and Smale (1974). (To prove Theorem A.2, note that
the conditions of the theorem imply that

L(xt) = L(x0) +

∫ t

0
L̇(xu) du ≤ L(x0) +

∫ t

0
−L(xu) du = L(x0) e−t,

where the final equality follows from the fact that α0 +
∫ t

0
−αu du is the value at time t of

the solution to the linear ODE α̇t = −αt with initial condition α0 ∈ R.

A.2 Proof of Theorem 5.1

In the proofs in this section and the next two, we keep the notation manageable by
focusing on the single population case (p = 1); the proofs for multipopulation cases are
similar.

To prove Theorem 5.1, assume first that protocol τ satisfies integrability (I), so that
τ ≡ ∇γ. Using this fact and equation (20), we can compute the time derivative of Γ over a
solution to (E):

Γ̇(x) = ∇Γ(x)′ẋ

= ∇γ(F̂(x))′DF̂(x)ẋ

= τ(F̂(x))′
(
DF(x) − 1 (x′DF(x) + F(x)′)

)
ẋ

=
(
τ(F̂(x)) − τ(F̂(x))′1x

)′
DF(x)ẋ − τ(F̂(x))′1F(x)′ẋ

= ẋ′DF(x)ẋ − (τ(F̂(x))′1)(F(x)′ẋ)

The first term in the final expression is nonpositive since F is stable. The second term is
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nonpositive because τ(F̂(x)) is nonnegative and because VF satisfies positive correlation
(PC)—see Proposition 4.1. Therefore, Γ̇(x) ≤ 0 for all x ∈ X.

We now show that this inequality binds precisely on the set NE(F). To begin, note that
if x ∈ RP(VF) (i.e., if ẋ = 0), then Γ̇(x) = 0. On the other hand, if x < RP(VF), then F(x)′ẋ > 0
(by condition (PC)) and τ(F̂(x))′1 > 0, implying that Γ̇(x) < 0. Since NE(F) = RP(VF) by
Proposition 4.1, the claim is proved. That NE(F) is globally attracting then follows from
Theorem A.1.

If in additionτ satisfies separability (S), then it is easy to verify (using also the continuity
and acuteness of τ) that τ is sign preserving, in the sense that sgn(τi(πi)) = sgn([πi]+). It
then follows that Γ is nonnegative, and that Γ(x) = 0 if and only if F̂(x) ∈ bd(Rn

− Rn
−
). By

Proposition 3.4 of Sandholm (2005a), the latter statement is true if and only if x ∈ NE(F).
Therefore, the global asymptotic stability of NE(F) follows from Theorem A.3. �

A.3 Proof of Theorem 5.3

We begin by deriving a version of Danskin’s (1966) Envelope Theorem.

Theorem A.4. For each i ∈ S, let gi : [0,∞)→ R be Lipschitz continuous. Let

g∗(t) = max
i∈S

gi(t) and S∗(t) = argmax
i∈S

gi(t).

Then g∗ is Lipschitz continuous, and for almost all t ∈ [0,∞), we have that

ġ∗(t) = ġi(t) for all i ∈ S∗(t).

Proof. The Lipschitz continuity of g∗ is immediate and implies that g∗ and gi are
differentiable almost everywhere. If i ∈ S∗(t), then

g∗(t) − g∗(s) = gi(t) − g∗(s) ≤ gi(t) − gi(s).

Suppose that g∗ and gi are differentiable at t. Dividing the previous inequality by t − s
and letting s approach t from below shows that ġ∗(t) ≤ ġi(t); if we instead let s approach t
from above, we obtain ġ∗(t) ≥ ġi(t). Hence, ġ∗(t) = ġi(t). �

We now proceed with the proof of Theorem 5.3. It is easy to verify that G is nonnegative
with G−1(0) = NE(F) (see, e.g., Proposition 3.4 of Sandholm (2005a)). To prove the second
claim, let {xt}t≥0 be a solution to VF, and let S∗(t) ⊆ S be the set of pure best responses to
state xt. Since {xt}t≥0 is clearly Lipschitz continuous, and since G(x) = maxy∈X(y− x)′F(x) =
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maxi∈S F̂i(x), Theorem A.4 shows that the map t 7→ G(xt) is Lipschitz continuous, and that
at almost all t ∈ [0,∞),

(19) Ġ(xt) ≡ d
dt max

i∈S
F̂i(xt) = d

dt F̂i∗(xt) for all i∗ ∈ S∗(t).

Now observe that the derivative of the excess payoff function F̂(x) = F(x) − 1F(x) is

(20) DF̂(x) = DF(x) − 1 (x′DF(x) + F(x)′) .

Thus, for t satisfying equation (19) and at which ẋt exists, we have that

Ġ(xt) = d
dt F̂i∗(xt) for all i∗ ∈ S∗(t)(21)

=
(
e′i∗DF(xt) − x′tDF(xt) − F(xt)′

)
ẋt for all i∗ ∈ S∗(t)

= (y∗ − xt)′DF(xt)ẋt − F(xt)′ẋt for all y∗ ∈ argmaxy∈∆ y′F̂(xt)

= ẋ′tDF(xt)ẋt − F(xt)′ẋt

≤ −F(xt)′ẋt

= −max
y∈X

F(xt)′(y − xt)

= −G(xt),

where the inequality follows from the fact that F is a stable game. The global asymptotic
stability of NE(F) then follows from Theorems A.2 and A.3. �

A.4 Proof of Theorem 7.1

The first claim is proved as follows:

Ψ(x) = 0⇔ [xi = 0 or ψ j(F j(x) − Fi(x)) = 0] for all i, j ∈ S

⇔ [xi = 0 or Fi(x) ≥ F j(x)] for all i, j ∈ S

⇔ [xi = 0 or Fi(x) ≥ max j∈S F j(x)] for all i, j ∈ S

⇔ x ∈ NE(F).

To begin the proof of the second claim, we compute the partial derivatives of Ψ:

∂Ψ
∂xl

(x) =
∑
i∈S

∑
j∈S

xiρi j

(
∂F j

∂xl
(x) −

∂Fi

∂xl
(x)

)
+

∑
k∈S

ψk (Fk(x) − Fl(x))
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=
∑
i∈S

∑
j∈S

(
xiρi j − x jρ ji

) ∂F j

∂xl
(x) +

∑
k∈S

ψk (Fk(x) − Fl(x))

=
∑
j∈S

ẋ j
∂F j

∂xl
(x) +

∑
k∈S

ψk (Fk(x) − Fl(x)).

Using this expression, we find the rate of change of Ψ over time along solutions to (17):

Ψ̇(x) = ∇Ψ(x)′ẋ

= ẋ′DF(x)ẋ +
∑
i∈S

ẋi

∑
k∈S

ψk (Fk − Fi)

= ẋ′DF(x)ẋ +
∑
i∈S

∑
j∈S

(
x jρ ji − xiρi j

)∑
k∈S

ψk (Fk − Fi)

= ẋ′DF(x)ẋ +
∑
i∈S

∑
j∈S

x jρ ji

∑
k∈S

(
ψk (Fk − Fi) − ψk

(
Fk − F j

)).
To evaluate the summation, first observe that if Fi(x) > F j(x), then ρ ji(F(x)) ≡ φi(Fi(x) −

F j(x)) > 0 and Fk(x) − Fi(x) < Fk(x) − F j(x); since each ψk is nondecreasing, it follows
that ψk(Fk − Fi) − ψk(Fk − F j) ≤ 0. In fact, when k = i, the comparison between payoff

differences becomes 0 < Fi(x) − F j(x); since each ψi is increasing on [0,∞), it follows that
ψi(0) − ψi(Fi − F j) < 0. We therefore conclude that if Fi(x) > F j(x), then ρ ji(F(x)) > 0
and

∑
k∈S

(
ψk (Fk − Fi) − ψk

(
Fk − F j

))
< 0. On the other hand, if F j(x) ≥ Fi(x), we have

immediately that ρ ji(F(x)) = 0. And of course, ẋ′DF(x)ẋ ≤ 0 since F is stable.
Marshaling these facts, we find that Ψ̇(x) ≤ 0, and that

(22) Ψ̇(x) = 0 if and only if x jρ ji(F(x)) = 0 for all i, j ∈ S.

Using an inductive argument, Sandholm (2008b) shows that condition (22) is equivalent
to the requirement that x ∈ RP(VF), and also to the requirement that x ∈ NE(F). This
proves the second claim. The global asymptotic stability of NE(F) follows from the two
claims, Theorem A.1, and Theorem A.3. �
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