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Abstract 
 

  We study the implementation of efficient behavior in settings 
with externalities.  A planner would like to ensure that a group of 
agents make socially optimal choices, but he only has limited 
information about the agents' preferences, and can only distinguish 
individual agents through the actions they choose.  We describe the 
agents' behavior using a stochastic evolutionary model, assuming 
that their choice probabilities are given by the logit choice rule.  We 
prove that there is a simple price scheme with the following 
property:  regardless of the realization of preferences, a group of 
agents subjected to the price scheme will spend the vast majority of 
time in the long run behaving efficiently.  The price scheme defines 
a game that may possess multiple equilibria, but we are able to 
obtain a unique and efficient selection from this set because of the 
stochastic nature of the agents' choice rule.  We conclude by 
comparing the performance of our price scheme with that of VCG 
mechanisms.  Journal of Economic Literature classification numbers:  
C72, C73, E32, D62, D82. 
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1.  Introduction 
 
 Externalities are a basic source of economic inefficiency.  Since the work of Pigou [2], 
it has been understood that this inefficiency can be mitigated if agents are charged 
prices that reflect the externalities they impose upon others.  More precisely, if one 
charges agents for the externalities they create at the efficient state, one can ensure that 
this state constitutes an equilibrium. 
 While this approach to dealing with externalities is quite powerful, it has certain 
limitations.  First, it requires that the social planner know the agents' preferences, so 
that he can determine the efficient state:  without this knowledge, he does not know 
what prices to levy.  Second, even if preferences are known, there may still be a problem 
of multiple equilibria:  while the Pigouvian prices render efficient behavior an 
equilibrium, they often create other equilibria as well.  This is almost certain to be true 
when externalities are positive, as is the case, for example, in contexts involving 
consumer technology choice (Katz and Shapiro [20]) or macroeconomic spillovers 
(Cooper [8]). 
 In this paper, we view externality pricing as an implementation problem.  Each 
member of a population of agents must choose from the same set of actions.  The utility 
function of each agent is composed of two terms.  One term is common across agents, 
and captures the externalities they impose upon one another.  The other term varies 
from agent to agent, and only depends on the agent's own choice. 
   A social planner would like to ensure efficient behavior, but he faces two 
constraints.  First, he has no knowledge of the agents' idiosyncratic payoffs, and hence 
does not know what constitutes efficient behavior.  Second, he is unable to distinguish 
individual agents except through their action choices, and so can only influence 
behavior using simple pricing schemes.  This anonymity assumption can be viewed as a 
requirement that the mechanism be easy to administer even when the number of agents 
is large. 
 Rather than assume equilibrium play, we model the agents' behavior using an 
evolutionary approach.  As time passes, each agent occasionally considers switching 
actions.  At these moments, the agent's action choice is determined by the logit choice 
rule.  Under this rule, an agent usually selects his current optimal action, but sometimes 
chooses other actions, with actions yielding lower payoffs being less likely choices.1  

                                                
1   The logit choice rule has been used to model behavior in a variety of economic contexts—see 
Anderson, de Palma, and Thisse [1], Durlauf [7], and the references therein. 
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 Given this specification of the agents' behavior, we can describe the planner's 
problem in the following way.  The planner would like to choose a price scheme with 
the property that regardless of the realization of their preferences or their initial 
behavior, the agents spend the vast majority of time in the long run behaving efficiently. 
 Our main result shows that the planner can achieve this goal by introducing a 
simple pricing scheme.  Under this scheme, players are always made to experience the 
externalities that they currently create.  Because the scheme focuses on current 
externalities and not those created at the efficient state, a planner can execute this 
scheme despite the fact that he is unable to determine the efficient state.   
  This variable price scheme always ensures that the efficient state is an equilibrium, 
though possibly only one among many.  Were the agents' adjustment processes 
deterministic, their eventual behavior under the price scheme would generally depend 
on their initial behavior.  Nevertheless, we show that if there are small probabilities of 
errant behavior, only the efficient strategy profile is played in a non-negligible fraction 
of periods after a long enough history of play. 
  The proof of this result is surprisingly simple.  It relies on the notion of a potential 
game, introduced by Monderer and Shapley [21].2  A potential game is a game that 
admits a potential function:  a function on the space of strategy profiles that better-reply 
adjustment processes must ascend.  Intuitively, players’ incentives in these games are 
aligned in such a way that it is as if every player were attempting to maximize a 
common payoff function. 
   We show that our price scheme has the following critical property:  regardless of the 
realization of types, the game that is created when the price scheme is imposed is a 
potential game; its potential function is precisely the realized aggregate payoff function.  
This ensures that the efficient strategy profiles (those which maximize aggregate 
payoffs) are Nash equilibria, although other strategy profiles may be Nash equilibria as 
well. 
 At this stage, the stochastic specification of behavior plays its role.  Since the work of 
Foster and Young [13], Kandori, Mailath, and Rob [18] and Young [31], it has been 
known that introducing small probabilities of mistakes to an evolutionary process can 
generate a unique selection among multiple strict equilibria.  To establish our 
implementation result, we appeal to a theorem of Blume [6], who shows that if players 
in a potential game make decisions according to the logit choice rule, they spend the 

                                                
2  Early examples of potential games were used to model congestion (Beckmann, McGuire, and Winsten 
[3], Rosenthal [24]) and in the study of population genetics (Hofbauer and Sigmund [16]).  For more 
recent results on potential games and further references, see Sandholm [25, 28]. 
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majority of time in the long run playing the global maximizers of the potential function.  
Since our price scheme guarantees that potential always corresponds to aggregate 
payoffs, Blume's theorem enables us to establish the long run efficiency of play. 
 In other papers (Sandholm [26, 27]), we consider the use of price schemes to solve 
implementation problems in settings with negative externalities.  These papers consider 
continuous population, deterministic models (unlike the finite population, stochastic 
model considered here), and provide conditions under which efficient behavior can be 
rendered globally stable under deterministic adjustment processes.  The key condition 
needed to prove these results is that the total payoffs from externalities form a concave 
function of the population's aggregate behavior.  This condition ensures that the 
equilibria generated by the price scheme are always unique, globally stable, and 
globally efficient.  However, this concavity condition is particular to models of negative 
externalities,3 and when it fails to hold, price schemes typically generate multiple 
equilibria.  In this paper, we consider a general model which allows for negative 
externalities, positive externalities, or combinations of the two.  We therefore dispense 
with concavity conditions, and instead rely on a stochastic specification of individual 
behavior.  The stochastic model of choice enables us to select among the multiple 
equilibria that the price scheme generates, allowing us to render efficient behavior the 
unique long run prediction of play. 
 The next section describes our model of externalities and the behavior revision 
process.  Section 3 presents the formal definition of the planner's problem and the 
statement of our main result.  Section 4 provides its proof.  A detailed comparison of the 
optimal price scheme and VCG mechanisms is offered in Section 5.  Section 6 concludes 
with a discussion of the limitations of our results. 
 

                                                
3  As a simple illustration, consider a continuum of agents who choose from a set of n activities.  
Because of externalities, the payoff a(za) to activity a is a function of the proportion za who choose it.  
Total payoffs are given by (z) = a za a(za).  In a model of negative externalities (e.g., traffic congestion), 
one might assume that the functions a are decreasing and concave; since aa(z) =     za

   
a
(z

a
) + 2   

a
(z

a
)   0 

and ab(z) = 0, it follows that  is concave.  In a model of positive externalities, one might assume instead 
that the functions a are increasing and convex (or, more generally, that they satisfy     za

   
a
(z

a
) + 2   

a
(z

a
)   

0), in which case  is actually convex. 
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2.  The Model 
 
2.1  Basic Definitions 
 
 We study implementation problems based on N player normal form games.  We let 

 S
i  denote the strategy set for player i  I = {1, … , N}, and let S = 

 
Si

i
 denote the set of 

strategy profiles.  Player i's utility function is given by  U
i : S  R. 

 In our model, all players choose strategies from a common set:  S
i  = A = {0, 1, 2, … , 

n} for all players i.  Typical strategies are denoted  s
i , a, and b.  Strategy 0 always 

represents an outside option; the remaining strategies are active strategies.  For each 
strategy profile s  S, we let x(s) describe the number of players choosing each active 
strategy a  {1, … , n}; hence, xa(s) = #{i  :  s

i = a}.  The vector x(s) is an element of the set 

 X
N  = {x   Z+

n : 
 

xaa
  N}. 

 We consider games in which players' utility functions are the sum of two 
components.  The first component, the common payoff, depends on a player's choice and 
on the population's aggregate behavior, and is the same for all players.  This payoff 
captures the externalities that each individual imposes upon the others through his 
strategy choice.  Common payoffs are described by a function u:  X

N
   R

A ; ua(x) is the 

payoff to strategy a when the strategy distribution is x.4  Observe that this model allows 
for cross-effects between strategies:  the payoff to strategy a can depend not only on the 
number of players choosing strategy a, but also on the full distribution of players over 
all strategies in A.  The common payoff to the outside option is always zero:  u0(x)   0.  

Apart from the definition of the outside option, we place no restrictions on the common 
payoff function.5 
   The second component of each player's utility function, the idiosyncratic payoff, only 
depends on the player's own choice, but varies from player to player.  Player i's 
idiosyncratic payoffs are described by a vector  

i    
i  =   R

A ;  a
i  represents player i's 

bias toward or against strategy a.  Summing the two components, we see that player i's 
utility function is given by 
 
     U

i(si ,s i ) =   usi (x(s))  +  si
i . 

 

                                                
4  The value of ua(x) can be specified arbitrarily when xa = 0. 
5  When we introduce our price schemes below, we will not allow the planner to price the outside 
option.  Therefore, including the outside option is a way of introducing participation constraints to the 
model.  Of course, all of our implementation results continue to hold if the outside option (and hence the 
participation constraints) are removed. 
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  When we want to emphasize the dependence of player i's payoffs on his type 
realization, we write   U

i(s, i )  for  U
i(s) .  We refer to a game in the class described here 

as a pair (u, ), where u is a common payoff function and    = 
 

i

i
 is a type 

profile. 
  As an application of this approach, consider the following model of consumer 
technology choice.  Each consumer i is able to choose from a set of n technological 
standards (e.g., computer platforms, word processing formats), or can opt not to use the 
technology at all.  If a consumer chooses a particular standard, he is able to interact 
(e.g., share files) with all others who have chosen the same standard.  Because of these 
network externalities, the benefit of using each standard is increasing in the number of 
consumers who do so.  Moreover, there maybe some degree of cross-compatibility 
between standards, so that consumers choosing standard a may gain if others choose 
standard b.  These benefits are understood by the planner, and are captured by the 
common payoff function u. 
  Network externalities are not the only source of benefits from choosing a particular 
technological standard.  Consumers may prefer one specific standard because it is 
particularly well suited to the tasks to which they will apply it, and the benefits derived 
from this fit between product and task may even dominate those obtained through 
network effects.  Each consumer's idiosyncratic benefits are unknown to the planner, 
and are captured in the consumer's type  

i .   
  A social planner would like to ensure that the consumers behave efficiently.  
Typically, efficient behavior will entail most players choosing a single standard, but will 
involve some consumers whose idiosyncratic payoffs are especially large choosing 
another standard or the outside option.  However, every strategy profile is the most 
efficient one for some realization of types.  Can the planner find a simple pricing 
mechanism which ensures the long run selection of the efficient strategy profile, 
regardless of the (unobserved) realizations of the consumer's types?   
 
2.2  Evolutionary Dynamics 
 
 We address this question using a dynamic evolutionary approach, explicitly 
specifying the process through which players adjust their behavior in response to 
current payoffs.6  We suppose that at the onset of play, each player draws a type  

i , 
which is fixed throughout the course of play.  At each discrete moment in time, one 

                                                
6  Kandori, Mailath, and Rob [18] and Kandori and Rob [19] use evolutionary models to study 
consumer technology choice. 
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player is chosen at random and given an opportunity to change strategies.  This 
evolutionary process is described by a discrete time Markov chain, 

  
{st }t Z

+

, which takes 

values in the space S of strategy profiles.7 
   To define this Markov chain, we must specify how players take advantage of their 
revision opportunities.  One natural way to do this is to suppose that a player who 
receives such an opportunity switches to his current best response to the others' 
behavior.  However, while keeping the probability of optimal responses high, we would 
like to allow the possibility that players sometimes choose suboptimally. 
   We accomplish this by modeling choice using the logit choice function  L .  The logit 
choice function is parameterized by a scalar   (0, ), representing the level of noise in 

the players' decisions.  Under this choice rule, a player facing a choice among n + 1 
alternatives yielding payoffs of 0, 1, … , n chooses alternative a with probability 
 

     La( )  = 
  

exp( 1
a )

exp( 1
b )

b

. 

 
Alternatives yielding higher payoffs are chosen with higher probability, and if  is very 

small, nearly all probability mass is placed on the best alternatives.8  As we noted in the 
introduction, the logit choice function has been applied in a number of economic 
contexts, and in experimental work predictions based on the logit model have 
compared favorably with those based on pure optimization. 
 In each period of our evolutionary model, one of the N players is chosen at random 
to revise his choice according to the logit rule.  This procedure generates the following 
transition probabilities for the Markov chain {st}: 
 

 

  

P st+1 = ŝ st = s( ) =

1
N

exp( 1 Ui(ŝ i ,s i ))
exp( 1 Ui(b,s i ))

b

if ŝ i si  and ŝ i
= s i  for some i;

1
N

exp( 1 Ui(s))
exp( 1 Ui(b,s i ))

bi

if ŝ = s;

0 otherwise.

 

 

                                                
7  Our results are easily extended to a continuous time model in which players' revision opportunities 
arrive via independent Poisson processes. 
8  For the foundations of the logit choice model, see Anderson, de Palma, and Thisse [1]. 
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 The Markov chain {st} defined by these transition probabilities is irreducible (i.e., any 
state can be reached from any other) and aperiodic.9  It therefore admits a unique 
stationary distribution μ .  This distribution describes the long run behavior of the 
process in two distinct ways.  First, it is the long run distribution of the process: μ  

approximates the distribution of the random variable st for all large enough times t.  
More importantly, it is the ergodic distribution of the process:  with probability one, μ  

describes the long run time average of play.  Both of these properties hold regardless of 
the initial state s0.  Thus, the measure μ  is an appropriate description of the 

population's long run behavior.10 
 We are especially interested in the long run behavior of the Markov chain when the 
noise level  is small.  To capture this, we define the logit stochastically stable strategy 
profiles to be those which retain positive weight under the stationary distribution μ  

when  is taken to zero.  Formally, we let 
 

   LSS = 
  

s S : lim
0
μ (s) > 0{ } . 

 
When we want to emphasize the dependence of this set on the underlying game, we 
write LSS(u, ) in place of LSS. 
 

3.  Stochastic Implementation 
 
 We now consider a social planner whose goal is to ensure efficient behavior.  He 
faces two constraints.  First, the planner has no information about the players' types  

i , 
and hence does not know which strategy profiles are efficient.  Second, the planner 
regards the players as anonymous.  He can reward or punish players for choosing 
particular strategies, and is able to condition these rewards and punishments on the 
players' aggregate behavior, but he cannot condition them on the players' identities (or, 
of course, on the realization of types).  
 We therefore restrict the planner to a class of mechanisms we call price schemes.  A 
price scheme is defined by a function p:  X

N
   R

A .  The scalar pa(x) represents the 

payment that a player choosing strategy a must make to the planner when aggregate 
behavior is x.11  We assume that the planner can neither price nor subsidize the outside 
                                                
9  Irreducibility follows from the fact that the process can move from any strategy profile to any other 
within N periods.  Aperiodicity is implied by the fact that there is always a positive probability that the 
strategy profile does not change. 
10  For further background on Markov chains, see, e.g., Durrett [10]. 
11  Like ua(x), pa(x) can be specified arbitrarily when xa = 0. 
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option:  p0(x)  0.  Price schemes respect the planner's information constraint because 
they do not depend on the type profile .  They respect anonymity because the prices 

associated with each action are the same for all players, and because these prices are 
only functions of aggregate behavior x. 
  If the price scheme p is imposed, the common payoff which players obtain from 
playing strategy a changes from ua(x) to ua(x) – pa(x).  Therefore, the game the players 
face if this scheme is executed is described by the pair (u – p, ). 

  To define the planner's problem, we introduce the notion of a social choice 
correspondence.  A social choice correspondence is a map, :   S, which associates with 
each type profile  a set of strategy profiles ( ); these are the planner's preferred 
behaviors under type profile .  We say that the price scheme p stochastically implements 

the social choice correspondence  if for each type profile   , we have that 

 
   LSS(u – p, ) = ( ). 

 
That is, p stochastically implements  if regardless of the realization of types, the 

strategy profiles which are played often in the long run are precisely those which the 
planner prefers under this realization of types. 
  We are concerned with the implementation of efficient behavior.12  Regardless of the 
type realization , the planner would like to ensure that players choose the strategy 
profiles which maximize aggregate utility.  Define the aggregate utility function  U : S   

 R by 
 
     U(s, )  = 

  
xa(s)ua(x(s))

a

 + 
  

a
i

i: si
= aa

. 

 
The first term in the definition of   U(s, )  captures the total common payoffs under 

strategy profile s, while the second term aggregates all idiosyncratic payoffs.  The 
efficient social choice correspondence, *:   S, is then defined by 
 
   *( ) = 

  
argmax

s S
U(s, ) . 

 
 Let  e

a , a  {1, … , n}, denote the standard basis vectors in   R
n .  Then x –  e

a is the state 

obtained from state x by excluding a player choosing strategy a.  Our main result shows 

                                                
12  Our analysis can be extended to allow the social planner to have alternate objectives. 
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that the efficient social choice correspondence can be stochastically implemented using 
the price scheme p*, defined by 
 

     pa*(x)  = 
  

xb(ub(x) ub(x ea ))
b

(ua(x) ua(x ea ))   for a  {1, … , n}; 

     p0*(x)    0. 

 
Theorem 1:  The price scheme p* stochastically implements the efficient social choice 
correspondence *.  That is, p* ensures that after any realization of types, aggregate behavior will 

be efficient during most periods of almost every long enough history of play. 
 
 The price scheme p* is a form of marginal externality pricing:  the price player i pays 
for selecting strategy a is equal to the current impact of his choice on the other players' 
payoffs.  More precisely,   pa*(x)  is equal in magnitude to the net benefit accruing to i’s 

opponents when i chooses strategy a rather than the outside option.  However, unlike 
under standard Pigouvian pricing, players always pay for the externalities they 
currently create:  when behavior is not efficient, the prices they pay correspond to those 
that they currently impose, not the ones they would impose at the efficient state.  
Indeed, the planner cannot charge the standard Pigouvian prices, as he does not know 
which state is efficient, and hence what these prices are.  We shall see that by allowing 
the prices to vary as behavior changes, the planner is able to ensure that the efficient 
state is always an equilibrium, regardless of what this state turns out to be.  Moreover, if 
players occasionally make suboptimal choices, then in the long run, the efficient state is 
the unique state played with non-negligible frequency after a long enough history of 
play. 
 

4.  Analysis 
 
 Our analysis relies on the notion of a potential game (Monderer and Shapley [21]).  
Formally, the normal form game U is a potential game if it admits a potential function:  a 
function : S  R with the property that 

 
     U

i(ŝ i ,s i )  –   U
i(si ,s i )  =   (ŝ i ,s i )  –   (si ,s i )  
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for all players i, all strategies  s
i  and   ̂s

i , and all opponents' strategy profiles  s
i .  In 

words:  whenever a player unilaterally deviates, the change in his payoffs is exactly 
matched by the change in potential.  It follows immediately from this definition that the 
Nash equilibria of a potential game are precisely the local maximizers of potential on 
the set S, and that better-reply adjustment processes must converge to Nash equilibria. 
 The first step in our analysis shows that regardless of the realization of types , the 

price scheme p* always creates a potential game whose potential function is the realized 
aggregate payoff function   U( , ) . 

 
Proposition 2:  Fix the common payoffs u and a type profile .  Then the game (u – p*, ) is a 
potential game whose potential function is   U( , ) . 

 
 Proof:  Fix a player i and two strategy profiles s and   ̂s  with  s

i  = a,   ̂s
i  = b, and  s

i  = 

  ̂s
i .  Let   x

0  = x( s
i ) be the distribution of the strategies of players besides i under these 

profiles, and let  x
a  =   x

0  +  e
a  and  x

b  =   x
0  +  e

b  be the complete strategy distributions 
under s and   ̂s , respectively.  (To allow player i to choose the outside option, we let   e

0  
denote the vector of zeros.) 
   For each action d  A, common payoffs under the price scheme p* are given by 
 
   ud(x) –   pd*(x) = 

  
xc(uc(x) uc(x ed ))

c

 + ud(x – e
d ). 

 
We can therefore compute that 
 

     U
i(ŝ, i )  –   U

i(s, i )  = 
  

xc
b(uc(xb ) uc(x0 )

c

) + ub(x0 ) + b
i  

      –
  

xc
a(uc(xa ) uc(x0 )

c

) + ua(x0 ) + a
i  

    = 
  

xc
0(uc(xb ) uc(xa ))

c

 +   ub(xb )  –   ua(xa )  +  b
i  –  a

i  

    = 
  

xc
b uc(xb )

c
c
i

i: ŝ i
= cc

 – 
  

xc
a uc(xa )

c
c
i

i: si
= cc

 

    =   U(ŝ, )  –   U(s, ) .   

 
 Proposition 2 implies that regardless of the realization of types, any efficient strategy 
profile is a Nash equilibrium of the game induced by the price scheme p*.  But in 
general, there will be other Nash equilibria which correspond to "locally efficient" 
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strategy profiles.  In the technology choice example, these locally efficient profiles 
involve most players coordinating on a technology which is suboptimal given the 
players' preferences.  If no errors are made during the strategy adjustment process, all 
of these equilibria are possible limit behaviors for some set of initial conditions. 
 Since the work of Foster and Young [13], Kandori, Mailath, and Rob [18], and Young 
[31], it has been understood that by introducing rare errors to a strategy adjustment 
process, one can obtain unique predictions about long run play.  In the current context, 
allowing infrequent errors makes it possible in principle to establish the long run 
selection of the efficient state.  However, the planner must ensure that regardless of the 
realization of types, the equilibrium which is selected is the one which is efficient given 
that realization of types.  
 To establish that the price scheme p* accomplishes this goal, we rely on a result of 
Blume [6], who shows that in potential games, long run behavior under the logit choice 
rule can be described in a simple way. 
 
Proposition 3  (Blume [6]):  Suppose that U is a potential game with potential function , and 

that behavior evolves under the logit choice rule with noise level .  Then the stationary 

distribution of the process {st} is given by 
 

     μ (s)  = 

  

exp( 1 (s))
exp( 1 (ŝ))

ŝ S

. 

 
Consequently, LSS(U) = argmaxs S (s). 

 
  Intuitively, the potential function  defines a "landscape" on the set of strategy 

profiles; the "peaks" of this landscape are locally stable Nash equilibria.  Changes to 
better performing strategies lead up this landscape to Nash equilibria; errant choices 
lead down the landscape, causing occasional transitions between equilibria.  Roughly 
speaking, Blume's theorem says that the highest peak of the potential function is more 
difficult to descend than any other, so much so that when choice errors are rare, the 
population is nearly always atop this peak.  One proves this result by verifying that μ  
is a reversible distribution for the Markov chain {st} (i.e., that   μ (s)P (st+1 = ŝ st = s)  = 

  μ (ŝ)P (st+1 = s st = ŝ)  for all s,   ̂s  S), which immediately implies that μ  is the 

stationary distribution for {st} (i.e., that 
  

μ (s)P (st+1 = ŝ st = s)
s

 =   μ (ŝ) for all s  S). 
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 The proof of Theorem 1 follows easily from these two propositions.  Fix the common 
payoff function u, and suppose that the realized type profile is .  If the planner imposes 
the price scheme p*, then Proposition 2 tells us that the realized game (u – p*, ) is a 
potential game with potential function   U( , ) .  Hence, Proposition 3 implies that LSS(u 

– p*, ) = argmaxs S   U(s, )  = *( ), proving the theorem.13 
 

5.  Comparison with VCG Mechanisms 
 
 The implementation problem studied in this paper involves anonymous agents who 
possess private information.  The price schemes we introduce to solve this problem are 
simple mechanisms that respect the agents’ anonymity; the optimal price scheme p* 
ensures that in the long run, agents nearly always choose the action profile that is 
socially optimal given their unobserved types.   
 Unlike price schemes, most mechanisms for eliciting hidden information are based 
on direct revelation.  Revelation mechanisms require agents to send reports about their 
types to the planner; the planner then specifies a “social alternative” as a function of the 
profile of reports he receives.  In the externality problem we study here, social 
alternatives take a special form:  they are action profiles in some underlying game.  
Consequently, a planner using a revelation mechanism must not only elicit truthful 
reports; he must also ensure that each agent undertakes the action to which he is 
assigned.  When agents are anonymous, this problem is not trivial:  in Section 5.1, we 
show that together, the requirements of anonymity and obedience preclude dominant 
strategy implementation. 
 If non-anonymous mechanisms are allowed, obedience can be ensured using forcing 
contracts, and the implementation problem that remains is dominant strategy solvable 
using Vickrey-Clarke-Groves mechanisms.  Both these mechanisms and our optimal 
price scheme can be described as instruments that make agents pay for the externalities 
                                                
13  It is well known that in 2 x 2 symmetric coordination games, the stochastic evolutionary models of 
Kandori, Mailath, and Rob [18] and Young [31] select the risk dominant equilibrium, which in general 
does not maximize the sum of the players' payoffs.  While these selection theorems may appear to be at 
odds with our implementation theorem, there is actually no tension between the results.  We apply 
Blume's [6] theorem to the game (u – p*, ), whose payoffs include the transfers p*.  As the results in [18] 
and [31] suggest, the equilibrium selected in the game (u – p*, ) is in general not the state that maximizes 
the sum of the players' payoffs when the transfer payments are included in this sum.  However, when we 
speak of the efficiency of a state in our implementation model, we want to ignore transfers between the 
agents and the planner.  We accomplish this by defining efficiency in terms of the payoffs of the original 
game (u, ).  To prove the implementation theorem, we show that the state that maximizes the sum of the 
players' payoffs in the original game (u, ) is the equilibrium selected in the new game (u – p*, ).  Since 
efficiency and equilibrium selection are defined with respect to different games, there is no conflict with 
the aforementioned results. 
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they create.  Nevertheless, we show in Section 5.2 that the transfers required by the two 
sorts of mechanisms are not the same.  We attribute these differences in transfers to 
differences in the choice sets offered to the agents under these mechanisms. 
 In Section 5.3, we argue that the choice of mechanism for an externality problem 
should depend on the details of the environment of application.  In particular, in 
environments with many agents, executing a VCG mechanism can be costly:  doing so 
requires the planner to collect type reports and to compute and announce an efficient 
assignment of agents to actions; when obedience is an issue, the planner must also 
monitor each agent’s behavior and punish those who disobey.  Since price schemes rely 
on indirect means of information elicitation and behavior control, they may be 
preferable to revelation-based mechanisms when the number of agents is large and the 
interaction recurs over time. 
 
5.1  Anonymity and Obedience 
 
 It is implicit in the usual definition of a revelation mechanism that the planner has 
direct control over the social alternative.  In the present context, where the social 
alternatives are action profiles in an underlying game, this assumption may not always 
be warranted:  even when the planner has enough information to determine the optimal 
social alternative, he must still take measures to ensure that the players enact it. 
 If we assume away the problem of obedience, the hidden information problem that 
remains can be solved in dominant strategies using a VCG mechanism (see Section 5.2 
below).  Otherwise, the planner faces a dilemma:  to ensure obedience, he must either 
use a mechanism that conditions on agents’ names, or he must abandon the goal of 
implementation in dominant strategies. 
 
Example 5.1:  Suppose there are 10 players, each of whom chooses an action from  S

i  = 
{0, 1, 2}.  Actions 1 and 2 are subject to negative externalities:  payoffs are described by 
u1(x) = 10 – x1, u2(x) = 10 – x2, and u0  0.  Finally, all players are of the same type, namely 

 
i  = (  0

i ,   1
i ,   2

i ) = (0, 0, 0).   

 Suppose that all of this information, including the information about the players’ 
types, is known to the planner.  Then there is no hidden information problem:  to 
ensure efficiency, the planner simply needs to get five of the players to choose action 1 
and five to choose action 2.   
 If the planner must treat the players anonymously, he can do nothing to provide 
different players with different incentives.  The most he can do is recommend a set of 
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efficient social alternatives:  in this case, those in which five of the players choose each 
action.  Every such action profile is a strict Nash equilibrium; therefore, none of them is 
a dominant strategy equilibrium.  § 
 
5.2  Comparison of Equilibrium Transfers 
 
 Suppose we abrogate the problem of obedience—for example, by allowing the 
planner to introduce player-specific forcing contracts.  Then what remains is a standard 
hidden information problem with quasilinear preferences and private values.  It is well 
known that such problems can be solved using Vickrey-Clarke-Groves mechanisms 
(Vickrey [30], Clarke [7], Groves [14]).   
 A VCG mechanism is a revelation mechanism.  To begin, the mechanism collects a 
type report from each player.  In response to any profile  of reports, the mechanism 
specifies a social alternative   s( )  that is optimal if the reports are truthful: 
 
     s( )   

  
argmax

s S
U j(s, j )

j I

.              (1) 

 
As we noted earlier, a social alternative in the present context is a strategy profile in S. 
 The mechanism also specifies transfers   t

i( )  for each player as a function of the 

profile of type reports.  The transfers are chosen to render truth-telling a weakly 
dominant strategy.  These transfers, paid from the planner to the players, are of the 
form 
 
       t

i( )  = 
  

U j(s( ), j )
j i

 –   
i( i ) . 

 
The first term in this expression equals the total payoffs obtained by i’s opponents at the 
efficient alternative   s( ) .  The second term is an arbitrary function of i’s opponents’ 

reports.  It has no effect on player i’s incentives, but allows the planner some flexibility 
in determining the levels of the transfers.14   
 The best known form of the VCG mechanism, the so-called pivotal or Clarke 
mechanism, is obtained when   

i( i )  equals the total payoffs obtained by i’s opponents 

at the strategy profile that maximizes their payoffs, conditional on the reports  
i  being 

truthful: 
 

                                                
14   One can also generalize our optimal price scheme by modifying prices in a way that does not affect 
incentives.  However, one can show that the price scheme p* defined above is the only price scheme that 
implements efficient behavior while never imposing a nonzero price on the outside option. 
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     C
i ( i )  = 

  
U j(s i(

i ), j )
j i

,    where    s i(
i )   

  
argmax

s S
U j(s, j )

j i

.   (2) 

 
In the present context, in which social alternatives are strategy profiles in an underlying 
game, we can also consider this interesting alternative: 
 
     mC

i ( i )  = 
   

U j(s i(
i ), j )

j i

,    where 
   s i(

i )   
  
argmax

s S: si
= 0

U j(s, j )
j i

.   (3) 

 
The transfer   mC

i ( i )  is similar to   C
i ( i ) , except that it is based on the strategy profile 

that is optimal for j’s opponents among those in which i chooses the outside option.  In this 
case, the transfers   t

i( )  are computed by comparing the payoffs of j’s opponents at the 

strategy profile that is optimal when i is present to their payoffs at the strategy profile 
that is optimal when i is completely absent from the economy.  We call the VCG 
mechanism corresponding to mC the modified Clarke mechanism. 

 The Clarke mechanism, the modified Clarke mechanism, and the optimal price 
scheme p* can all be described as instruments that ensure efficiency by “making each 
player pay for the externalities he imposes on others”.  Yet the transfers specified by the 
two VCG mechanisms and by the optimal price scheme are generally different, even in 
equilibrium.  
 
Example 5.2:  Let  S

i  = {0, a, b}, and assume that the payoffs to actions a and b are 
separable and reflect positive externalities:  ua(x) = va(xa) and ub(x) = vb(xb), where va and 
vb are strictly increasing.  
 Suppose that under type profile , the efficient strategy profile   s( )  assigns player i 

to the outside option and all other players to action a.  As we have seen, player i’s 
transfer at this profile under the optimal price scheme is zero, as the outside option is 
never priced.   
 In contrast, the Clarke mechanism may require players assigned to the outside 
option to pay nonzero transfers, even in equilibrium.  In being assigned to the outside 
option, player i denies his opponents the positive externalities he would bring them 
were he to be assigned to action a.  His equilibrium payment to the planner equals the 
value of these externalities: 
 
      tC

i ( )  = (N – 1)(va(N) – va(N – 1)) > 0. 
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 Under the modified Clarke mechanism, as under the optimal price scheme, players 
assigned to the outside option neither pay nor receive transfers.15  § 
 
Example 5.3:  In the positive externality setting above, suppose that under type profile , 
the efficient strategy profile assigns all players to action a:   s

j( )  = a for all j  I.  Then 

under the optimal price scheme, each player receives a transfer of  
 
     pa* (x(s( )))  =   pa* (Nea )  = (N – 1)(va(N) – va(N – 1)) > 0  
 
at this state.  This quantity is the value of the positive externality that each player 
creates for his opponents. 
 Under the two VCG mechanisms, different players obtain different equilibrium 
transfers, with each player’s transfer depending on whether or not his announcement is 
pivotal.  Under the Clarke mechanism, player i is not pivotal if the optimal strategy 
profile   s( )  remains optimal when player i’s welfare is ignored:  in other words, if 

  s i
j ( i )  = a for all j  I.  In this case, i’s transfer under the Clarke mechanism is zero.  If 

instead the best profile for i’s opponents is the one in which all players choose b (i.e., if 

  s i
j ( i )  = b for all j  I), then player i is pivotal.  In this case, player i must pay the 

planner 
 
     tC

i ( )  = (N – 1)(vb(N) – va(N)) + 
  

( b
j

a
j )

j i

 > 0, 

 
which is the cost that i’s announcement ultimately imposes on his opponents. 
 Under the modified Clarke mechanism, the meaning of not being pivotal is 
necessarily different.  In the present example, player i is not pivotal under  if from the 

point of view of i’s opponents, the optimal strategy profile among those in which i plays 
the outside option has all remaining players play a:  in notation, 

   s i
j ( i )  = a for all j  i (and, 

by definition, 
   s i

i ( i )  = 0).  If i is not pivotal in this sense, he receives a transfer of  
 
     tmC

i ( )  = (N – 1)(va(N) – va(N – 1)) > 0, 
 

                                                
15  This statement follows from the following general property of the modified Clarke mechanism:  if 

  s ( )  is the unique solution to (1) and satisfies   s
i ( )  = 0, then the solution 

   s i
( i )  to (3) is unique and 

equal to   s ( ) .  For if profile   ̂s     s ( )  (with   ̂s
i  = 0) solved (3), then by adding player i’s payoff of   0

i  to 

the objective function in (3), we would find that   ̂s  does at least as well as   s ( )  in problem (1), 
contradicting the uniqueness of   s ( ) . 
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This transfer is equal to the one that all players receive at the efficient state under the 
optimal price scheme.  Evidently, the modified Clarke mechanism is not a pivotal 
mechanism, as non-pivotal players can obtain non-zero transfers.  If we suppose instead 
that player i is pivotal, in the sense that 

   s i
j ( i )  = b for all j  i, then i’s payment under 

the modified Clarke mechanism is 
 
   –  tmC

i ( )  = (N – 1)(vb(N – 1) – va(N)) + 
  

( b
j

a
j )

j i

.16  § 

 
 These examples show that equilibrium transfers under VCG mechanisms can 
replicate certain specific features of equilibrium prices under the optimal price scheme.  
But they also show that in general, VCG transfers and equilibrium prices are distinct.  
Indeed, the second example shows that under both the Clarke and modified Clarke 
mechanisms, pivotal players’ transfers depend explicitly on type announcements.  
These transfers necessarily differ from those generated by the optimal price scheme, as 
under the price scheme type announcements are not made. 
 Given these differences, it may seem paradoxical that each of these mechanisms can 
be described as “making each player pay for the externalities he imposes on others”.  
But the paradox vanishes once we realize that in each case, the externality for which 
each player pays is defined with respect to his choice variable in the mechanism at 
hand.  Under the VCG mechanisms, the choice variables are type announcements, so 
the externality for which the player must pay is determined by the effect that his 
announcement has on the assignment (i.e., the action profile) the planner chooses.  Under 
the optimal price scheme, the choice variables are actions in the underlying game, so the 
externality for which the player must pay is the direct effect which his choice of action 
has on other players’ payoffs.  As the examples above show, there is no reason to expect 
the magnitudes of these externalities to be equal, even in equilibrium.17 
 

                                                
16  Unlike under the standard Clarke mechanism, we cannot sign the pivotal player’s transfer here.  By 

the definition of 
   s i

( i ) , we know that this transfer would be positive if we replaced va(N) with va(N – 1).  
Thus, player i’s payment to the planner is positive if va(N) – va(N – 1) is sufficiently small, but it is 
negative if va(N) – va(N – 1) is sufficiently large. 
17   It is interesting to note that like our price scheme, VCG mechanisms can be analyzed by means of 
potential functions.  But unlike the potential functions considered above, potential functions for 
revelation mechanisms take social alternatives and type profiles as arguments—see Jehiel, Meyer-ter-
Vehn, and Moldovanu [17]. 
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5.3  Choosing a Mechanism 
 
 In our view, whether a VCG mechanism or a price scheme is preferable depends on 
the context at hand.  In an environment where the planner can collect and evaluate type 
reports at little cost and can directly choose the allocation of players to strategies, a VCG 
mechanism would seem to be the appropriate choice.  But in some environments, 
particularly those involving large numbers of agents, these criteria may be violated.  
When these environments also entail a repeated interaction, it may be preferable to 
employ a price scheme. 
 As an example, consider the problem of highway congestion.18  The planner in 
charge of a highway network would like drivers to use the network efficiently.  But 
because he lacks information about the drivers’ preferences, he does not know what 
efficient use of the network entails.  To address this problem using a revelation 
mechanism, the planner would need to ask all drivers to submit type reports, use these 
reports to compute the efficient assignment of drivers to routes, announce this 
assignment to the drivers, and take measures to ensure that the assignment is obeyed.  
Compared to this “command and control” approach, price schemes seem far less 
intrusive:  the planner imposes prices directly on the routes, and allows the players to 
decide for themselves which routes to take. 
 This same reasoning applies in environments with positive externalities, including 
the model of consumer technology choice from Section 2, as well as macroeconomic 
models with positive spillovers and hidden information.19  In the later setting, the 
planner would like to coordinate production on certain sectors to the exclusion of 
others.  However, which sectors should be emphasized depends on features of 
technologies and preferences about which the planner is incompletely informed.  Under 
a revelation mechanism, the planner would ask all agents in the economy to report their 
preferences; he would then use these reports to compute an efficient allocation of agents 
to activities, announce this allocation to the agents, and then monitor behavior to ensure 
obedience.  In contrast, the price scheme simply subsidizes each activity in proportion 
to the externalities it generates.  If each individual agent then chooses for himself which 
activities he will pursue, the agents’ aggregate behavior will be efficient in the long run. 
 

                                                
18  See Sandholm [26, 27]. 
19  For a survey of work on complementarities in macroeconomics, see Cooper [8]. 
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6.  Limitations 
 
 The proof of our main theorem relies on a useful property of the logit choice rule:  
that in potential games, the stationary distribution generated by this rule places nearly 
all mass on the maximizer of potential when the noise level is small.  It is clearly of 
interest to know the extent to which our results depend on this specification.  We 
believe that our results can be generalized to other choice rules.  Recent results of 
Benaïm and Weibull [2] and Hofbauer and Sandholm [15] provide a framework for 
investigating this question in settings with large numbers of players. 
 An important criticism of our result concerns the waiting times needed before the 
predictions upon which it is based become relevant.  It is well known that in 
evolutionary models which rely upon rare errant choices, the expected time before 
departure from an equilibrium which is not stochastically stable can grow exponentially 
in the population size.20  For this reason, predictions of play which rely upon stochastic 
stability may be somewhat suspect when the population size is large.  On the other 
hand, it is known that this waiting time critique loses force when agents are 
geographically dispersed and tend to interact with others who live nearby.  Under local 
interaction, contagion dynamics can cause a stochastically stable strategy which gains a 
foothold in a single locale to quickly spread throughout the population.21  It is therefore 
noteworthy that Blume's selection theorem continues to hold in models of local 
interaction (Blume [6], Young [32]).  This fact gives us hope that the pricing mechanisms 
studied here can be adapted for use in local interaction models, where long waiting 
times are far less of an issue.  Establishing evolutionary implementation results for such 
settings is an important question for future research. 
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