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Abstract

We present a dynamic analysis of the evolution of
preferences in a strategic environment.  In our model,
each player’s behavior depends upon both the game’s
payoffs and his idiosyncratic biases, but only the game’s
payoffs determine his evolutionary success.  Dynamics
run at two speeds at once:  while natural selection slowly
reshapes the distribution of preferences, players quickly
learn to behave as their preferences dictate.  We establish
the existence and uniqueness of the paired trajectories of
society's preferences and aggregate behavior.  While
aggregate behavior adjusts smoothly in equilibration
games, in coordination games aggregate behavior can
jump discretely in an instant of evolutionary time.
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1.  Introduction

The origins of evolutionary game theory lie in biological models of natural
selection.  The players in these models are animals genetically programmed to play a
certain strategy; evolution is driven by differences in their reproductive success.
Economists have adapted models from evolutionary game theory to study the
dynamics of human behavior.  As the behavior of economic agents is driven by
conscious choice rather than natural selection, the economic models describe how
agents learn to satisfy their preferences.

While economists usually study the behavior of populations whose preferences
are fixed, it is worthwhile to try to explain where these preferences come from.
Unlike their behavior, the preferences of economic agents are traits determined by
natural selection.  Preferences which lead to reproductive success thrive at the
expense of the others.  Of course, the effects of preferences on reproductive fitness
are mediated through behavior:  preferences determine an agent's actions, which i n
turn determine his fitness.  Because preferences generate fitness in this indirect way,
to understand preference evolution one must act as biologist and economist at once.
While one shows how the distribution of preferences is shaped by natural selection,
one must concurrently describe how agents learn to behave as their preferences
dictate.
 Although learning and natural selection occur simultaneously, the former
proceeds much more quickly than the latter:  players can quickly switch to preferred
strategies, but changes in the distribution of preferences are driven by gradual
turnover in the population's membership.  Preference evolution therefore leads us
to consider dynamics which run at two speeds at once.  We shall see that these
dynamics require special techniques of analysis, and that they define a model of
preference evolution with features not present in models of learning or natural
selection alone.

In this paper, we study the evolution of preferences in a strategic setting.  In our
model, a single population of players repeatedly plays a two strategy game, the
payoffs of which represent evolutionary fitnesses.  Each player’s utility function
combines the common fitness function with his idiosyncratic biases.  While
preferences determine individual behavior, society's aggregate behavior determines
which actions are fit, and hence which preferences survive.  As the preference
distribution is shaped by natural selection, behavior adjusts in tandem, as players
alter their strategy choices to maintain equilibrium play.
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  We establish the existence and uniqueness of the solution trajectories of this
evolutionary process.  We find that in equilibration games (e.g., the Hawk-Dove
game), aggregate behavior adjusts continuously in response to changes in the
distribution of preferences.  In contrast, strategy adjustment in coordination games
may be discontinuous:  discrete changes in the overall strategy distribution can occur
in an instant of evolutionary time.  Thus, when society must learn to distribute
itself between strategies, the adjustment process is smooth; when society must agree
upon a convention, consensus may emerge in leaps and bounds.

We study the evolution of biases, by which we mean idiosyncratic preferences for
certain modes of behavior.  In our model, biases are simply predispositions towards
or against each strategy; a player's overall payoff to choosing a strategy sums the
strategy's fitness and his personal bias.  Since each player's behavior only depends
on the difference between the two strategies' payoffs, we summarize his biases by a
single number reflecting his relative bias towards strategy A.
  Holding its biases fixed, a population’s behavior is in equilibrium if no player can
unilaterally improve his payoffs.  Every equilibrium can be characterized by a bias
threshold, θ:  players whose (relative) bias towards strategy A  exceeds θ choose
strategy A, while the others choose strategy B.  In the equilibrium, a player whose
bias is exactly θ is indifferent between the two strategies.

While players’ decisions are influenced by their bias, their evolutionary prospects
are not.  Thus, differences in fitness may exist even when players’ behavior is i n
equilibrium.1  Suppose that strategy A  yields a higher expected fitness than strategy
B.  Then players who choose A are more fit than the others.  Therefore, if behavior
is described by the bias threshold θ, then biases above θ (i.e., those which prompt
play of strategy A) will become more prevalent at the expense of those below.  Since
players can switch strategies much faster than the population's preference
composition can change, we assume that as preferences evolve, players instantly
adjust their behavior to maintain equilibrium play.
 We first use this model to study equilibration games, which are games in which
increasing the number of players choosing a strategy lowers its relative fitness, and
in which neither strategy is dominant.2   We fix an arbitrary initial distribution of
biases and ask how both the bias distribution and the population's aggregate

                                                
1  For example, even  if strategy A is dominant in the underlying game, strategy B may be played in
equilibrium by players who are sufficiently biased towards it.
2 Examples of equilibration games include the Hawk-Dove game and games modeling choice between
goods exhibiting negative consumption externalities.
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behavior change in response to evolutionary pressures.  We find that as the bias
distribution evolves, aggregate behavior adjusts continuously to maintain
equilibrium play.

Behavior trajectories can look quite different in coordination games:  games i n
which increasing the number of players using a strategy increase its relative fitness,
and in which neither strategy is dominant.3  In these games, preference evolution
often forces aggregate behavior to adjust discontinuously:  as the distribution of
preferences changes, a moment is reached at which equilibrium play can only be
maintained if a significant fraction of the players simultaneously switch strategies.
Thus, when a population benefits from acting in concert, we should expect sudden,
seemingly unprovoked shifts in the way it behaves.

We can provide intuition for these results by decomposing the influence of
preference evolution on aggregate behavior into two distinct effects.  As an example,
consider a situation in which strategy A yields higher fitness than strategy B.  In this
case, evolution causes biases above the threshold (i.e., those which prompt strategy
A) to become more prevalent in the population.  The primary effect of this change
in preferences is to increase the proportion of players who choose strategy A.

As preferences change, players adjust their behavior to maintain equilibrium
play. If the underlying contest is an equilibration game, then increasing the
representation of strategy A  makes this strategy less attractive relative to strategy B.
Thus, the secondary effect of the good performance of strategy A  is that players who
had marginally preferred to play A  will begin to play B.  This secondary effect
inhibits the growth of strategy A.

On the other hand, if the players face a coordination game, then increasing the
representation of strategy A  makes this strategy more attractive.  As biases
prompting strategy A  become more prevalent, nearly indifferent players switch
from strategy B to strategy A, reinforcing the growth of strategy A.  Surprisingly, this
secondary effect can dominate the primary effect, even when the number of
indifferent players is moderate.  Indeed, the secondary effect can lead behavior to
adjust at an infinite rate:  we show that if the density of the indifferent players
approaches a finite bound determined by the underlying fitnesses, only a discrete
change in aggregate behavior is enough to preserve equilibrium play.

                                                
3  It will become clear after we introduce our formal model that this definition generalizes most
standard definitions of two strategy coordination games.
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 Coordination games can admit many equilibrium behaviors under a single, fixed
bias distribution.4  In order to single out the equilibria which are robust to small
changes in behavior, we consider how a population whose preferences are fixed
adjusts its behavior to achieve equilibrium play.  When studying preference
evolution, we assume that players always follow an equilibrium which is stable
with respect to this adjustment process.  Doing so ensures that the jumps in our
model do not arise because an unstable equilibrium is disrupted by small behavior
trembles.  Rather, preference evolution causes stable equilibria to suddenly vanish,
forcing rapid adjustment to a new, stable behavior configuration.
 Our model allows players' biases to take on a continuum of values; it is therefore
a continuous time dynamical system with an infinite dimensional state space.  It
exhibits two types of discontinuities:  discontinuities of preference growth rates,
which depend on a discrete strategy choice, and the jumps in behavior described
above.  The main technical results of this paper establish the existence and
uniqueness of solution trajectories to this apparently complicated dynamical system.

Güth and Yaari (1992) and Güth (1995) investigate preference evolution in a
resource acquisition game.  Using a static notion of preference stability, they show
how preferences for punishing cheaters can be evolutionarily stable, thereby
providing an evolutionary explanation for cooperative behavior.  However, their
results rely heavily on the assumption that players' preferences are sometimes
commonly known.  In contrast, we assume that players can only learn the aggregate
distribution of behavior; no knowledge of opponents' preferences is ever required.5

Huck and Oechssler (1999) study the evolution of preferences for rejecting greedy
proposals in the Divide the Dollar game.  They assume that preferences are
unobservable, so that players' choices only depend on the population's aggregate
behavior.  Huck and Oechssler (1999) show that when players interact in small
groups, evolution favors preferences for rejection, rendering fair division the
unique evolutionarily stable outcome.
 Ely and Yilankaya (1997) define a notion of the evolutionary stability of
preference distributions for populations playing normal form games.  In their
model, all individuals have expected utility preferences over the set of strategy

                                                
4 For example, if most players are nearly unbiased, there are three equilibria, one approximating
each of the equilibria (two pure, one mixed) of the underlying  game.  We shall see that for any given
coordination game, there are bias distributions which generate any specified number of equilibria.
5  For further results on the stability of preferences when preferences are observable, see Dekel, Ely,
and Yilankaya (1998) and Huck, Kirchsteiger, and Oechssler (1999).
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profiles, but unlike in our own model, no connection between these preferences and
the underlying fitnesses is assumed.  Ely and Yilankaya (1997) prove the existence of
stable preference/behavior pairs in all normal form games.  However, the strength
of their result is mitigated by the weakness of the restriction they place on the
evolutionary stability of behavior when preferences are fixed.  We avoid this
difficulty by restricting attention to equilibria which are robust to the slight behavior
disturbances which population turnover inevitably creates.6

We should emphasize the central difference between the models just described
and our own model.  All of the other models focus on the preference/behavior pairs
which constitute stable equilibria.  In contrast, our primary concern is with the out-
of-equilibrium dynamics which arise when preferences and behavior
simultaneously evolve.  Our main results show that continuous preference
evolution can generate discontinuous shifts between stable behavior configurations,
but only when the players face a coordination game.
 Our model is closely related to work of Kuran (1989, 1991, 1995) on political and
cultural revolutions.  Kuran models conflicts between political and cultural regimes
using a form of coordination game in which players have idiosyncratic preferences.
Under certain conditions, small changes in preferences can lead to large and rapid
shifts in behavior.  Using this model, Kuran explains the sudden and surprising
nature of the 1978-79 revolution in Iran and the 1989 revolution in Eastern Europe
as consequences of small, exogenous shifts in preferences.  We study behavior i n
abstract coordination games with diverse preferences, and we introduce an explicit
mechanism through which behavior endogenously influences preferences.  A n
application of this mechanism in the contexts considered by Kuran may provide an
endogenous explanation for rapid shifts between political regimes.7

The remainder of the paper proceeds as follows.  Section 2 defines fitness and
bias.  Section 3 introduces the model of preference evolution, which is used i n
Section 4 to study equilibration games.  Section 5 analyzes behavior adjustment

                                                
6 A number of papers (Karni and Schmeidler (1986), Cooper (1987), Robson (1996a, 1996b), and Dekel
and Scotchmer (1999)) investigate the biological foundations of risk preferences.  Of these, only Robson
(1996b) and Dekel and Scotchmer (1999) consider biological evolution in a strategic setting.  Both
papers show how payoff discontinuities which are inherent in the competition among males for mates
may provide an evolutionary basis for preferences for risk-seeking behavior.
7 Our model of preference evolution and rapid social change in games is closely related to models
from catastrophe theory (see, e.g., Poston and Stewart (1977)).  More precisely, our model can be
regarded as one of catastrophes generated by feedback from a one-dimensional behavior space into an
infinite-dimensional control space.  However, as the tools of catastrophe theory do not appear to
provide additional insights into our model, we will not pursue this connection here.
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under a fixed preference distribution.  Section 6 incorporates this analysis into an
extended model of preference evolution used to study coordination games.  Section
7 discusses the connections between our model and Harsanyi’s (1973) model of the
purification of mixed strategy equilibria.  Section 8 concludes.

2.  Basic Definitions

2.1  Fitness

A continuum of players repeatedly plays a two-strategy game.  Each player's
payoffs are the sum of two components:  the fitness, which depends on the realized
strategy distribution and the player’s action, and the bias, which depends solely on
the player’s action and which varies idiosyncratically from player to player.  While
both fitness and bias determine players' behavior, only fitness leads to evolutionary
success.  In this section, we consider fitnesses, which we express as the payoffs of the
underlying game.  Biases will be introduced in Section 2.2.
 Players repeatedly play the game G = {{A, B}, {φΑ, φΒ}}.  The     C

2  functions φΑ: [0, 1] →
R and φΒ: [0, 1] → R represent the fitnesses of strategies A and B given the proportion
of players x ∈  [0, 1] choosing strategy A.  In the biological interpretation of our
model, fitness is a measure of a strategy's reproductive success.8

 We call L(x) =     ′φA x( ) –     ′φB x( ) the alignment of the game.  The alignment measures

the degree to which acting in concert benefits the players:  when aggregate behavior
is x, L(x) measures the marginal change in each strategy’s relative fitness when the
number of players choosing that strategy increases.9

 We restrict attention to games in which the sign of L(x) is the same for all x ∈  [0,
1], and in which neither strategy is dominant.10  We call G  an equilibration game if it
has negative alignment and no dominant strategy.  Such games possess a unique
equilibrium, x* ∈  (0, 1), which satisfies φΑ(x*) = φB(x*).  Game G is a coordination

                                                
8 In certain economic applications, we can instead interpret fitness as some other objective (e.g.,
financial) measure of success:  see Section 3.3.
9 That is, the rate of improvement in strategy A’s relative payoffs when the number of players
choosing strategy A increases is equal to   

d
dx (φA(x) – φB(x)) = L(x), while the rate of improvement in

strategy B’s relative payoffs when the number of players choosing strategy B increases is equal to

    
d

d x( )1− (φB(x) – φA(x)) =   
d

dx (φA(x) – φB(x)) = L(x).
10 Strategy S is dominant if φS(x) ≥ φS’(x) for S’ ≠ S and for all x ∈  [0, 1].  Our results are easily extended
to games with a dominant strategy.
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game  if it has positive alignment and no dominant strategy.  Coordination games
have three equilibria:  one, x* ∈  (0, 1), in which both strategies are used and are
equally fit, and two in which all players coordinate on the same strategy.

As an example, suppose that players are randomly matched to play the 2 x 2
symmetric game illustrated in Figure 1.  

A

B

A B

a, a b, c

c, b d, d

Figure 1:  A 2 x 2 symmetric game.

If x ∈  [0, 1] is the proportion of players in the population choosing strategy A, then
the (expected) fitness of players using strategies A and B are

φA(x) = ax + b(1 – x);
φB(x) = cx + d(1 – x).

Since the game’s payoffs are linear in x, its alignment is constant:  L(x) =     ′φA x( ) –

    ′φB x( )  = a – b – c + d.  We can therefore partition random matching games into three

classes which are the linear cases of the classes defined above:  coordination games (a
> c, b < d), equilibration games (a < c, b > d), and games with a dominant strategy (a ≥
c, b ≥ d, or a ≤ c, b ≤ d).  In the first two classes of games, the mixed equilibrium puts
mass x* =   

d b
a b c d

−
− − +  on strategy A.

2.2  Bias

In most settings, we expect players’ preferences over outcomes to be related to the
fitnesses of those outcomes; still, other factors may influence the preferences’
ultimate form.  A player's own strategies, the elements of his choice set, are the
most salient aspects of his strategic environment.  It therefore seems natural for
idiosyncracies in preferences to take the form of biases towards each strategy.  W e
assume that each player's payoff functions sum the fitness functions and his biases.
While a player’s biases influence how he behaves, only his fitness determines his
reproductive success.
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 Each player's biases are described by a pair of scalars, α and β, which represent his
unobservable, idiosyncratic payoffs to playing strategy A  and strategy B, respectively.
His total payoffs are therefore given by

πΑ(x) = φΑ(x)  + α;
πΒ(x) = φΒ(x)  + β.

Since players' choices only depend on the difference between πΑ(x) and πΒ(x), we can
assume without loss of generality that β is zero.  We therefore call α  the player’s
bias.  The distribution of biases in the population is described by a density function
f: R → R+.  We let F: R → [0, 1] denote the corresponding decumulative  distribution:

F(α) = 
    

f (λ )dλ
α

∞

∫  for all α  ∈  R.

 For any fixed game and preference distribution, all equilibrium behaviors can be
characterized by a bias threshold, θ ∈  R.  When θ is the bias threshold, players whose
bias towards A is at least θ choose A, while the remaining players choose B.  For θ to
represent an equilibrium, players whose bias is θ must be indifferent between
strategies.  We let σ(α, θ) denote the strategy used by players whose bias is α  when
the threshold is θ:11

σ(α, θ) = 
    

A if α ≥ θ ,
B if α < θ.





Observe that x = F(θ) = 
  

f d( )λ λ
θ

∞

∫  is the proportion of players who choose strategy A

when the bias threshold is θ.
 Define the function I: [0, 1] → R by I(x) = φB(x) – φA(x).  I(x) equals the fitness
advantage of strategy B at strategy distribution x.  More importantly, since φA(x) + I(x)
= φB(x), we can interpret I(x) as the bias which generates indifference between
strategies A and B when aggregate behavior is given by x.  We therefore call I(·) the
indifference function associated with the game G.

Suppose that play is described by a bias threshold which is a fixed point of I(F(·)):
that is, θ = I(F(θ)).  Since proportion F(θ) of the players choose strategy A, only the
players with bias I(F(θ)) are indifferent between strategies:  players with higher biases
strictly prefer A, while players with lower biases strictly prefer B.  Since the bias

                                                
11 Our assumption that players on the threshold choose strategy A is arbitrary; making alternative
assumptions would not affect our results.
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threshold θ  equals I(F(θ)), these are precisely the players choosing strategies A  and
B, respectively.  Hence, if θ = I(F(θ)), θ is an equilibrium.  Conversely, if θ ≠ I(F(θ)),
players whose biases lie between these two values would prefer to switch strategies.
We therefore define

EG(f) = {θ:  θ = I(F(θ))}.

to be the set of equilibria for the game G under bias distribution f.
Figure 2 illustrates the (inverse) indifference function     I

−1 of an equilibration
game with linear payoffs.  Since I'(x) = –L(x), and since equilibration games have
negative alignment, the indifference function and its inverse are both increasing.
By the definition of x*, I(x*) = φB(x*) – φA(x*) = 0, so     I

−1(0) = x*.  Figure 2 also contains

Figure 2:  Equilibrium in an equilibration game.

Figure 3:  Equilibria in a coordination game.

I–1

0

F

x*

θ

x

I(0) I(1)

0

x*

θ

x

I–1

I(0)I(1)

F
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a decumulative bias distribution, F.  Equilibria are represented by the points at
which the two curves intersect.  Since F is decreasing, it crosses     I

−1 exactly once:
equilibrium is unique.

Figure 3 contains the indifference function of a coordination game with linear
payoffs.  Coordination games have positive alignment, so this function is
decreasing.  Since F is also decreasing,     I

−1 and F can intersect many times:  multiple
equilibria are possible.

3.  Evolutionary Dynamics

 In this section we introduce our model’s evolutionary dynamics.  We begin by
presenting the standard model of evolution in games, in which each strategy’s
fitness directly determines the change in its representation.  Using this model as a
point of departure, we introduce our model of preference evolution, in which
preferences replace strategies as the object of evolutionary selection.

3.1 The Standard Model of Evolution

Let x ∈ [0, 1] equal the proportion of players currently choosing strategy A .
Evolution in the standard model is governed by the equation

(S)     ̇xt  =   x g xt A t( ),

where the     C
1 functions gA: [0, 1] → R and gB: [0, 1] → R denote the percentage growth

rates of strategies A  and B as functions of the current strategy distribution.  Since
greater fitness yields greater reproductive success, the percentage growth rates satisfy

sgn(gA(x)) = sgn(φA(x)– φB(x)) for all x ∈  (0, 1).

We must also restrict the growth rates to keep the total population mass constant:

x gA(x) + (1 – x) gB(x) = 0 for all x ∈ [0, 1].

This condition implies that gA(1) = gB(0) = 0.
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 The analysis of the standard model is quite simple.12  In equilibration games,
evolution from all interior population states leads to the unique equilibrium x*.  In
coordination games, evolution from all initial conditions other than the mixed
equilibrium lead to one of the pure equilibria of the game; which equilibrium is
reached is determined by the side of the mixed equilibrium on which play begins.

3.2  Preference Evolution

In our model of preference evolution, the pair (ft, θt) represents the bias density

and bias threshold at time t ∈ R+.  Given this pair, we let xt = Ft(θt) = 
    

f t(α )dα
θ t

∞

∫
denote the mass of players choosing strategy A.  Our basic model of preference
evolution consists of two equations:  one describing changes in the preference
distribution, and the other governing the population's behavior.

(D) For all α  ∈  R,     
d

dt + f t(α ) =     f g xt tt
( ) ( )( , )α σ α θ  and ft(α) is continuous in t.

(E) θt ∈  EG(ft) for all t.

Earlier, we defined the functions   gA  and   gB  as the percentage growth rates of
strategies in the standard evolutionary model.  In condition (D),   gA  and   gB  are used

to define the growth rates of preferences.  The condition states that the percentage
growth rate of each bias α depends only on the fitness of the strategy choice which it
induces.  All biases leading to the same behavior exhibit the same percentage growth
rate.13

Condition (E) requires that at each moment in time, the population's behavior is
in equilibrium given the current bias distribution.  Implicitly, this condition
requires that players instantly modify their behavior in response to changes in the
distribution of preferences.  It therefore manifests our intuition that changes i n
preferences develop much more slowly than changes in behavior.
 Condition (E) stands in for an explicit description of the players' learning process.
We shall see that in equilibration games, the unique equilibrium is always stable
with respect to this process, so explicitly introducing the learning process would not

                                                
12  For details see, e.g., Weibull (1995).
13 Technical aside:  At any point in time at which players with bias α switch strategies, the growth
rate of this bias changes discontinuously.  It is for this reason that the evolutionary dynamics must be
defined using right hand derivatives.  This in turn forces us to assume directly that each ft(α ) changes
continuously over time.
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alter our results.  On the other hand, coordination games admit both stable and
unstable equilibria.  Before studying preference evolution in these games, we will
present our model of behavior adjustment; we will then restrict attention to
equilibria which are stable under this adjustment process.
 Condition (E) also requires that behavior adjust arbitrarily more quickly than
preferences evolve.  While running the two processes at different rates is natural,
allowing the relative rates of adjustment to be infinite may seem inappropriate.
Fortunately, relaxing this assumption has only a minor impact on our conclusions.
In the Appendix, we offer a model in which the relative rates of behavior
adjustment and preference evolution are bounded, and show that our main model
is the limiting version of the bounded rate model when the bound approaches
infinity.

Finally, we should note that the standard model of evolution can be viewed as a
special case of our model of preference evolution.  If no biases between I(0) and I(1)
receive mass in the initial distribution, then all players in the population regard
either strategy A or strategy B as dominant.  Because no player conditions his choices
on the population's aggregate behavior, evolution of preferences reduces to
evolution of strategies.

3.3  Interpretations

In standard models of evolution in games, strategies are the units of selection:
changes in a strategy's representation depend directly on its performance.  Here,
preferences are the unit of selection; since preferences are rules for choosing
strategies, the differential survival of preferences is mediated through this choice.14

In the basic biological interpretation of our model, preferences which induce the
behavior that is currently more fit reproduce more successfully than those which do
not.

Our model can also be interpreted as one of the cultural transmission of
preferences, as might be used to study political or cultural change.15  Suppose that
preferences which have lead to economic success are more likely to be passed down
to subsequent generations than those which have not.  Then while preferences
                                                
14 If the players in the interaction are humans, the meaning of "preferences" is clear.  If the players
are other sorts of animals, preferences can represent biological mechanisms determining whether an
animal follows behavior A or behavior B in response to the current behavioral environment.
15 For a related discussion of preference formation, see Bowles (1998, Sections 2 and 3).  For analyses of
shifts between political and cultural regimes, see Kuran (1989, 1991, 1995).
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determine behavior, the survival of preferences only depends on their economic
success, here identified with fitness.

Finally, our model can be applied in certain settings in which the distribution of
preferences never changes.  For example, suppose that economic success dictates
interaction frequency.  Then even if the numbers of players with each preference
never changes, preferences leading to economic success will be encountered more
often as time passes.  To model this phenomenon, we interpret f(α) as a measure of
the interaction frequency of preference α  rather than as the number of players with

that preference.  Fitness is a function of x = 
    

f d( )α α
θ

∞

∫ , the total interaction frequency

of players choosing strategy A.  Preferences leading to fit actions become more
prevalent in the interactions.

4.  Equilibration Games

Before starting our analysis, we impose three assumptions on the model's initial
conditions.

(A1) θ0 ∈  EG(f0);
(A2) F0(I(0)), F0(I(1)) ∈ (0, 1);
(A3) f0 is     C

1.

Assumption (A1) requires that the population’s initial behavior is an equilibrium
given the initial preference distribution.  Assumption (A2) requires that strategy A

and strategy B are each dominant for some non-negligible set of players.  Results for
initial preference distributions which violate assumption (A2) are straightforward
extensions of our stated results.  Lastly, assumption (A3) asks that the initial
preference distribution be continuously differentiable.  This condition is used to
prove that solution trajectories exist.

Theorem 1 characterizes the evolution of preferences in equilibration games.

Theorem 1:  Suppose G  is an equilibration game , and let the initial condition (f0, θ0)

satisfy assumptions (A1) - (A3).  Then:

(i:  Existence) There exists a unique solution trajectory,     ft t t
,θ{ } ≥0

, to (D) and (E).

 (ii:  Continuity)   θt  and   xt  change continuously over time.
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(iii.  Limit Behavior)
    
lim
t t→∞

θ  = 0 and 
    
lim
t tx
→∞

 = x*.

Standard models of evolution focus directly on how the strategy distribution
changes over time.  If the number of strategies (and hence the dimension of the state
space) is finite, and if the laws of motion are smooth, existence and uniqueness of
solutions follows from standard results on ODEs.  Our model of preference
evolution satisfies neither of these properties:  the preference distribution, ft, is
infinite dimensional object; the law of motion (D) is discontinuous at the bias
threshold.  In the Appendix, we demonstrate the existence and uniqueness of
solutions by establishing a one-to-one correspondence between solutions to the
dynamical system defined by equations (D) and (E) and solutions to a certain two-
dimensional ODE (Theorem A3).  Part (i) of Theorem 1, which guarantees the
existence and uniqueness of solutions to (D) and (E), then follows from standard
results.
 Part (ii) of the theorem states that the bias threshold and aggregate behavior
change continuously over time.  Part (iii) characterizes limit behavior.  As time
tends to infinity, the population's behavior approaches the unique equilibrium of
the fitness game, while the bias threshold approaches zero:  in the limit, a player
chooses strategy A if and only if he is biased towards A.

To explain the dynamics in greater detail, we draw an example in which x0 < x*
in Figure 4.  Since G is a equilibration game, its alignment is negative, and its
indifference function     I

−1 is increasing.  At each instant t, the game’s unique
equilibrium, θt, is defined by the intersection of the indifference line and the
decumulative distribution Ft.

Because G is a equilibration game, whenever fewer than x* players are choosing
strategy A, its fitness is higher than that of strategy B:  φA(x) > φB(x) whenever x < x*.
Therefore, equation (D) implies that all biases above the threshold θt become more
prevalent and that all others languish.  The distribution becomes steeper to the right
of θt and shallower to the left of θt, and therefore shifts upward.
 Since players whose bias exceeds the threshold play strategy A, the primary effect
of the evolution of preferences on behavior is to increase the number of players
choosing A.  We can compute this primary effect as

    
˙ ( )f dt

t

α α
θ

∞

∫  = 
    

gA(xt ) f t(α )
θ t

∞

∫ dα  = xt gA(xt).
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Figure 4:  Evolution of preferences in an equilibration game.

Viewed in isolation, the primary effect is identical to the law of motion of the
standard evolutionary model.

Preference evolution also gives rise to a secondary effect on behavior.  As the
preference distribution changes, equation (E) requires that the bias threshold adjust
to maintain equilibrium play.  Since the primary effect makes strategy A  more
common, it also makes strategy A less attractive:  because G is an equilibration game,
as x increases the fitness advantage of strategy A  over strategy B falls.  Therefore,
players who had been indifferent between the two strategies begin to strictly prefer
strategy B.  To maintain equilibrium, the bias threshold θt must increase.

This secondary effect makes behavior change more slowly than in the standard
model.  To show this formally, we express aggregate behavior in two ways:

xt ≡ 
    

f dt
t

( )λ λ
θ

∞

∫ ;

xt ≡     I
−1(θt).

The first expression is the definition of xt; the second is a form of the equilibrium
condition (E). Because we have established that the solution trajectory {ft, θt}t≥0 exists,
we can differentiate these identities with respect to time.  Let

 Λ(θt) ≡ L(    I
−1(θt)).
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represent the game's alignment as a function of the bias threshold θt.  Then
differentiating yields16

    ̇xt  =     − ft t t( ) ˙θ θ  + 
    

˙ ( )f dt
t

λ λ
θ

∞

∫  =     − ft t t( ) ˙θ θ  + xt gA(xt);

    ̇xt  =     −
−Λ( ) ˙θ θt t

1 .

Solving for     ̇xt , we obtain

(B)     ̇xt  = 
    

x g x
f

t A t

t t t

( )
( ) ( )1 − Λ θ θ

.

 Since Λ(θt) < 0, the denominator of this expression exceeds one.  Thus, the speed
of strategy adjustment is slower than that in the standard model.  The greater the
preference density at the threshold, ft(θt), the more players who switch strategies at
time t, and the more potent the dampening of the strategy adjustment process.
Similarly, the greater the magnitude of the alignment, Λ(θt), the quicker the
advantage of playing the “rarer” strategy falls as behavior equilibrates, and the
slower aggregate behavior adjusts.

While t is finite, the mass of players choosing strategy A  remains below x*.
Hence, strategy A  remains more fit than strategy B, propelling further preference
evolution.  Only as time approaches infinity does the preference distribution settle.
The support of the limit distribution is the same as that of the initial distribution:
no biases become extinct during evolution’s course.  Aggregate behavior converges
to the equilibrium of the underlying game, eliminating the difference in fitness
between the two strategies.  Finally, the bias threshold approaches zero:  in the limit,
each player acts in direct accordance with his bias; preference evolution guarantees
that this results in equilibrium play.

5.  Behavior Adjustment

Condition (E) requires that as preferences evolve, the population maintains
equilibrium play.  Equilibration games have a unique equilibrium for each
preference distribution, so condition (E) completely specifies the population's
behavior at each moment in time.  Since coordination games can exhibit multiple
                                                
16 Since I'(xt) = –L(xt), (I–1)'(θt)  = I'(xt)–1 = –L(xt)–1 = –L(Ι  –1(θt))–1 = –Λ(θt)–1.
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equilibria, analyzing these games requires more precise restrictions on behavior.
We now motivate these restrictions by considering how a population whose
preferences are fixed adjusts its behavior to establish equilibrium play.

Fix the preference distribution F.  Our model of behavior adjustment assumes
that the population's strategy choices can always be summarized by a bias threshold,
θ.17  Behavior adjustment is described by the equation

  ̇θ  = h(θ),

where the Lipschitz continuous function h satisfies

(A) sgn(h(θ)) = sgn(I(F(θ)) – θ).

That is, θ always moves towards I(F(θ)).  When the threshold is θ, F(θ) is the mass of
players choosing strategy A, and so I(F(θ)) is the bias of those players who are
currently indifferent between strategies.  If θ < I(F(θ)), players whose bias α  lies
between these values are currently playing strategy A  (since α  > θ) but would prefer
to play strategy B (since α < I(F(θ))); the most dissatisfied players are those whose bias
is exactly θ.  The bias threshold therefore adjusts upward towards I(F(θ)).  Similarly,
if θ > I(F(θ)), the threshold is driven downward.  Only when θ = I(F(θ)) is society’s
behavior in equilibrium.

Figure 5 illustrates behavior adjustment in an equilibration game. Under
equation (A), behavior adjustment leads to the unique equilibrium from any initial
bias threshold.  Moreover, if the preference distribution changes slightly, knocking
the population slightly out of equilibrium, behavior adjustment quickly restores
equilibrium play.  This observation justifies our use of the equilibrium condition (E)
in these games.

Figure 6 offers an example of behavior adjustment in a coordination game.
Using this example and equation (A) as motivation, we call an equilibrium of a
coordination game stable (under behavior adjustment) if F crosses     I

−1 from below at
the equilibrium:  that is, if

sgn(α – θ) = sgn(F(α) –     I
−1(α))

                                                
17 We can obtain similar results in a more complicated model without this restriction.
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Figure 5:  Behavior adjustment in an equilibration game.

Figure 6:  Behavior adjustment in a coordination game.

Figure 7:  Stability of equilibria after a change in preferences.
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for all α  in a neighborhood of θ.  We let SEG(f) denote the set of stable equilibria.
Since F'(θ) = –f(θ) and (    I

−1)'(θ) = –  Λ( )θ −1, a sufficient condition for an equilibrium θ
to be stable under behavior adjustment is that f(θ) <   Λ( )θ −1:  an equilibrium is stable
if the number of indifferent players is smaller than the game's equilibrium
alignment.

In Figure 7, we consider how aggregate behavior adjusts after a slight change i n
the preference distribution.  Suppose that the initial preference distribution is F.  In
all of the equilibria pictured, fewer players choose strategy A  than in the mixed
equilibrium x*.  Hence, strategy B is more fit than strategy A, so evolution shifts
preferences downward to a new distribution,     ̂F .  We first assume that this shift
occurs without any change in the bias threshold, and then let the threshold adjust
according to equation (A).

Suppose the population initially plays one of the stable equilibria, say W  = (θW,
xW), and that preferences shift to     ̂F .  Then behavior adjustment from θW under     ̂F
would lead the population to the new stable equilibrium     Ŵ  = (    θŴ

,     xŴ
).  In general,

any stable equilibrium θ is robust to small changes in preferences, in the sense that a
stable and locally unique equilibrium near θ will exist under the new preference
distribution.  Small changes in preferences can therefore be coupled with equally
small behavior adjustments which maintain equilibrium play.

Now suppose that the population initially played the unstable equilibrium X =
(θX, xX).  Then, after preferences shift, the bias threshold adjusts from θX to     θẐ

.

Because strategy adjustments lead away from them, unstable equilibria do not
constitute reasonable predictions of play.

Finally, suppose that the population plays the tangent equilibrium Y = (θY, xY).  In
this case, after preferences shift to     ̂F  the equilibrium vanishes.  As illustrated in the
figure, behavior adjustment under equation (A) causes the bias threshold to increase
until the stable equilibrium     ̂Z  is reached.

In the next section, we show how preference evolution can convert a stable
equilibrium into a tangent equilibrium, forcing behavior to jump abruptly to a new
stable equilibrium.  This new equilibrium is specified by the jump function, J;

J(f, θ) = 
    

min{ : } ;
max{ : } .

α θ α θ
α θ α θ

> ∈ >
< ∈ <





SE f

SE f
G

G

( ) if 
( ) if 

0
0

Here, θ represents the tangent equilibrium which will be eliminated after
preferences shift.  If θ > 0 (as is θY), then behavior adjustment under equation (A)
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pushes the bias threshold to the right.  The adjustment must not stop at another
tangent equilibrium, as all such equilibria are eliminated when preferences shift.
Therefore, the jump function picks the first stable equilibrium to the right of θ.
Similarly, if the tangent equilibrium θ  is to the left of 0, behavior adjustment will
reduce the bias threshold; the jump function selects the first stable equilibrium to
the left of θ.

It is not obvious that the jump function is well-defined.  Establishing this is the
key step in characterizing preference evolution in coordination games.

6.  Coordination Games

6.1  The Extended Model

To model the evolution of preferences in coordination games we introduce two
new assumptions.

(A4) θ0 ∈  SEG(f0).
(A5) If Ft(θ) =     I

−1( )θ ,     ′Ft( )θ  =     ( ) ( )I − ′1 θ , and     ′′Ft ( )θ  exists, then     ′′Ft ( )θ  ≠     ( ) ( )I − ′′1 θ .

Assumption (A4) asks that the initial equilibrium be stable under behavior
adjustment.  Were coevolution to begin at an unstable equilibrium, changes in the
population’s composition caused by evolution would quickly disrupt it; subsequent
behavior adjustment would quickly lead the population to a stable equilibrium.
Assumption (A5) requires that if an equilibrium is reached at which the preference
distribution and the indifference function have the same slope, they are strictly
tangent at this point.  Under this mild technical assumption, the inequality ft(θ) <

  Λ( )θ −1 is both sufficient and necessary for an equilibrium to be stable.  More
importantly, we establish in the Appendix (Proposition A15) that under assumption
(A5), the jump function is well defined.18

The extended model consists of our original conditions on the evolutionary
dynamics and equilibrium and a new condition concerning the continuity of the
threshold adjustment process.  To state this condition, we let   θt −  =     lims↑t

θs  denote

the left limit of a sequence of bias thresholds.

                                                
18 It is possible to state assumption (A5) in terms of the model's initial conditions by using the function
f* defined below.  We do not do so because this formulation is more difficult to interpret than is
assumption (A5) as stated.
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(D) For all α  ∈  R,     
d

dt + f t(α ) =     f g xt tt
( ) ( )( , )α σ α θ  and ft(α) is continuous in t.

(E) θt ∈ EG(ft) for all t.
(C) θt is right continuous in t.  If   θT −  ∈  SEG(fT), then θt is also left continuous

at time T.  Otherwise, θT = J(fT,   θT − ).

 Condition (C) formalizes the discussion of the previous section.  As long as the
equilibrium θt remains stable, it adjusts continuously in response to changes in the
preference distribution.  However, if a tangency is reached, equilibrium can not be
maintained through continuous changes in θt, forcing a discrete behavior
adjustment.

Theorem 2 characterizes preference evolution in coordination games.  To state
this result, we first define the functions f* and K.
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I f
F

I

I f
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Theorem 2:  Suppose  G is a coordination game , and let the initial condition (f0, θ0)
satisfy assumptions (A2) - (A5).  Then:

(i:  Existence) There exists a unique solution trajectory,     ft t t
,θ{ } ≥0

,

 to (D), (E), and (C).
(ii:  Continuity) θt and   xt  change continuously over time if and only if

 f*(θ) <   Λ( )θ −1 for all θ ∈  K(θ0).
(iii:  Limit Behavior)

  (a) If x0 < x*, then 
    
lim
t→∞

xt  = 0 and 
    
lim
t→∞

θt = I(0).

  (b) If x0 = x*, then xt ≡ x* and θt ≡ 0.

  (c) If x0 > x*, then 
    
lim
t→∞

xt  = 1 and 
    
lim
t→∞

θt = I(1).

Part (i) establishes the existence and uniqueness of the solution trajectories.  The
existence of the continuous portions of the trajectories is established using the ODE
reduction discussed in Section 4.  To establish the existence of the entire trajectory,
we must also show that the jump function J is well defined.  In the Appendix
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(Proposition A15), we offer an inductive argument which considers the equilibria
which lie beyond the launching point of a jump one by one.  The argument shows
that under assumption (A5), a jump need only pass over a finite number of tangent
equilibria before reaching the first stable equilibrium.
 Part (ii) presents a necessary and sufficient condition for jumps to occur; we
discuss this result in Section 6.2.  Part (iii) characterizes limit behavior.  If x0 = x*,
then the coevolutionary trajectory is degenerate, as the population forever remains
at the mixed equilibrium of the fitness game.19  Otherwise, the population
eventually coordinates on either strategy A  or strategy B depending on the initial
conditions.

We sketch an example of preference evolution in a coordination game in Figure
8.  In this example, the number of players who initially play strategy A  is smaller
than the number who play A  in the mixed equilibrium.  Since G is a coordination
game, it follows that strategy B has the higher fitness.  Consequently, biases below θ0

grow more prevalent at the expense of the others.  The primary effect of this change
in the bias distribution is to increase the number of players choosing strategy B.  This
in turn spurs a secondary effect.  Because G is positively aligned, that more players
choose strategy B makes strategy B even more attractive.  Hence, players who had
been indifferent between strategies switch to strategy B.  The primary and secondary
effects of preference evolution reinforce one another, driving the bias threshold
rightward.

The derivation from Section 4 shows that at times that strategy adjustment is
continuous, aggregate behavior adjusts according to the equation

(B)     ̇xt  = 
    

x g x
f

t A t

t t t

( )
( ) ( )1 − Λ θ θ

.

This is the same law of motion which governed strategy adjustment in equilibration
games.  Since f0(θ0) <   Λ( )θ0

1−  by our stability assumption, the denominator of this

expression is positive and less than one; hence, strategy adjustment is faster than i n
the standard evolutionary model defined by     ̇xt  = xt gA(xt).  The higher the density at
the bias threshold (subject to ft(θt) <     Λ( )θt

−1), the more players who switch from A  to

B at time t, and hence the greater the acceleration of the strategy adjustment process.
Higher alignments also yield faster strategy adjustment.

                                                
19 By assumption (A4), this equilibrium must be stable under behavior adjustment. For an example, see
Figure 10.
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Evolution proceeds smoothly as long as ft(θt) stays below     Λ( )θt
−1, so that θt

remains a stable equilibrium.  In our example, ft(θt) approaches     Λ( )θt
−1 as t

approaches T.  Hence, the speed of adjustment,     ̇xt , grows without bound.  At the
limit,     fT T

( )θ − =     Λ( )θ
T −

−1:  the preference distribution becomes tangent to the

indifference line.  Because the limit equilibrium is unstable, a round of behavior
adjustment ensues, sending the population to θT, the first stable equilibrium to the
right of   θT − .  From this stable equilibrium continuous evolution can resume.

We label the limit bias distribution F∞, and the limit bias threshold θ∞ = I(0).  The
limit threshold dictates that strategy B is chosen by all players for whom it is not
dominated.  At the limit distribution, the mass of such players is one:  ultimately, all
players whose bias towards A  is so large that they can never be reconciled to play B
vanish from the population.

Figure 8:  Evolution of preferences in a coordination game.

The reason that jumps can only occur in coordination games can be understood
by considering the equilibrium correspondence, EG(·).20  In equilibration games, the
equilibrium correspondence is a continuous function:  as we continuously alter the
preference distribution, the unique equilibrium of the game also varies
continuously.  This guarantees that in such games, a continuous trajectory for the
bias threshold can always be found.  In contrast, when G is a coordination game, EG(·)
is an upper hemicontinuous correspondence.  Since the correspondence fails to be
lower hemicontinuous, there are equilibria which can be disrupted by arbitrarily
small changes in the preference distribution.  These are precisely the equilibria at
which the preference distribution and the indifference line are tangent.  Our

                                                
20 A formal analysis can be found in the Appendix (Proposition A1).
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analysis shows that the preference trajectory often passes through discontinuities i n
the equilibrium correspondence, forcing instantaneous jumps to new equilibria.21

Our analysis is based on the assumption that behavior adjusts to equilibrium an
order of magnitude faster than preferences evolve.  However, our results are not
overly dependent on this assumption.  We show in the Appendix that the present
model is the limiting case of a model in which the relative rates of adjustment are
large but finite, and in which disequilibrium behavior is possible.

6.2  Which Initial Conditions Lead to Rapid Social Change?

 Theorem 2 (ii) presents a necessary and sufficient condition for continuous
strategy adjustment which is stated in terms of the function f*.  We show in the
Appendix (Lemma A10) that f*(θt) is equal to the preference density at bias θt and
time t:  f*(θt) = ft(θt).  In other words, f*(θ) is the preference density at the equilibrium
when the equilibrium is θ.  If f*(θ) <   Λ( )θ −1 for all θ ∈  (θ0, I(0)), then the slope of the
preference distribution at θt is always less than the slope of the indifference line, and
so it is always possible for evolution to proceed smoothly.  On the other hand, if
Λ(θt)f*(θt) converges to one during the course of evolution, the preference
distribution and the indifference line become tangent, forcing a jump.

We can also offer separate necessary and sufficient conditions for jumps solely i n
terms of the initial bias density f0.

Corollary 3:  If f0(θ) < 
    

min ( )
[ ( ), ( )]θ

θ
∈

−

I I1 0

1Λ  for all θ, strategy adjustment is continuous.  On

the other hand, if EG(f0) ∩  K(θ0) ≠ ∅, strategy adjustment is discontinuous.

 The first claim of the corollary shows that if the preference distribution is
sufficiently diffuse relative to the game’s alignment, no jumps will occur.  Under
this condition, the preference density at the equilibrium always remains small
enough that the speed of evolution stays finite.

                                                
21 We should note that if play begins at an unstable equilibrium (i.e., if f0(θ0) > Λ(θ0)–1), equation (B)
implies that behavior will adjust in the direction opposite to that in the standard evolutionary model.
For example, if x0 > x*, then despite the fact that strategy B has the higher expected fitness, the mass
of players playing strategy B will decrease over time.  However, equilibria which are not stable under
strategy adjustment should not be expected to persist in the face of changes in the population’s
composition.  We therefore regard this point as a technical curiosity.
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 The second claim states a sufficient condition for jumps in terms of the equilibria
which exist at the initial moment of play.  If at the onset of play there are equilibria
further from zero than θ0, a jump is bound to occur.
 When will such equilibria exist?  Consider Figure 8, in which θ0 > 0.  Since this
initial equilibrium is stable (f0(θ0) <   Λ( )θ0

1− ), the preference distribution crosses the

indifference line from below.  Therefore, for another equilibrium to lie to the right
of θ0, there must be an interval of biases between θ0 and I(0) over which the initial
preference distribution is relatively dense.  That is, there must be a cluster of players
whose bias at first leads them to strategy A, but whose bias towards A  is moderate
enough that they are ultimately willing to play strategy B.  Our analysis shows that
the existence of such a cluster is enough to guarantee a discrete change in aggregate
behavior.

7.  Purification and Evolution

 In an n-player normal form game, whenever a player’s equilibrium strategy is
mixed he is indifferent between this strategy and all others with the same support.
This raises the question of why we should expect him to randomize, and moreover
to randomize in the precise fashion that his equilibrium strategy dictates.  In his
1973 paper, Harsanyi offers a resolution to this puzzle.  He does so by augmenting
the original normal form game by adding to each player’s payoffs a small,
idiosyncratic noise term which depends on the realized action profile.  While the
distributions of the payoff noises are commonly known, they are independent, and
players only learn the realizations of their own noise terms.  Each pure Bayesian
strategy in the perturbed game can be identified with a mixed strategy in the original
game, with each player’s noise terms serving as his randomizing device.  Harsanyi
proves that all equilibria of generic normal form games are the limits of sequences
of equilibria of perturbed games whose noise terms become arbitrarily small.
Importantly, in the equilibria of the perturbed games, almost all noise realizations
induce a strict preference for a single action.  In other words, small payoff noises
eliminate the indifference which makes mixed equilibria unstable.
 There are close formal connections between Harsanyi’s model and our own.
Restrict attention to the models’ common ground:  2 x 2 symmetric normal form
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games,22 and payoff disturbances which only depend on players' own actions.
Although Harsanyi studies a game of incomplete information while we study a
population game, it is easy to see that if we identify payoff noises with biases, the
two models are formally identical.  Hence, any Bayesian equilibrium under noise
distribution F can be interpreted as a population equilibrium under the fixed bias
distribution F.
 Suppose further that F(0) = x*, and consider the equilibrium X = (0, x*).  If we
interpret X as a purified equilibrium under noise distribution F, X is an equilibrium
of the perturbed game which perfectly mirrors the equilibrium of the underlying
game.  On the other hand, if we interpret X as a population equilibrium under bias
distribution F, then since φA(x*) = φB(x*), X is an equilibrium at which the
distribution of preferences is at rest.  Hence, noise distributions which yield exact
purification correspond to bias distributions which face no selection pressure.
 Harsanyi’s purification results offer a basis for belief in nearly any mixed
equilibrium.  The discussion above suggests the following question:  if the
underlying payoffs  are interpreted as evolutionary fitnesses, can purified mixed
equilibria always be given an evolutionary justification?  In other words, given any
mixed equilibrium x* of the fitness game G, can we always find a distribution F

under which x* is an evolutionarily stable outcome?
While if attention is restricted to equilibration games the answer to this question

is yes, for coordination games the answer is no.  While this in itself may seem
unsurprising, the reason behind this answer is perhaps more subtle than it first
appears to be.  As before, we consider the mixed equilibrium x* of a 2 x 2 symmetric
coordination game G, and let F be a preference distribution satisfying F(0) = x*, so
that X = (0, x*) is an equilibrium under this preference distribution.  Since φA(x*) =
φB(x*), there is no evolutionary pressure on F to change.

Nevertheless, we should not expect this equilibrium to persist.  If F crosses     I
−1

from above at the equilibrium, as pictured in Figure 9, then the equilibrium is
unstable under behavior adjustment: a slight change in behavior will lead the
population away from the equilibrium.

                                                
22  Harsanyi does not explicitly consider games with a single player role, but his results can easily be
extended to this case.
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Figure 9:  An equilibrium which is not robust to
behavior adjustments or preference shifts.

Figure 10:  An equilibrium which is robust to
behavior adjustments but not to preference shifts.

In contrast, if F crosses     I
−1 from below, as illustrated in Figure 10, the equilibrium

is stable under behavior adjustment:  the population returns to the equilibrium
after any slight change in behavior.  But suppose there is a slight change in society’s
preferences to     ̂F , so that the unique equilibrium under the new preferences,     ̂X  =
(    θX̂

,     xX̂
), satisfies     xX̂

 ≠ x*.  At this equilibrium, one of the two strategies must have a

strict fitness advantage.  Hence, Theorem 2 implies that preference evolution will
lead the population to coordinate on a single strategy.  Therefore, while the
equilibrium X = (0, x*) is stable if preferences are held fixed at F, a small change i n
the preference distribution will lead the population away from the equilibrium.23

                                                
23 A preference shift will also disrupt the equilibrium in Figure 9.  What is important is that only a
preference shift can disrupt the equilibrium in Figure 10; a change in behavior will not suffice.

0 θ

x

I–1

c – a

F

d – b

X

Z

0 θ

x

I–1

c – a d – b

X

F
F^

^
X



–28–

In summary, our analysis of coordination games shows that if payoff
disturbances are large, mixed equilibrium behavior  can be stable, but that the
disturbance distribution itself cannot be stable.

8.  Conclusion

 We analyze an explicitly dynamic model of preference evolution, establishing
the existence and uniqueness of the evolutionary solution paths.  To keep the
analysis as simple as possible, we have restricted attention to games with two
strategies and to preferences which can be represented in terms of biases.  There are
many applications of large population games in which players face a binary
choices,24 and biases seem an especially natural form of variation in individual
preferences.  Nevertheless, understanding the dynamics of preference evolution i n
more general strategic settings and under broader classes of preferences is an
important topic for future research.

Appendix

A.1  Speed Limits and Disequilibrium Strategy Adjustment

 Our primary model requires that behavior adjust arbitrarily more quickly than
preferences evolve.  While it is natural to assume that the former process is faster
than the latter, assuming that the relative rate of adjustment is infinite may seem

                                                                                                                                                            
It is worth noting that pure equilibria which are stable under behavior adjustment are robust to

small changes in the preference distribution.  Consider the equilibrium Z = (d – b, 0) in Figure 9, a t
which all players choose strategy B.  This equilibrium is stable under behavior adjustment, and any
sufficiently small change in the preference distribution will yield a new stable equilibrium near Z.  I f
some players play strategy A at this new equilibrium, preference evolution will select against these
players' biases until all players again choose strategy B.
24 Many authors (e.g., Kandori, Mailath, and Rob (1993)) have used such games to study consumer
technology choice. Durlauf (1997) mentions out-of-wedlock births, school attendance, and criminal
activity as examples of socioeconomic issues which can be studied using large population binary choice
models.  Kuran's (1989, 1991, 1995) model of political and cultural revolutions is also of this form.
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too extreme.  We now demonstrate that weakening this assumption has only a
minor impact on our analysis.
 Specifically, we impose a speed limit on the strategy adjustment process. That is,
we assume that the speed of strategy adjustment,     ̇xt , has some fixed upper bound

M.  When M is large, behavior may change much more quickly than preferences,
but always finitely so.
 Define the bounding function   B

M : R → R by
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We formalize the model of coevolution with speed limits as follows.

(D) For all α  ∈  R,     
d

dt + f t(α ) =     f g xt tt
( ) ( )( , )α σ α θ  and ft(α) is continuous in t.

(SL1) If θt ∈  EG(ft), then   
d

dt tx+  = 
    
B

x g x
f

M t A t

t t t

( )
( ) ( )1 −





Λ θ θ

.

(SL2) If θt ∉  EG(ft), then   
d

dt tx+  = M sgn(θt – I(Ft(θt))).

(SL3) The trajectory x(·) is continuous.

Preference evolution, modeled by condition (D), is unchanged.  To interpret
condition (SL1), recall from equation (B) that xt gA(xt)/(1 – Λ(θt)ft(θt)) is the rate of
strategy adjustment which maintains equilibrium in our original model.  When
behavior is in equilibrium, condition (SL1) states that that behavior adjusts to
preserve equilibrium whenever doing so does not require breaking the speed limit.
If a point is reached at which maintaining equilibrium would require a speed limit
violation, equilibrium play is abandoned.  While behavior is out of equilibrium,
condition (SL2) asks that strategy adjustment occur at rate M until equilibrium is
restored.

Since a formal study of the speed limit model requires only a minor
modification of our prior analysis, we do not provide one here.25  Instead, in Figure
11 we revisit the initial conditions from Figure 8 and consider coevolution with
speed limits imposed.  Until we near the time at which the jump would have

                                                
25  It is worth noting, however, that because assumption (A5) only imposes restrictions at times tha t
jumps occur, in the speed limit model it is unnecessary.  Also, since in equilibration games coevolution
only slows strategy adjustment down, adding sufficiently high speed limits has no effect on the model.
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occurred, coevolution proceeds just as before.  However, at some time u  before the
jump can occur, the speed limit M is reached.  A period of disequilibrium follows,
during which players switch to strategy B at rate M.  During this time, the preference
distribution continues to evolve as condition (D) dictates.  Eventually, at some time
v, behavior returns to equilibrium, and coevolution proceeds as before.26

Figure 11:  Evolution of preferences under a speed limit.

What happens as we increase the speed limit?  The key observation needed to
answer this question is that the disequilibrium portion of trajectories resulting from
different speed limits are nested:  in Figure 11, increasing M leads to a new
disequilibrium trajectory which is strictly above the old one on (θu, θv).  It follows
that as we increase the speed limit, the bias at which equilibrium is abandoned, θu,
moves to the right; the bias at which equilibrium play resumes, θv, moves to the left;
and the time spent in disequilibrium, v  – u, decreases.  Let   θT −  and θT be the

endpoints of the jumps in the original model.  Applying the observation noted
above, it is not difficult to show that as M approaches infinity, u  approaches T, θu

approaches   θT − , θv approaches θT, and v  – u  approaches zero.  Therefore, we can

view our original model as the limiting case of the speed limit model as the speed
limit becomes arbitrarily large.

                                                
26  When equilibrium is restored at time v, all biases above θv have always induced play of strategy A ,
and so have always shrunk at the same rate.  Therefore, although the time at which bias θv is reached
will be later than in the original model, the speed of strategy adjustment thereafter is the same.

0

x*

θ

x
I–1

θ0 θ∞θu θvI(1)

F0

F∞
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A.2  Proofs

We begin by studying the continuity of the equilibrium correspondence EG(·).
Define the distance between two preference distributions to be the maximal distance
between their corresponding decumulative distribution functions:

  f fn m−  = 
    
sup ( ) ( )

λ
λ λF Fn m− .

Proposition A1:  (i) If G is a coordination game , then  EG(·) is non-empty and upper

hemicontinuous .  (ii) If G is an equilibration game , then  EG(·) is a continuous

function.

 Proof:  We begin with a lemma:

Lemma A2:  If fn → f, θn → θ, and θn ∈  EG(fn) for all n, then θ ∈ EG(f).

 Proof:  Since θn = I(F(θn)) for all n, we see that

    θ θ− I F( ( ))  ≤     θ θ θ θ θ θ− + − + −n n n n nI F I F I F I F( ( )) ( ( )) ( ( )) ( ( ))

Since all of the terms on the right hand side approach zero as n  approaches infinity,
θ = I(F(θ)).  ❏

As EG(·) is clearly non-empty, part (i) of the proposition follows directly from the
lemma.

To prove part (ii), let G be negatively aligned, so that EG(·) is single valued.
Suppose that fn → f and that θn ∈  EG(fn) for all n, and let θ* be the lone element of
EG(f).  We want to show that θn → θ*.  Were this not true, we could find an ε > 0 and
a subsequence   θnk

 such that     θ θnk
− *  > ε for all k.  Since all   θnk

 lie in the compact set

[I(0), I(1)], this subsequence has in turn a convergent subsequence.  Lemma A2
implies that its limit is θ*, contradicting the definition of the subsequence.  ■

 The next result shows that all continuous portions of solution trajectories to
equations (D) and (E) can be expressed in terms of solutions to a two dimensional
ODE.  The two variables in the ODE are the bias threshold θt and the aggregate
percentage growth rate γt.  The latter variable measures the aggregate growth of those
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biases which have always prompted play of the strategy which the marginal players
are abandoning.  For example, on solution trajectories along which strategy B is
more fit than strategy A, γt measures the percentage change in the representation of
any bias which has always induced play of strategy A.  This implies that the density
of any bias α  that has always played strategy A  is given by ft(α) = f0(α) γt.  If we can
keep track of which biases play strategy A  using the threshold θt, then γt contains
enough information about changes in the bias distribution to allow us to perform
the reduction.

The direction (ii) ⇒  (i) shows that solutions to an ODE in the variables θt and γt

form the basis for solutions to (D) and (E).  This is the key to the proof of the
existence of solutions to the latter equations.  To prove that these solutions are
unique, we use the implication (i) ⇒  (ii), which shows that any such solution also
solves the ODE.  The proofs begin by showing that under either set of equations, the
bias threshold θt must change monotonically over time.  Once this is established,
algebra and calculus are used to move between the two sets of equations.

Theorem A3 (ODE Reduction):  Fix a game  G and an initial condition (f0, θ0) w h i c h

satisfies assumptions (A1), (A2), and, if G is a coordination game , (A4).  Then t h e

following two statements are equivalent:
(i) The continuous trajectory     f t ,θt{ }t∈[0,T )

 satisfies ft(θt) ≠     Λ( )θt
−1 for all t a n d

solves

(D) For each α  ∈  R,     
d

dt + f t(α ) =      gσ (α ,θ t )(xt ) f t(α )  and f(·)(α) is continuous;

(E) θt = EG(ft) for all t.

Furthermore, the trajectory     γ t{ }t∈[0,T )
 is given by

(G)
    

γ
θ θ

t

A s

t

B s

t

g x ds

g x ds
=

( )



 ≥

( )













∫
∫

exp if (

exp otherwise

00 0

0

0Λ ) ,

.

(ii) The     C
1 trajectory     θt , γ t{ }t∈[0,T )

, which satisfies f0(θt)γt ≠     Λ( )θt
−1 for all t and γ0

= 1, solves
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(C1)
    

˙ ( )
) ,

( )

θ

θ γ θ
θ γ θ

θ θ

θ γ θ
θ γ θ

t

t t A t

t t t

t t B t

t t t

F g I

f
F g I

f

=

( ) ( )( )
( ) −

≥

− ( )( ) ( )( )
( ) −











−

−

−

−

0
1

0
1 0

0
1

0
1

0

1
Λ

Λ

Λ

if (

otherwise;

0

(C2)     
˙

) ,
γ

θ γ θ θ
θ γt

A t t

B t t

g I

g I
=

( )( ) ≥
( )( )







−

−

1
0

1

0if (

otherwise;
0Λ

and the trajectory     f t{ }t∈[0,T )
 is given by

(C3)     f t(α ) = 
    
f0(α ) exp gσ (α ,θ s )(I −1(θs ))ds

0

t

∫



 .

 Proof of (ii) ⇒  (i):  We state the proof for the case in which Λ(θ0)θ0 ≥ 0; the proof
of the other case is similar.
 Since the trajectory     θt , γ t{ }t∈[0,T )

 solves (C1) and (C2), this trajectory is continuous.

We now establish that θt  is increasing on [0, T).  First, note that γt is strictly positive
for finite t.  Therefore, since f0(θt), γt, and     Λ( )θt

−1 are continuous in t, the

denominator of the right hand side of (C1) cannot switch signs without passing
through zero, which would render (C1) undefined.  Hence, the right hand side of
(C1) can only switch signs if its numerator switches signs, which can only occur if

    gA(I −1(θt )) switches signs.
 A simple calculation shows that when Λ(θ0)θ0 ≥ 0,     g IA( ( ))−1

0θ  ≥ 0.  Since θt is
continuous on [0, T),     gA(I −1(θt )) can only become negative if it passes through zero.
But if     gA(I −1(θt )) = 0 at some time t, it equals zero at all future times, and θt is
constant over these times.  Hence,     gA(I −1(θt )) ≥ 0 for all t ∈  [0, T), and so θt is

increasing on [0, T).
Because θt is increasing on [0, T), a player whose bias at time t is at least θt has

always played strategy A; that is, σ(α, θs) = A for all α ≥ θt and s ≤ t.  Substituting this
expression into equation (C3), we see that

    f t(α ) = 
    
f0(α ) exp gA(I −1(θs ))ds

0

t

∫



 for all α   ≥ θt. (1)

Since equation (C2) and the initial condition γ0 = 1 imply that
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γt = 
    
exp gA(I −1(θs ))ds

0

t

∫



 ,

we see that

    f t(α ) =     f0(α ) γ t for all α   ≥ θt. (2)

Hence, the assumption in statement (ii) that f0(θt)γt ≠     Λ( )θt
−1 implies that ft(θt) ≠

    Λ( )θt
−1, as required by statement (i).

 Moreover, differentiating equation (1) yields

    ḟ t(α ) =     f t(α ) gA(I −1(θt )) for all α > θt. (3)

Thus, rewriting equation (C1) and then substituting equations (2) and (3) yields

    θ̇t = 
    

F g I
f

t t A t

t t t

0
1

0
1

( ) ( ( ))
( ) ( )
θ γ θ
θ γ θ

−

−− Λ

= 
    

f g I d

f

t A t

t t t

t
0

1

0
1

( ) ( ( ))

( ) ( )

α γ θ α

θ γ θ
θ

−∞

−

∫
− Λ

= 
    

f g I d

f

t A t

t t t

t

( ) ( ( ))

( ) ( )

α θ α

θ θ
θ

−∞

−

∫
−

1

1Λ

= 
    

˙ ( )

( ) ( )

f d

f

t

t t t

t

α α

θ θ
θ

∞

−

∫
− Λ 1 .

We rearrange this equation to find that

–    Λ( )θt
−1

    θ̇t  = 
    

ḟ t(α )dα
θ t

∞

∫ − θ̇t f t(θt ).

Observe that     
d

d Iθ θ−1( ) = –  Λ( )θ −1.  Therefore, by integrating over t we obtain

    I t
−1( )θ  = 

    
f t(α )dα

θ t

∞

∫  + C,

where C is a constant.  Substituting xt = 
    

f t(α )dα
θ t

∞

∫  and composing the result with I

yields
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θt = I(xt + C).

Since θ0 ∈  EG(f0), θ0 = I(x0).  Therefore, since I is one-to-one, C = 0, and we conclude
that

 θt = I(xt) = I(Ft(θt)).

This is condition (E).
To complete this part of the proof, observe that condition (E) implies that xt =

    I t
−1( )θ .  Substituting this expression into equations (C2) and (C3) yields

    ̇γ t =     gA(xt ) γ t  and

    f t(α ) = 
    
f0(α ) exp gσ (α ,θ s )(xs )ds

0

t

∫



 .

Integrating the former expression and differentiating the latter with respect to time
yield equations (G) and (D).  ❏

Proof of (i) ⇒  (ii):  We divide the proof into two cases.
 Case 1:  G is an equilibration game .  We prove this case under the assumption
that θ0 ≤ 0; if θ0 > 0 the proof is similar.  We begin with three lemmas.

Lemma A4: gB(xt) ≤ 0 for all t ∈  [0, T).

 Proof:  Observe that gB(xt) < 0 whenever xt ∈  (0, x*), and that θ0 < 0 implies that x0

∈  (0, x*).  Moreover, θt is continuous on [0, T) by assumption; since xt ≡     I t
−1( )θ  by

condition (E), xt is continuous on [0, T), too.  Therefore, for xt to leave (0, x*), there
must be a time τ at which xτ ∈  {0, x*}.  But if this occurs, gB(xτ) = 0, and so condition
(D) implies that gB(xt) = 0 for all t ∈  [τ, T).  Therefore, gB(xt) can never become strictly
positive.  ❏

Lemma A5:  θt is increasing on [0, T).

 Proof:  Fix two times u, v  ∈  [0, T) with u  < v .  We establish that θu ≤ θv by
showing that u ∈  

    
arg min

t∈[u ,v]
θt .  Suppose to the contrary that u  ∉ 

    
arg min

t∈[u ,v]
θt .  Then if τ

∈  
    
arg min

t∈[u ,v]
θt , then θτ < θu, and moreover, σ(α, θt) = B for all α  < θτ and t ∈  [u, v].
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Hence, equation (D) and Lemma A4 imply that

    f τ (α ) = 
    
fu(α ) exp gB(xs )ds

u

τ

∫



  ≤     fu(α ) for all α  < θτ. (4)

Therefore,

    Fτ (θτ ) = 1 – 
    

f τ (α )dα
−∞

θ τ

∫ by definition

≥ 1 – 
    

fu(α )dα
−∞

θ τ

∫ by equation (4)

=     Fu(θτ ) by definition
≥     Fu(θu ) since Fu is decreasing
=     I

−1(θu ) since θu ∈  EG(fu)
>     I

−1(θτ ) since     I
−1 is strictly increasing.

Thus,     Fτ (θτ ) >     I
−1(θτ ), contradicting condition (E).  ❏

Lemma A6:  If θt is increasing on [0, T), then for all α  ≥ θt,

 ft(α) = f0(α)γt and Ft(α) = F0(α)γt.      (5) and (6)

Proof:  Since θt is increasing in t, σ(α , θs) = A for all α  ≥ θt and s ≤ t.  Therefore, for
each α ≥ θt, integrating equation (D) and substituting condition (G) yields

    f t(α ) = 
    
f g x ds

s s

t

0 0
( ) exp ( )( , )α σ α θ∫





= 
    
f0(α ) exp gA(xs )ds

0

t

∫





=     f0(α ) γ t .

This is equation (5).  Integrating over λ ≥ α  yields equation (6).  ❏

 We now complete the proof of Case 1.  Since ft(θt) ≠     Λ( )θt
−1 by assumption,

equation (5) implies that     f0(α ) γ t  ≠     Λ( )θt
−1 as required by statement (ii).  Equilibrium

condition (E) implies that θt = I(Ft(θt)).  Using equation (6), we rewrite this as

    I t
−1( )θ  =     γ θt tF0( )
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Both sides of this equation are continuously differentiable in θt, and γt is a     C
1

function of t on [0, T).  Therefore, the Implicit Function Theorem implies that θt is

    C
1 on [0, T) and that we can determine its derivative through implicit

differentiation.  Recalling that F0 is a decumulative distribution, we differentiate the
previous expression to obtain

–    Λ( )θt
−1

    θ̇t  =     ̇γ t F0(θt ) –     γ t θ̇t f0(θt ).

Differentiating equation (G) yields

    ̇γ t  =     gA(xt ) γ t .

Combining these last two expressions and rearranging, we see that

    θ̇t  = 
    

F g x
f

t t A t

t t t

0

0
1

( ) ( )
( ) ( )

θ γ
θ γ θ− −Λ

.

Since xt =     I
−1(θt )  by condition (E), we conclude that equation (C1) holds.  Finally,

equations (C2) and (C3) follow directly from conditions (D), (E), and (G).  ❏
 Case 2:  G is a coordination game.  We prove this case under the assumption that
θ0 ≥ 0; if θ0 < 0 the proof is similar.

Lemma A7: gB(xt) ≥ 0 for all t ∈  [0, T).

Proof:  Analogous to that of Lemma A4.

Lemma A8:  θt is increasing on [0, t).

Proof:  Suppose to the contrary that θt is not increasing on [0, T).  Let   θt  = 
    
max
s∈[0,t]

θt ;

our supposition implies that τ = inf {t:    θt  ≠ θt} < T.  Since θt is increasing through

time τ, σ(α, θt) = A  for all α  ≥ θt and t ≤ τ.  Consequently, integrating equation (D)
yields

    f t(θt ) = 
    
f g x dst s

t

t s0 0
( ) exp ( )( , )θ σ θ θ∫
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 = 
    
f0(θt ) exp gA(xs )ds

0

t

∫





for all t ≤ τ.  Since θt is continuous in t by assumption,     f t(θt ) is continuous in t over

the interval [0, τ].
 Assumption (A4) and the condition in statement (i) that     f t(θt ) ≠     Λ( )θt

−1 for all t ∈
[0, T) imply that f0(θ0) <   Λ( )θ0

1− .  Moreover, it follows from this condition and the
continuity of ft(θt) and Λ(θt) in t that     f τ (θτ )  <   Λ( )θτ

−1 .  This inequality and the
equilibrium condition     Fτ (θτ ) =     I

−1(θτ ) imply that Fτ crosses     I
−1 from below at θτ:  that

is,

 sgn(    Fτ (θ ) –     I
−1(θ )) = sgn(θ – θτ) (7)

whenever θ − θτ  ≤ ε.  Additionally, since θt is continuous in t, there is an η > 0 such

that   θt − θτ  ≤ ε whenever   t − τ  ≤ η.

Let v = min(
    
arg min

s∈[τ ,τ + η]
θs).  By the definition of τ, v  > τ, and by the definition of v ,

σ(α, θt) = B for all α < θv and t  ∈  [τ, τ + η].  Thus, by Lemma A7,

    f v(α ) = 
    
f τ (α ) exp gB(xs )ds

τ

v

∫



  ≥     f τ (α ) . (8)

for all α  < θv.  It follows that

    Fv(θv ) = 1 – 
    

f v(α )dα
−∞

θ v

∫ by definition

≤ 1 – 
    

f τ (α )dα
−∞

θ v

∫ by inequality (8)

=     Fτ (θv ) by definition
<     I

−1(θv ) by equality (7).

Hence,     Fv(θv ) <     I
−1(θv ), contradicting the equilibrium condition (E).  ❏

The proof of Case 2 is completed in a fashion analogous to that of Case 1.  ■

 The following proposition establishes the laws of motion of θt and xt. 
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Proposition A9:  Let     ft t t T
,

[ , )
θ{ } ∈ 0

 be a continuous solution to (D) and (E).  Then:

     θ̇t  = 
    

x g x
f

t A t

t t t

( )
( ) − −θ θΛ( ) 1 a n d     ̇xt  = 

    

x g x
f

t A t

t t t

( )
− ( )1 Λ( )θ θ

.    (9) and (10)

 Proof:  First, suppose that Λ(θ0)θ0 ≥ 0.  Lemmas A5 and A8 then imply that θt is
increasing in t.  Therefore, by Lemma A6, ft(θt) = f0(θt)γt and Ft(θt) = F0(θt)γt.
Substituting these equations and condition (E) into equation (C1), we see that

    θ̇t  = 
    

F g I

f
t t A t

t t t

0
1

0
1

θ γ θ
θ γ θ

( ) ( )( )
( ) −

−

−Λ( )

= 
    

F g I

f
t t A t

t t t

θ θ
θ θ

( ) ( )( )
( ) −

−

−

1

1Λ( )

= 
    

x g x
f

t A t

t t t

( )
( ) − −θ θΛ( ) 1

Since condition (E) implies that xt =     I t
− ( )1 θ  and since     

d
d tIθ θ−1( ) = –    Λ( )θt

−1, we conclude

that

    ̇xt  =     
d

d tIθ θ−1( )    θ̇t  = 
    

x g x
f

t A t

t t t

( )
− ( )1 Λ( )θ θ

.

Now suppose that Λ(θ0)θ0 < 0.  In this case, an analysis similar to that used to
prove Lemma A6 shows that ft(θt) = f0(θt)γt and that (1 – Ft(θt)) = (1 – F0(θt))γt.
Therefore, the identity x gA(x) + (1 – x) gB(x) ≡ 0 implies that

    θ̇t  = 
    

1 0
1

0
1

− ( )( ) ( )( )
( ) −

−

−

F g I

f
t t B t

t t t

θ γ θ
θ γ θΛ( )

= 
    

1 1

1

− ( )( ) ( )( )
( ) −

−

−

F g I

f
t t B t

t t t

θ θ
θ θΛ( )

= 
    

1
1

−( ) ( )
( ) − −

x g x
f

t B t

t t tθ θΛ( )

= 
    

x g x
f

t A t

t t t

( )
( ) − −θ θΛ( ) 1 .

The proof is completed as before.  ■
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Proof of Theorem 1:
 Existence, uniqueness, and continuity of solutions are proved using the ODE
Reduction (Theorem A3).  To prove existence, observe that since Λ(θ) < 0 for all θ,
equation (C1) is always well-defined; by assumption (A3) it is differentiable in θt and
γt.  Therefore, the existence of solutions to (C1) and (C2) on [0, ∞) follows from
standard results.  Existence of solutions to (D) and (E) then follows from the
implication (ii) ⇒  (i) of Theorem A3.

We now prove uniqueness and continuity.  Proposition A1 (ii) and condition (D)
guarantee that the component     θt t{ } ≥0

 of any solution to (D) and (E) is continuous i n

t.  Hence, the implication (i) ⇒  (ii) of Theorem A3 tells us that any solution to (D)
and (E), coupled with definition (G), must also solve (C1), (C2), and (C3).  Since the
solution to the latter set of equations is unique and continuous on [0, ∞), so is the
solution to the former set.

To characterize limit behavior, let     ft t t
,θ{ } ≥0

 be the unique solution trajectory

specified in Theorem A3, and let xt ≡ Ft(θt).  We consider the case in which θ0 ≤ 0; the
proof of the other case is similar.  Lemma A5 tells us that θt is increasing over time.
Therefore, since xt =     I t

− ( )1 θ  and     I
−1(·) is increasing, x0 < x* and xt is increasing over

time.  Since gA is a continuous function satisfying sgn(gA(xt)) = sgn(x* – x), x* is a rest
point of equation (10), and the right hand side of equation (10) is bounded below
away from zero on any closed interval [x1, x2] ⊂ (0, x*).  Therefore, by Proposition A9,

    
lim
t tx
→∞

 = x*.  Since θt = I(xt) and since I(x*) = 0 by definition, 
    
lim
t t→∞

θ  = 0.  ■

Proof of Theorem 2:
 We present the proof for the case in which θ0 > 0; the proof when θ0 < 0 is
similar, and the proof when θ0 = 0 is trivial.

We begin with a     C
1 preference distribution f0 and a bias threshold θ0 > 0

satisfying the equilibrium condition θ0 = I(F0(θ0)) and the stability condition f0(θ0) <

  Λ( )θ0
1− , which is implied by assumptions (A3), (A4), and (A5).  The existence and

uniqueness of an initial continuous solution trajectory from this initial condition is
established using Theorem A3 just as in the proof of Theorem 1.  Let [0, T) be the
maximal domain of the continuous solution trajectory:  T is the latest time such
that     θ̇t  < ∞ for all t < T.

 We proceed with five lemmas which characterize the initial conditions from
which jumps occur.  Together, these lemmas prove part (ii) of the theorem.
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Lemma A10:  Suppose that θt is increasing through time T.  Then if θ ∈  EG(ft) ∩ [  θt − ,

I(0)] and t ∈  [0, T], then  ft(θ) = f*(θ).  In particular,  ft(θt) = f*(θt) for all t ∈  [0, T).

 Proof:  Lemma A6 and the continuity of f(·)(α) and γ(·) at T imply that for all t ∈  [0,
T] and θ ≥   θt − , ft(θ) = f0(θ)γt and Ft(θ) = F0(θ)γt.  Moreover, since θ ∈  EG(ft), Ft(θt) =

    I t
−1( )θ .  Combining these three equations and the definition of f* yields the result.  ❏

Lemma A11:  If T = ∞, then f*(θ) <   Λ( )θ −1 for all θ ≥ θ0,     
lim
t t→∞

θ  = I(0), and 
    
lim
t tx
→∞

 = 0.

 Proof:  If T = ∞, then     θ̇t  < ∞ for all finite t.  Thus, equation (9) implies that ft(θt) <

    Λ( )θt
−1 for all t ≥ 0.  Therefore, since gA is a continuous function satisfying sgn(gA(xt))

= sgn(x – x*), the right hand side of equation (10) is bounded below away from zero
on any closed interval [x1, x2] ⊂ (0, x*).  Thus, the limit of xt cannot exceed 0.  It
follows that 

    
lim
t tx
→∞

 = 0 and that 
    
lim
t t→∞

θ  = 
    
lim ( )
t tI x
→∞

 = 0.  Moreover, since θt is increasing

through time t and takes every value in [θ0, I(0)), Lemma A10 implies that f*(θ) is
less than   Λ( )θ −1 on this interval, and therefore on [θ0, ∞).  ❏

If T = ∞, then the existence, uniqueness, continuity, and limit behavior of the
solution trajectories follow from Theorem A3, the existence and uniqueness of
solutions to ODEs, and Lemma A11.  However, if T < ∞,   θT −  is an unstable

equilibrium under fT, so a jump must occur at time T before continuous evolution
can proceed.  To establish that   θT −  is unstable, we first prove:

Lemma A12:  If T < ∞, then fT(  θT − ) =     Λ( )θ
T −

−1.

Proof:  If T < ∞, then by definition, 
    
lim
t T↑     θ̇t  = ∞.  Therefore, equation (9) implies

that 
    
lim
t T↑

(ft(θt) –     Λ( )θt
−1) = 0, from which the result follows.  ❏

We now want to use Lemma A12 and Assumption (A5) to show that FT and     I
−1

are strictly tangent at   θT − , and so that   θT −  is an unstable equilibrium under fT.  To
apply assumption (A5), we need to show that     ′ −fT T

( )θ  exists.

Lemma A13:  fT(·) is continuously differentiable on (θ0, ∞).
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Proof:  It is clear from equation (9) that θt is strictly increasing on [0, T).
Therefore, the inverse of θ(·) exists.  We call this inverse τ(α) and define it as

τ(α) = 
    

θ α α θ θ
α θ

− ∈
=






−

−

1( ) , ),
.

if [
if 

0 T

T
T

Since θ(·) is     C
1 on (0, T), τ(·) is     C

1 on (θ0,   θT − ), and   ′τ α( ) =   
˙

( )θτ α( )−1
.  Moreover, since

    
lim
t T↑     θ̇t  = ∞,

    
d

d Tθ
τ θ− −( ) = 

    
lim ( )

α θ
τ α

↑ −

′
T

 = 
    
lim ˙

( )α θ τ αθ
↑

−

−
( )

T

1
 = 

    
lim ˙
t T

t↑

−( )θ
1
 = 0.

Because θt increases over time, and since each f(·)(α) is continuous by condition
(D),

    f t(θ ) = 

    

f g x ds g x ds

f g x ds

A s B s

t

t

A s

t

t

0 0

0 0

( )exp ( ) ( ) ,

( )exp ( ) .

( )

( )
θ θ θ θ

θ θ θ

τ θ

τ θ∫ ∫
∫

+



 ≤





 ≥









−

−

if <

if 

0

for all t ∈  [0, T].  Therefore, for all t in this range,

    
d

d tfθ θ( )= 

    

d
d A s B s

t
d

d

A B A s B s

t

f g x ds g x ds f

g x g x g x ds g x ds

θ

τ θ

τ θ θ

τ θ τ θ

τ θ

τ θ

θ τ θ θ
θ θ

0 0 0

0

( ) exp ( ) ( ) ( ) ( )

( ( ) ( ))exp ( ) ( )

( )

( )

( ) ( )

( )

( )

( ) +



 + ( )

× − +





<
∫ ∫

∫ ∫   
if 0 <<

if 

θ

θ θ θθ

t

d
d A s

t

t
f g x ds

−

−( ) 



 >












 ∫

,

( ) exp ( ) .0 0

Since f0 is     C
1 by assumption (A3), this proves the result for θ ≠   θT − .  To complete the

proof, observe that     
d

d t t
f

θ
θ− −( ) is defined analogously to the first case above and

    
d

d t t
f

θ
θ+ −( ) to the second, substituting one-sided derivatives wherever appropriate.

Thus, since     
d

d Tθ
τ θ− −( ) = 0,

    
d

d T T
f

θ
θ− −( )  = 

    
d

d T A s

T
f g x ds

θ
θ− − ∫



0 0

( ) exp ( )

+ 
    
( ( )) ( )( ( ) ( )) exp ( )d

d T T A T B T A s

T
f g x g x g x ds

θ
τ θ θ− − − − −− 



∫0 0

= 
    

d
d T A s

T
f g x dsθ θ0 0

( ) exp ( )− ∫





=     
d

d T T
f

θ
θ+ −( ) .  ❏
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 Lemma A13 and assumption (A5) guarantee that FT and     I
−1 are tangent at   θT − ,

and hence that   θT −  is unstable.  The following lemma shows that the former curve
lies below the latter near   θT − , as pictured in Figure 8.

Lemma A14:  FT(θ) <     I
−1( )θ  for all θ ∈  (θ0,   θT − ).

Proof:  Fix θ ∈  (θ0,   θT − ).  Since θt is continuous and strictly increasing on [0, T)

with range [θ0,   θT − ), there is a unique time t ∈  (0, T) such that θt = θ; at all times s

∈ ( t, T), players whose bias is less than θ use strategy B.  Lemma A7 implies that fT(α)
> ft(α) for all α  < θ, so

 FT(θ) = 1 – 
    

f dT ( )α α
θ

∞

∫  < 1 – 
    

f dt( )α α
θ

∞

∫  = Ft(θ) =     I
−1( )θ ,

where the final equality follows from condition (E).  ❏

Proposition A15 establishes that the jump from   θT −  is well defined.  Its proof uses

three new definitions.  Let Nε(θ) = (θ – ε, θ + ε) – {θ} be the ε-neighborhood of θ, and
let     Nε θ−( ) = (θ – ε, θ) and     Nε θ+( ) = (θ , θ + ε) be the parts of the ε-neighborhood which

lie to the left and right of θ, respectively.
Recall that when   θT −  > 0, the jump function is given by

 θT = J(fT,   θT − ) = min {θ >   θT − :  θ ∈  SEG(fT)}.

Proposition A15:  J(fT,   θT − ) is well defined.

 
Proof:  The first step in the proof is an inductive argument which considers the

elements of EG(fT) ∩  [  θT − , I(0)] in increasing order.  The inductive hypothesis is as

follows:  Suppose that   θ k  ∈  EG(fT) ∩  [  θT − , I(0)], that fT(  θ k ) =     Λ( )θ k −1, and that FT(θ) <

    I
−1( )θ  on     N

k
ε θ−( ) for some ε > 0.  Then     θ k +1 = min EG(fT) ∩  (  θ k , I(0)] is well-defined,

and FT(θ) <     I
−1( )θ  on     N

k
η θ− +( )1  for some η > 0.  We begin the induction at   θ 0  =   θT − ; the

induction ends once     fT
k( )θ ≠     Λ( )θ k −1.  It is clear that this process moves through the

elements of EG(fT) ∩  [  θT − , I(0)] in ascending order.  We show below that the process
terminates in a finite number of steps, and that this implies that J(fT,   θT − ) is well

defined and equal to the final value of   θ k .
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Lemmas A12 and A14 provide the basis for the induction.  We now show that
the inductive hypothesis is true.  To begin, we show that under the conditions of the
inductive hypothesis, FT and     I

−1 are strictly tangent at the point   θ k .  Since   θ k  ∈  EG(fT),
FT(  θ k ) =     I

k−1( )θ ; that fT(  θT − ) =     Λ( )θ
T −

−1 and the terminal condition of the induction

imply that     ′FT
k( )θ  = –fT(  θ k ) = –    Λ( )θ k −1 =     ( ) ( )I k− ′1 θ .  Thus, to establish the strict

tangency it is sufficient to show that     ′′FT
k( )θ  <     ( ) ( )I k− ′′1 θ .

Choose θ ∈      N
k

ε θ−( ).  Taking the Taylor expansion of     I
−1( )θ  – FT(θ) about   θ k

reveals that

    I
−1( )θ  – FT(θ) =     ( ( ) ( )) (( ) ( ) ( ))( )I F I Fk

T
k k

T
k k− −− + ′ − ′ −1 1θ θ θ θ θ θ

+     
1
2

1 2(( ) ( ˜) ( ˜))( )I FT
k− ′′ − ′′ −θ θ θ θ

=     
1
2

1 2(( ) ( ˜) ( ˜))( )I FT
k− ′′ − ′′ −θ θ θ θ ,

where   ̃θ  ∈  (θ,   θ k ).  Since FT(θ) <     I
−1( )θ  by assumption,     (( ) ( ˜) ( ˜))( )I FT

k− ′′ − ′′ −1 2θ θ θ θ  > 0.
Letting θ increase to   θ k , we find that     ( ) ( ) ( )I Fk

T
k− ′′ − ′′1 θ θ  ≥ 0.  Therefore, the conditions

of the inductive hypothesis, Lemma A13, and assumption (A5) imply that

    ( ) ( ) ( )I Fk
T

k− ′′ − ′′1 θ θ  > 0.  Hence, FT and     I
−1 are strictly tangent at   θ k .

Because of this strict tangency,     I
−1( )θ  > FT(θ) on Nδ(  θ

k ) for some δ > 0.  Thus, EG(fT)
∩  (  θ k , I(0)] = EG(fT) ∩  [  θ k  + δ, I(0)], the latter of which is the intersection of two
compact sets.   Therefore,     θ k +1, which is the minimum of this set, is well-defined:  it
is the first equilibrium to the right of   θ k .  Finally, since FT and     I

−1 are continuous
functions, FT(θ) <     I

−1( )θ  on     N
k

η θ− +( )1  for some η > 0.  This completes the proof of the

inductive step.
We now establish that the inductive process terminates in a finite number of

steps.  Suppose to the contrary that it does not.  Then since the   θ k  form an increasing
sequence which is bounded above by I(0), their limit θ  exists.  Since FT and I are
continuous, FT(θ ) = 

    
lim
k→∞

FT(  θ k ) = 
    
lim
k→∞     I

k−1( )θ  =     I
−1( )θ , and so θ  ∈  EG(fT); since fT and Λ

are continuous, fT(θ ) = 
    
lim
k→∞

fT(  θ k ) = 
    
lim
k→∞     Λ( )θ k −1 =   Λ( )θ −1 . Furthermore, since

    ( ) ( ) ( )I FT
− ′′ − ′′1 θ θ   is continuous on [  θT − , I(0)] and strictly positive for each   θ k ,

    ( ) ( ) ( )I FT
− ′′ + ′′1 θ θ  ≥ 0.  If we substitute θ  for   θ k , the argument two paragraphs above

shows that     ( ) ( ) ( )I FT
− ′′ + ′′1 θ θ  > 0.  Thus, FT and     I

−1 are strictly tangent at θ : FT(θ) <

    I
−1( )θ  on     Nκ θ( )  for some κ > 0.  However, this last statement contradicts that θ  is an

accumulation point of the sequence of equilibria     θ
k

k{ } =

∞

0
.  Therefore, the inductive

process must terminate in a finite number of steps, arriving at θT.  We have thus
established that θT is well-defined and that FT(θ) ≤     I

−1( )θ  on [  θT − , θT].
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To complete the proof, we must show that fT(θT) <     Λ( )θT
−1 .  Since θT is the final

point reached by the inductive process, we know that and FT(θ) <     I
−1( )θ  on     N Tη θ−( )

for some η > 0.  Choosing θ ∈      N Tη θ−( ) and taking the Taylor expansion of     I
−1( )θ  –

FT(θ) about θT, we find that

    I
−1( )θ  – FT(θ) =     ( ( ) ( )) (( ) ( ˜) ( ˜))( )I F I FT T T T T

− −− + ′ − ′ −1 1θ θ θ θ θ θ
=     ( ( ˜) ( ˜))( )− + −−Λ θ θ θ θ1 fT T

for some   ̃θ  ∈  (θ, θT).  Therefore,     fT ( ˜)θ  <   Λ( ˜)θ −1 .  Letting θ approach θT from below, we
see that fT(θT) ≤     Λ( )θT

−1 .  But fT(θT) ≠     Λ( )θT
−1  by the terminal condition of the

induction; hence, fT(θT) <     Λ( )θT
−1 .  ❏

 The complete solution trajectory     ft t t
,θ{ } ≥0

 to (D), (E), and (C) begins with an

initial round of continuous evolution.  Alternating rounds of jumps and
continuous evolution follow through the infinite time horizon; the number of
distinct rounds may or may not be finite.  Theorem A3 guarantees that each round
of continuous evolution is uniquely defined given its initial conditions; Proposition
A15 does the same for jumps.  Together, these results establish the existence and
uniqueness of the entire solution trajectory.  This establishes part (i) of the theorem.

All that remains is to characterize limit behavior.  To do so, we consider the
trajectory of the strategy distribution xt.  At each instant t, the strategy distribution is
either adjusting downward at a rate given by equation (10) or is making a discrete
jump downward as dictated by the jump function J.  Moreover, since gA is a
continuous function satisfying sgn(gA(xt)) = sgn(x – x*), the right hand side of
equation (10) is bounded below on any closed interval [x1, x2] ⊂ (0, x*).
Consequently, the limit of xt cannot exceed 0.  We therefore conclude that 

    
lim
t tx
→∞

 = 0

and that 
    
lim
t t→∞

θ  = 
    
lim ( )
t tI x
→∞

 = I(0).  This completes the proof of Theorem 2.  ■

Proof of Corollary 3:
To prove the first claim, we observe that if f0(θ) < 

    
min ( )
[ ( ), ( )]θ

θ
∈

−

I I1 0

1Λ , then F0 and     I
−1

intersect exactly once, and their intersection is the initial equilibrium θ0.
Furthermore, sgn(F0(θ) –     I

−1(θ)) = sgn(θ – θ0) for all θ in the range of I.  The claim
then follows immediately from the definition of f* and Theorem 2 (ii).

To prove the second claim, consider the case in which θ0 > 0; the proof when θ0 <
0 is similar.  Since θ0 ∈  EG(f0), F0(θ0) =     I

−1(θ0); assumption (A3) requires that f0(θ0) <
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  Λ( )θ0
1− .  Therefore, taking a Taylor expansion of F0(θ) –     I

−1(θ) about θ0 reveals that
F0(θ) >     I

−1(θ) for all θ ∈      Nε θ+( )0  for some ε > 0:  at t = 0 there are no equilibria in a

neighborhood to the right of θ0.  Therefore, since EG(f0) is closed and EG(f0) ∩ (θ0, I(0))
is non-empty, there is a first equilibrium to the right of θ0, which we denote θ* =
min EG(f0) ∩  (θ0, I(0)).
 We now show that f0(θ*) ≥   Λ( *)θ −1.  Suppose to the contrary that f0(θ*) <   Λ( *)θ −1.
Then, since θ* ∈  EG(f0), F0(θ*) =     I

−1(θ*), and so F0(θ) <     I
−1(θ) for all θ ∈      Nδ θ−( *) for

some δ > 0.  Therefore, the Intermediate Value Theorem guarantees that F0(θ) =

    I
−1(θ) for some θ ∈  (θ0, θ*), contradicting that θ* is the first equilibrium to the right

of θ0.  
 Since θ0 and θ* are equilibria under f0, f*(θ*) = f0(θ*) ≥   Λ( *)θ −1 and f*(θ0) = f0(θ0) <

  Λ( )θ0
1−  by Lemma A10.  Therefore, applying the Intermediate Value Theorem to f0(·)

–   Λ( )⋅ −1 establishes that f*(θ) =   Λ( )θ −1 for some θ ∈  (θ0, θ*].  Theorem 2 (ii) then
guarantees that a jump must occur.  ■
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