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Abstract

The projection dynamic is an evolutionary dynamic for population games. It is
derived from a model of individual choice in which agents abandon their current
strategies at rates inversely proportional to the strategies’ current levels of use. The
dynamic admits a simple geometric definition, its rest points coincide with the Nash
equilibria of the underlying game, and it converges globally to Nash equilibrium in
potential games and in stable games. JEL classification: C72, C73.

1. Introduction

Population games describe strategic interactions in settings with large numbers of
agents. In such environments, the knowledge assumptions that underlie the direct as-
sumption of equilibrium play are quite strong, making it desirable to provide explicitly
dynamic models of behavior. To accomplish this, one can posit a primitive specification
of how individual agents respond to their current incentives, and from this specifica-
tion derive a stochastic process that describes the evolution of the population’s aggregate
behavior. By computing the expected increments of this process, one can derive a deter-
ministic differential equation—the mean dynamic—that closely captures the evolution of
aggregate behavior over finite time spans.1
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When a deterministic evolutionary dynamic is derived in this fashion, the form of the
dynamic depends on the nature of the revision protocol individual agents follow when
they consider switching strategies. When agents imitate successful opponents, aggregate
behavior is described by the replicator dynamic, or by other related dynamics.2 If instead
agents directly assess the payoffs of each alternative strategy, one obtains direct (or in-
novative) dynamics; examples of these include best response and perturbed best response
dynamics, the Brown-von Neumann-Nash (BNN) dynamic, and the Smith dynamic.3

After specifying the evolutionary dynamic of interest, one can turn to questions of pre-
diction, both by establishing connections between the dynamic’s rest points and the Nash
equilibria of game at hand, and by proving convergence results for games whose payoffs
satisfy appropriate structural assumptions.4

In this paper, we study the projection dynamic, an evolutionary game dynamic intro-
duced in the transportation science literature by Nagurney and Zhang (1997).5 We provide
microfoundations for the projection dynamic by constructing a revision protocol that gen-
erates this dynamic as its mean dynamic. The protocol relies on the direct assessment
of payoffs of alternative strategies. What is most novel about the protocol is that the
rate at which an agent actively reconsiders his choice of strategy depends directly on the
popularity of his current strategy: more precisely, each agent considers abandoning his
current strategy at a rate inversely proportional to the strategy’s current level of use. One
can therefore designate the projection dynamic as capturing “revision driven by insecu-
rity”, as it describes the behavior of agents who are especially uncomfortable choosing
strategies not used by many others.

While the projection dynamic is discontinuous at the boundary of the set of population
states, it nevertheless exhibits desirable game-theoretic properties. In particular, its rest
points are precisely the Nash equilibria of the underlying game, and it converges to
equilibrium from all initial conditions in potential games and in stable games.

Given our description of the revision protocol that generates the projection dynamic,
it seems natural to expect that the behavior of the projection dynamic should be closest
to that of other direct dynamics—especially the BNN and Smith dynamics, since these
also require active reevaluation of strategies to occur at a variable rate.6 Considered from

2See Weibull (1995), Björnerstedt and Weibull (1996), Hofbauer (1995), and Schlag (1998).
3See Gilboa and Matsui (1991), Fudenberg and Levine (1998), Hofbauer and Sandholm (2007), Brown

and von Neumann (1950), Smith (1984), and Sandholm (2005, 2006).
4See Hofbauer (2000), Sandholm (2001), and Hofbauer and Sandholm (2008).
5Dupuis and Nagurney (1993) and Nagurney and Zhang (1996) use differential equations defined in

terms of projections to study a variety of economic applications outside the context of population games.
6In contrast, best response and perturbed best response dynamics have agents reconsider their strategies

at a fixed rate—see Section 4.2.
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this point of view, it is surprising that the dynamic with the closest links to the projection
dynamic is actually the replicator dynamic (Taylor and Jonker (1978)), which is founded
not on direct evaluation of payoffs, but on imitation of opponents. The many connections
between these two dynamics are explored in a companion paper, Sandholm et al. (2008).

The projection dynamic not only has appealing game-theoretic foundations and con-
vergence properties, but also admits a strikingly simple geometric definition. To best
avail ourselves of this fact, we begin the paper by presenting population games from a
geometric point of view. In a population game, there are one or more continuous popu-
lations of agents, agents in each population choose strategies from a finite set, and each
agent’s payoffs depend on his own choice and on the other agents’ aggregate behavior.7

Payoffs are described using a continuous map F : X → Rn, where n is the total number
of strategies in all populations, and X ⊂ Rn is the set of social states;8 component Fp

i (x)
of the vector F(x) ∈ Rn represents the payoff to population p’s strategy i at social state x.
With this background in place, we define the projection dynamic for population game F
by the differential equation ẋ = VF(x), where VF(x) ∈ Rn is the best approximation of the
payoff vector F(x) by a feasible direction of motion from the current state x through the
state space X.9 This geometric definition enables us to establish the projection dynamic’s
game-theoretic properties in a straightforward way.

Still, since the projection dynamic is discontinuous at the boundary of X, more funda-
mental properties of the dynamic—namely, the existence and uniqueness of its solutions—
do not follow from standard results. Fortunately, theorems due to Henry (1973) and Aubin
and Cellina (1984) (see also Dupuis and Ishii (1991) and Dupuis and Nagurney (1993)) im-
ply that solutions to the projection dynamic exist, are unique, and are Lipschitz continuous
in their initial conditions. But by virtue of its discontinuities, solutions to the projection
dynamic have some properties quite different from those of standard dynamics: its so-
lutions can merge in finite time, and can enter and exit the boundary of X repeatedly as
time passes.

Section 2 introduces population games, and Section 3 investigates their geometric
properties. Section 4 defines the projection dynamic and describes its microfoundations,
comparing them to those of other fundamental dynamics from evolutionary game theory.
Section 5 establishes the existence and uniqueness of solution trajectories, and uses ex-
amples to illustrate some of their novel properties. Section 6 provides the game-theoretic

7Notice that this framework differs from that considered by Rosen (1965) and Gabay and Moulin (1980),
in which a finite number of players select from continuous sets of strategies.

8X can also be described as the set of empirical strategy distributions. In a single-population game, X is
the unit simplex in Rn; if there are multiple populations, X is a product of simplices.

9Formally, VF(x) is the closest point projection of F(x) onto TX(x), the tangent cone of the set X at point
x; see Section 4.1.
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properties of the dynamic, including Nash stationarity and global convergence in potential
games and in stable games. Proofs omitted from the text are provided in an appendix.

2. Population Games

2.1 Definitions

Let P = {1, . . . , p} be a society consisting of p ≥ 1 populations of agents. Agents in
population p form a continuum of mass mp > 0. Agents in population p choose strategies
from the set Sp = {1, . . . ,np

}. The total number of strategies in all populations is n =
∑

p∈P np.
During play, each agent in population p selects a (pure) strategy from Sp. The set of

population states (or strategy distributions) for population p is Xp = {xp
∈ Rnp

+ :
∑

i∈Sp xp
i = mp

}.
The scalar xp

i ∈ R+ represents the mass of players in population p choosing strategy i ∈ Sp.
Elements of X =

∏
p∈P Xp = {x = (x1, . . . , xp) : xp

∈ Xp
}, the set of social states, describe

behavior in all p populations at once. When there is only one population, we omit the
superscript p from our notation and assume that the population’s mass is 1.

We generally take the sets of populations and strategies as fixed and identify a game
with its payoff function. A payoff function F : X → Rn is a Lipschitz continuous map that
assigns each social state a vector of payoffs, one for each strategy in each population.
Fp

i : X → R denotes the payoff function for strategy i ∈ Sp, while Fp : X → Rnp
denotes

the payoff functions for all strategies in Sp. Similar notational conventions are used
throughout the paper.

Social state x ∈ X is a Nash equilibrium of F if all agents in all populations play best
responses. Formally, x ∈ NE(F) if

xp
i > 0⇒ i ∈ argmax

j∈Sp
Fp

j (x) for all i ∈ Sp and p ∈ P .

2.2 Examples

Example 2.1. Random matching in symmetric normal form games. An n-strategy symmetric
normal form game is defined by a payoff matrix A ∈ Rn×n. Ai j is the payoff a player
obtains when he chooses strategy i and his opponent chooses strategy j; this payoff does
not depend on whether the player in question is called player 1 or player 2. When a
population of agents are randomly matched to play this game, the (expected) payoff
to strategy i at population state is x is Fi(x) =

∑
j∈S Ai jx j; hence, the population game

associated with A is the linear game F(x) = Ax. §
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Example 2.2. Congestion games. Congestion games provide a basic model of multilateral
externalities. For concreteness, we describe these games using the context of highway
network congestion.10 Consider a collection of towns is connected by a network of links
L. For each ordered pair p ∈ P of towns, there is a population of agents, each of whom
needs to commute from the first town in the pair (where he lives) to the second (where he
works). To accomplish this, the agent must choose a path: each path i ∈ Sp consists of a set
of links Lp

i ⊆ L connecting the towns in pair p. An agent’s payoff from choosing path i is
the negation of the delay on this path. The delay on a path is the sum of the delays on its
links, and the delay on link is a function of the number of agents using that link. Formally,

Fp
i (x) = −

∑
l∈Lp

i

cl(ul(x)), where ul(x) =
∑
p∈P

∑
i∈Sp: l∈Lp

i

xp
i .

When congestion games are used to model highway networks or other environments in
which externalities are negative, the cost functions cl are increasing in the utilization levels
ul. But one can also use congestion games to capture positive externalities by assuming
that the cost functions cl are decreasing. §

3. The Geometry of Population Games

In this section, we present population games from a geometric point of view, noting
the key roles played by projections onto tangent spaces and tangent cones.

3.1 Tangent Spaces and Orthogonal Projections for Population Games

3.1.1 Definitions

The tangent space of Xp, denoted TXp, is the smallest subspace of Rnp
that contains all

vectors describing motions between points in Xp. In other words, if xp, yp
∈ Xp, then

yp
− xp

∈ TXp, and TXp is the span of all vectors of this form. Evidently, TXp contains
exactly those vectors in Rnp

whose components sum to zero: TXp = {zp
∈ Rnp

:
∑

i∈Sp zp
i = 0}.

All directions of motion between points in the set of social states X are contained in its
tangent space, the product set TX =

∏
p∈P TXp.

Projections—in particular, projections of payoff vectors onto sets of feasible directions
of motion—play a central role throughout this paper. When the target space of a pro-
jection is a linear subspace, like the tangent spaces TXp and TX, the appropriate notion

10See Beckmann et al. (1956), Rosenthal (1973), Monderer and Shapley (1996), and Sandholm (2001).
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of projection is orthogonal projection. The geometric definition of orthogonal projection is
well-known; algebraically, orthogonal projections are the linear operations represented
by symmetric idempotent matrices.

We represent the orthogonal projection onto the subspace TXp
⊂ Rnp

by the matrix
Φ ∈ Rnp

×np
, defined by Φ = I − 1

np 11′. Here 1 = (1, ..., 1)′ is the vector of ones, so 1
np 11′ is the

matrix whose entries are all 1
np .

The projectionΦhas a simple interpretation. If vp is a payoffvector in Rnp
, the projection

of vp onto TXp is

Φvp = vp
−

1
np 11′vp = vp

− 1

 1
np

∑
k∈Sp

vp
k

 .
Thus, the ith component of the vector Φvp is the difference between the actual payoff
to strategy i and the unweighted average payoff of all strategies in Sp. Put differently
Φvp discards information about the absolute level of payoffs under vp while retaining
information about relative payoffs. This is interesting from a game-theoretic point of
view, since incentives, and hence Nash equilibria, only depend on payoff differences.
Therefore, when incentives (as opposed to, e.g., efficiency) are our main concern, the
projected payoff vectors Φvp are sufficient statistics for the actual payoff vectors vp.

Since TX =
∏

p∈P TXp is a product set, the orthogonal projection onto TX is represented
by a block diagonal matrix,Φ = diag(Φ, . . . ,Φ) ∈ Rn×n. If we applyΦ to the payoff vector
v = (v1, . . ., vp), the resulting vector Φv = (Φv1, . . .,Φvp) lists the relative payoffs in each
population.

3.1.2 Drawing Population Games

Low-dimensional population games can be presented in pictures. Consider these two
single-population, two-strategy games, a coordination game and a Hawk-Dove game:

F(x) =

1 0
0 2

 x1

x2

 =  x1

2x2

 and F(x) =

−1 2
0 1

 xH

xD

 = 2xD − xH

xD

 .
Figures 1(i) and 1(ii) present these two games, along with their projected versions,

ΦF(x) = Φ

 x1

2x2

 =  1
2x1 − x2

−
1
2x1 + x2

 and ΦF(x) = Φ

2xD − xH

xD

 =  1
2 (xD − xH)
1
2 (xH − xD)

 .
The figures are synchronized with the payoff matrix by using the vertical coordinate to
represent the mass on the first strategy and the horizontal coordinate to represent the
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x

x1

2

(i) Coordination

x1

x2

(ii) Hawk-Dove

Figure 1: The payoff vector field F(·) and its projection ΦF(·) in two two-strategy games.

mass on the second strategy. At various states x, we draw (scaled down) versions of the
corresponding payoff vectors F(x) and projected payoff vectors ΦF(x).

Let us focus first on Figure 1(i), representing the coordination game. At the pure state
e1 = (1, 0), at which all agents play strategy 1, the payoffs to the two strategies are F1(e1)
= 1 and F2(e1) = 0, so the payoff vector F(e1) points directly upward. At the interior Nash
equilibrium x∗ = (x∗1 , x

∗
2) = ( 2

3 ,
1
3 ), each strategy earns a payoff of 2

3 ; the arrow representing
payoff vector F(x∗) = ( 2

3 ,
2
3 ) is drawn at a right angle to the simplex, implying that the

projected payoff vector ΦF(x∗) = (0, 0) is null. Similar logic explains how the payoff
vectors are drawn at other states, and how Figure 1(ii) is constructed as well.

These diagrams help us visualize the incentives faced by agents playing these games. In
the coordination game, the payoff vectors “push outward” toward the two axes, reflecting
an incentive structure that drives the population toward the two pure Nash equilibria.
In contrast, payoff vectors in the Hawk-Dove game “push inward”, away from the axes,
reflecting forces leading the population toward the interior Nash equilibrium x∗ = ( 1

2 ,
1
2 ).

Representing three-strategy games in two-dimensional pictures requires more care.
Figure 2 presents a “three-dimensional” picture of the simplex X situated in its ambient
plane aff(X) = {x ∈ R3 :

∑
i∈S xi = 1} in R3, known as the affine hull of X. When we draw

the simplex on a sheet of paper as an equilateral triangle, the paper represents a portion
of this plane. Each payoff vector F(x) in a three-strategy game is an element of R3, but the
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e1

e2 e3

F(x)

x
ΦF(x)

Figure 2: The simplex X ⊂ R3 and its affine hull.

projected payoff vector ΦF(x) lies in the two-dimensional tangent space TX. If the vector
ΦF(x) is drawn as an arrow rooted at state x, then by construction this arrow will lie in the
plane aff(X) (see Figure 2).

In Figures 3(i) and 3(ii), we use this approach to draw pictures of two single-population
games with three strategies: a coordination game and a standard Rock-Paper-Scissors
game:

F(x) =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3

 and F(x) =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 =

xS − xP

xR − xS

xP − xR

 .
Of course, these drawings are actually of the projected payoffs

ΦF(x) = Φ


x1

2x2

3x3

 =


1
3 (2x1 − 2x2 − 3x3)
1
3 (−x1 + 4x2 − 3x3)
1
3 (−x1 − 2x2 + 6x3)

 and ΦF(x) = Φ


xS − xP

xR − xS

xP − xR

 =

xS − xP

xR − xS

xP − xR

 .
But since standard RPS is symmetric zero-sum (i.e., since its payoff matrix is skew-
symmetric), the original and projected payoffs for this game are identical.

Much like Figure 1(i), Figure 3(i) shows that in the three-strategy coordination game,
the projected payoff vectors push outward toward the extreme points of the simplex.
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1

2 3

(i) Coordination

R

P S

(ii) Standard Rock-Paper-Scissors

Figure 3: The projected payoff vector field ΦF(·) in two three-strategy games.

Figure 3(ii) exhibits a property that is only possible when there are three or more strategies:
instead of heading toward Nash equilibria, the vectors in this figure describe cycle around
state x∗ = ( 1

3 ,
1
3 ,

1
3 ), the unique Nash equilibrium of standard RPS.

3.2 Tangent Cones and Normal Cones for Convex Sets

All vectors z ∈ TX represent feasible motions from social states in the (relative) interior
of X. To represent a feasible motion from a boundary state, a vector cannot cause an
unused strategy to lose mass. To describe sets of such motions, we introduce the notion
of a tangent cone to a convex set. Defining closest point projections onto these sets will
enable us to define the projection dynamic. For further background on these topics, see,
e.g., Hiriart-Urruty and Lemaréchal (2001).

3.2.1 Definitions

The set K ⊆ Rn is a cone if whenever it contains the vector z, it contains each vector αz
with α > 0. If K is a closed convex cone, its polar cone K◦ is a new closed convex cone:

K◦ = {y ∈ Rn : y′z ≤ 0 for all z ∈ K}.

In words, K◦ contains all vectors that form a weakly obtuse angle with each vector in K.
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If the closed convex cone K is symmetric, in the sense that K = −K, then K is actually
a linear subspace of Rn; in this case, K◦ = K⊥, the orthogonal complement of K. More
generally, polarity defines an involution on the set of closed convex cones: that is, (K◦)◦ = K
for any closed convex cone K.

If C ⊂ Rn is a closed convex set, then the tangent cone of C at state x ∈ C, denoted TC(x),
is the closed convex cone

TC(x) = cl
(
{z ∈ Rn : z = α(y − x) for some y ∈ C and some α ≥ 0}

)
.

If C ⊂ Rn is a polytope (i.e., the convex hull of a finite number of points), then the closure
operation is redundant. In this case, TC(x) is the set of directions of motion from x that
initially remain in C; more generally, TC(x) also contains the limits of such directions. If
x is in the (relative) interior of C, then TC(x) is just TC, the tangent space of C; otherwise,
TC(x) is a strict subset of TC.

The normal cone of C at x is the polar of the tangent cone of C at x: that is, NC(x) = TC(x)◦.
By definition, NC(x) is a closed convex cone, and it contains every vector that forms a
weakly obtuse angle with every feasible displacement vector at x.

3.2.2 Normal Cones and Nash Equilibria

When X is the set of social states of a population game, each tangent cone TX(x)
contains the feasible directions of motion from social state x ∈ X. In multipopulation
cases TX(x) can be decomposed population by population.11

In Figures 4(i) and 4(ii), we sketch examples of tangent cones and normal cones when
X is the state space of a two-strategy game and of a three-strategy game. Since Figure
4(ii) is two-dimensional, with the sheet of paper representing the plane aff(X), the figure
actually displays the projected normal cones ΦNX(x).

At first glance, normal cones might appear to be less relevant to game theory than
tangent cones. Theorem 3.1 shows that this impression is false, and provides us with a
simple geometric description of Nash equilibria of population games. Versions of this
result can be found in the literature on variational inequalities—see Harker and Pang
(1990) and Nagurney and Zhang (1996).

Theorem 3.1. Let F be a population game. Then x ∈ NE(F) if and only if F(x) ∈ NX(x).

Proof. x ∈ NE(F)⇔ [xp
i > 0⇒ Fp

i (x) ≥ Fp
j (x)] for all i, j ∈ Sp, p ∈ P

11That is: since X =
∏

p∈P Xp is a product set, TX(x) =
∏

p∈P TXp(xp) is a product set as well. Similarly, we
have that NX(x) =

∏
p∈P NXp(xp); this fact is used in the proof of Theorem 3.1 below.
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x

y

TX(x)

NX(x)

TX(y) NX(y)

(i) n = 2

x

v

TX(x)

TX(v)

y
TX(y)

Φ(NX(v))

Φ(NX(y))

Φ(NX(x)) = {0}

(ii) n = 3

Figure 4: Tangent cones and (projected) normal cones in two- and three-strategy games.

⇔ (xp)′Fp(x) ≥ (yp)′Fp(x) for all yp
∈ Xp, p ∈ P

⇔ (yp
− xp)′Fp(x) ≤ 0 for all yp

∈ Xp, p ∈ P
⇔ (zp)′Fp(x) ≤ 0 for all zp

∈ TXp(x), p ∈ P
⇔ Fp(x) ∈ NXp(xp) for all p ∈ P
⇔ F(x) ∈ NX(x). �

In the Figures 1 and 3 above, Nash equilibria are marked with dots. In the two-
strategy games, the Nash equilibria are those states x at which the payoff vector F(x) lies
in the normal cone NX(x), as Theorem 3.1 shows. In the three-strategy games, the Nash
equilibria are those states x at which the projected payoff vectorΦF(x) lies in the projected
normal cone ΦNX(x); this is an easy corollary of Theorem 3.1.

3.3 Closest Point Projections onto Convex Cones

3.3.1 Definition and Characterization

To define the projection dynamic on the boundary of X, we need to introduce projec-
tions onto convex cones. If K ⊂ Rn is a closed convex cone, then the closest point projection
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ΠK : Rn
→ K is defined by

ΠK(v) = argmin
z∈K

∣∣∣z − v
∣∣∣ .

If K is a subspace of Rn (i.e., if K = −K), then the closest point projection onto K is simply
the orthogonal projection onto K.

The fundamental result about projections onto closed convex cones is the Moreau
Decomposition Theorem, which generalizes the notion of orthogonal decomposition to the
“one-sided” world of convex cones. In words, this theorem tells us that the projections of
the vector v onto K and K◦ are the unique vectors in K and K◦ that are orthogonal to one
another and that sum to v. For a proof, see Hiriart-Urruty and Lemaréchal (2001)

Theorem 3.2 (The Moreau Decomposition Theorem). Let K ⊆ Rn and K◦ ⊆ Rn be a closed
convex cone and its polar cone, and let v ∈ Rn. Then the following are equivalent:

(i) vK = ΠK(v) and vK◦ = ΠK◦(v).
(ii) vK ∈ K, vK◦ ∈ K◦, (vK)′vK◦ = 0, and v = vK + vK◦ .

3.3.2 Projecting Payoff Vectors onto Tangent Cones of X

In Figures 5(i) and 5(ii), we draw the projected payoff functions V(·) = ΠTX(·)F(·) for
our two three-strategy games. In these figures, each payoff vector F(x) is represented by
ΠTX(x)(F(x)), the best approximation by a feasible direction of motion from x. Evidently, the
states x at which the projected payoff vector is null are precisely the Nash equilibria of the
underlying game. That this is true in general is an immediate consequence of Theorems
3.1 and 3.2:

Corollary 3.3. Let F be a population game. Then x ∈ NE(F) if and only if ΠTX(x)(F(x)) = 0.

3.3.3 An Explicit Formula for ΠTX(x)(v)

In general, explicitly computing a closest point projection onto a convex cone requires
solving a quadratic program. The next result, Theorem 3.4, shows that the projection
onto TXp(xp) admits a simple explicit description. Since the projection onto TX(x) can be
decomposed population by population, this formula is sufficient to determineΠTX(x)(v).12

12More explicitly: since TX(x) = TX1(x1) × · · · × TXp(xp) is a product set, we have that ΠTX(x)(v) =
ΠTX1(x1)(v1) × · · · ×ΠTXp (xp )(vp).
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1

2 3

(i) Coordination

R

P S

(ii) Standard Rock-Paper-Scissors

Figure 5: Vector fields V(·) = ΠTX(·)F(·) obtained by projecting payoffs onto tangent cones.

Theorem 3.4. The projection ΠTXp(xp)(vp) can be expressed as follows:

(ΠTXp(xp)(vp))i =

vp
i −

1
#S p(vp,xp)

∑
j∈S p(vp,xp) vp

j if i ∈ S p(vp, xp),

0 otherwise.

Here, the set S p(vp, xp) ⊆ Sp contains all strategies in support(xp), along with any subset of
Sp
− support(xp) that maximizes the average 1

#S p(vp,xp)

∑
j∈S p(vp,xp) vp

j .

The proof of Theorem 3.4 can be found in the appendix.
To explain Theorem 3.4, let us avoid superscripts by focusing on the single population

case. Imagine that v ∈ Rn is the vector of payoffs earned by strategies in S = {1, . . . ,n} at
state x ∈ X. When x is in the interior of X, the tangent cone TX(x) is the just the subspace TX;
therefore, the closest point projection onto TX(x) is the orthogonal projection Φ = I − 1

n11′

from Section 3.1, which subtracts the average payoff under v from each component of v:

(1) (ΠTX(x)(v))i = (Φv)i = vi −
1
n

∑
j∈S

v j.

If instead there is exactly one unused strategy at state x, say strategy n, then the tangent
cone TX(x) consists of vectors in TX whose nth component is nonnegative. In this case,
if strategy n earns an above average payoff, then (Φv)n ≥ 0, and Theorem 3.4 tells us that
formula (1) still applies. But if strategy n earns a below average payoff, then (Φv)n < 0,
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so ΠTX(x)(v) cannot equal Φv. Instead, according to Theorem 3.4, the nth component of
ΠTX(x)(v) is set to 0, while the remaining components ofΠTX(x)(v) are obtained from those of
v by subtracting 1

n−1 (v1+ . . .+ vn−1) from each. More generally, the components ofΠTX(x)(v)
corresponding to “bad” unused strategies are set to 0, while the remaining components
are obtained from v by normalizing away the average of these components only.

4. The Projection Dynamic: Definition and Microfoundations

4.1 Definition

An evolutionary dynamic is a map that assigns each population game F a dynamical
system on the set of social states X. Typically the dynamical system is described by a
differential equation ẋ = VF(x). To define the projection dynamic, we suppose that the
vector VF(x) is the best approximation of the payoff vector F(x) by a feasible direction
of motion from x. As we noted in the introduction, this dynamic first appears in the
transportation science literature in the work of Nagurney and Zhang (1997); see also
Nagurney and Zhang (1996, Ch. 8).

Definition. The projection dynamic assigns each population game F the differential equation

(P) ẋ = ΠTX(x)(F(x)).

When x ∈ int(X), the tangent cone TX(x) is just the subspace TX, so the explicit
formula for (P) is simply ẋ =ΦF(x). When x ∈ bd(X), the explicit formula for (P) is given
by Theorem 3.4.

A relative of the projection dynamic from the economics literature is the linear dynamic
of Friedman (1991, p. 643 and 661). Like the projection dynamic, the linear dynamic is
defined by ẋ = ΦF(x) on the interior of X. But at boundary states, the linear dynamic
posits that all unused strategies have growth rates of zero, making the boundary forward
invariant, while the growth rate of each strategy in use is the difference between its payoff
and the average payoff of the strategies in use. By Theorem 3.4, the linear dynamic
is identical to the projection dynamic if and only if at each state x ∈ bd(X) and in all
populations p ∈ P , every unused strategy earns a payoff no greater than the average
payoff of the strategies in use.
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4.2 Microfoundations

We can provide microfoundations for evolutionary dynamics by deriving them from
explicit models of individual choice. In this section, we provide such a foundation for
the projection dynamic, and use this foundation to relate the dynamic to other dynamics
from the literature. To conserve on notation, we focus on the single population setting;
the analysis of multipopulation settings is a straightforward extension.

A revision protocol ρ : Rn
× X → Rn×n

+ describes the process through which individual
agents in an evolutionary model make decisions. As time passes, agents are chosen at
random from the population and granted opportunities to switch strategies. When an i
player receives such an opportunity, he switches to strategy j with probability proportional
to the conditional switch rate ρi j(F(x), x). For future reference, we observe that the sum∑

j∈S ρi j(F(x), x) describes the rate at which strategy i players actively reevaluate their choice
of strategy.

When a large population of agents using revision protocol ρplays game F, its aggregate
behavior is described by the mean dynamic13

(M) ẋi = VF
i (x) =

∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x).

The first term in (M) captures the inflow of agents to strategy i from other strategies, while
the second term captures the outflow of agents from strategy i to other strategies.

In Table I, we present the revision protocols corresponding to five fundamental evo-
lutionary dynamics: the replicator dynamic (Taylor and Jonker (1978)), the best response
dynamic (Gilboa and Matsui (1991)), the logit dynamic (Fudenberg and Levine (1998)), the
BNN dynamic (Brown and von Neumann (1950)), and the Smith dynamic (Smith (1984)).
In the first and fourth of these examples, the function

(2) F̂i(x) = Fi(x) −
∑
k∈S

xkFk(x)

describes the excess payoff to strategy i: that is, the difference between strategy i’s payoff
and the average payoff obtained by members of the population.

The replicator dynamic is the prime example of an imitative dynamic. Its revision
protocol has agents choose new strategies by imitating opponents, as reflected by the x j

term in the definition of ρi j.14 By contrast, the other dynamics in the table are direct (or

13See Benaı̈m and Weibull (2003) and Sandholm (2003, 2006).
14The revision protocol in the table, called pairwise proportional imitation, is due to Schlag (1998). Other

revision protocols that generate the replicator dynamic can be found in Björnerstedt and Weibull (1996),
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Revision protocol Evolutionary dynamic Name of dynamic

ρi j = x j[F j − Fi]+ ẋi = xiF̂i(x) replicator

ρi· ∈ argmax
y∈X

y′F(x) ẋ ∈ argmax
y∈X

y′F(x) − x best response

ρi j =
exp(η−1F j)∑

k∈S exp(η−1Fk)
ẋi =

exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

− xi logit

ρi j = [F̂ j]+ ẋi = [F̂i(x)]+ − xi
∑
j∈S

[F̂ j(x)]+ BNN

ρi j = [F j − Fi]+
ẋi =

∑
j∈S

x j[Fi(x) − F j(x)]+

−xi
∑
j∈S

[F j(x) − Fi(x)]+
Smith

Table I: Five evolutionary dynamics and their revision protocols.

innovative) dynamics, as the choices of new strategies under the protocols that generate
them are not mediated through imitation of opponents.

We can also classify the dynamics according to whether agents actively reconsider their
choices of strategy at a rate that is both fixed and independent of the strategy currently
chosen. We call dynamics based on protocols of this sort simple dynamics. The best
response and logit dynamics are simple in this sense, while the other dynamics listed in
the table are not.15

Our goal in this section is to introduce a revision protocol whose mean dynamic is the
projection dynamic, and to relate it to the protocols noted above. As a step toward this
goal, consider the following imitative protocol:

(3) ρi j =


[F̂i(x)]

−
·

x j [F̂ j(x)]
+∑

k∈S xk [F̂k(x)]+
if

∑
k∈S

xk [F̂k(x)]+ > 0,

0 otherwise.

Under protocol (3), an agent actively reevaluates his choice of strategy only if his current

Weibull (1995), and Hofbauer (1995); also see Proposition 4.1 below.
15More explicitly, under the protocols for the best response and logit dynamics, ρi j(F(x), x) does not depend

on the current strategy i, and so can be written as σ j(F(x), x); furthermore, the vector σ(F(x), x) is not only
nonnegative, but is also a probability vector: σ(F(x), x) ∈ X for all x ∈ X. It thus follows from equation (M)
that these dynamics can be written in the “target” form ẋ = σ(F(x), x)− x, meaning that the vector of motion
can be drawn with its tail at the current state x and its head at the state σ(F(x), x) defined by the current
choice probabilities. The replicator, BNN, and Smith dynamics cannot be expressed in this form.
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payoff is below average; he does so at a rate proportional to how far below average. In
this event, the agent chooses an opponent at random, switching to the opponent’s strategy
only if the opponent’s payoff is above average, with probability proportional to how far
above average; with the complementary probability, the agent chooses a new opponent
at random and repeats the procedure.

Proposition 4.1, whose proof is provided in the Appendix, shows that the mean dy-
namic of protocol (3) is the replicator dynamic.

Proposition 4.1. Revision protocol (3) generates the replicator dynamic (R) as its mean dynamic.

We return at last to the projection dynamic by modifying protocol (3). To start, we
define

(4) F̃S
i (x) = Fi(x) −

1
#S (F(x), x)

∑
k∈S (F(x),x)

Fk(x).

Like the excess payoff F̂i defined in equation (2), F̃S
i is given by the difference between

strategy i′s payoff and an average payoff. But here the latter is an unweighted average,
and it only includes strategies in the set S (F(x), x) defined in Theorem 3.4.

Next we define the revision protocol

(5) ρi j =


[F̃S

i (x)]
−

xi
·

[F̃S
j (x)]

+∑
k∈S (F(x),x) [F̃S

k (x)]
+

if
∑

k∈S (F(x),x)
xi [F̃S

k (x)]
+
> 0,

0 otherwise.

Protocol (5) differs from protocol (3) in three ways. First, where in (3) conditional switch
rates depend on weighted average payoffs, in (5) they depend on unweighted average
payoffs. Second, while in (3) the decision to actively reevaluate only depends on payoffs,
in (5) this decision also depends on the current strategy’s popularity. In particular, the
rate at which agents abandon strategy i is inversely proportional to xi, and so can be
understood as a model of “revision driven by insecurity”.16 Finally, once an agent using
protocol (5) decides to actively consider switching strategies, his decision about which
strategy to choose next is not based on imitation as in (3), but rather on the direct choice of
possible alternatives. In this respect, the protocol resembles those of the BNN and Smith
dynamics than that of the replicator dynamic.

16For one foundation for this functional form, suppose that at every moment in time, each agent chooses
members of his population at random until he draws someone playing his own strategy, and then considers
switching strategies at a rate proportional to the number of draws. As this number of draws has a geometric(xi)
distribution, the expected number of draws is 1

xi
.
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Proposition 4.2, whose proof is in the Appendix, confirms that the mean dynamic of
revision protocol (5) is the projection dynamic.

Proposition 4.2. Revision protocol (5) generates the projection dynamic (P) as its mean dynamic.

Despite the fact that one of them is imitative and the other direct, the similarity between
protocols (3) and (5) suggests the possibility of other connections between the replicator
dynamic and the projection dynamic. There are in fact many such connections, and they
are explored in the companion paper, Sandholm et al. (2008).

To conclude this section, we note that foundations recently have been suggested for
another game dynamic defined in terms of closest point projections. The dynamic

(TP) ẋ = PX(x + F(x)) − x.

first appears in the transportation literature in the work of Friesz et al. (1994), and is dubbed
the target projection dynamic in Sandholm (2005), where a common mathematical ancestry
is provided for this dynamic and the projection dynamic (P). Tsakas and Voorneveld
(2007) show that the dynamic (TP) can be derived from a revision protocol based on best
responses, if payoffs to mixed strategies are subjected to state-dependent perturbations:

(6) ρi· = argmax
y∈X

(
y′F(x) − 1

2

∣∣∣y − x
∣∣∣2) .

Under protocol (6), each agent cares directly about the distance between his chosen
mixed strategy and the current population state. Such preferences seem difficult to justify.
At the same time, protocol (6) suggests a role for the target projection dynamic as a model
of myopic learning in normal form games, as studied, e.g., by Börgers and Sarin (1997)
and Hopkins (2002).

5. Basic Properties of Solution Trajectories

5.1 Existence, Uniqueness, and Continuity of Forward Solutions

Since the projection dynamic (P) is discontinuous at the boundary of X, standard
results on the existence of solutions to differential equations do not apply to it. Indeed,
the appropriate notion of solution for this equation must allow for kinks at boundary
states: we call the trajectory {xt}t≥0 ⊂ X a (Carathéodory) solution to (P) if it is absolutely
continuous and satisfies equation (P) at almost every t ≥ 0. Theorem 5.1 shows that despite
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1

2 3

Figure 6: Phase diagram of (P) for a coordination game. Grayscale represents speeds: lighter
shades indicate faster motion.

these inconveniences, forward-time solutions to (P) exist, are unique, and are Lipschitz
continuous in their initial conditions.

Theorem 5.1. Let a Lipschitz continuous population game F and an initial condition ξ ∈ X be
given. Then there exists a unique solution {xt}t≥0 to the projection dynamic (P) with x0 = ξ.
Solutions to (P) are Lipschitz continuous in their initial conditions: if {xt}t≥0 and {yt}t≥0 are
solutions to (P), then

∣∣∣yt − xt

∣∣∣ ≤ ∣∣∣y0 − x0

∣∣∣ eKt for all t ≥ 0, where K is the Lipschitz coefficient for F.

The existence result in Theorem 5.1 follows from more general existence results proved
by Henry (1973) and Aubin and Cellina (1984, Sec. 5.6), and later rediscovered by Dupuis
and Ishii (1991) and Dupuis and Nagurney (1993). In the appendix, we briefly present a
proof of Theorem 5.1 based on the Viability Theorem for differential inclusions.

5.2 Examples

While the projection dynamic admits a unique solution from every initial condition,
these solutions differ from solutions to standard Lipschitz differential equations in a
number of important respects, as the following examples illustrate.
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Example 5.2. A three-strategy coordination game. In Figure 6, we present the phase diagram
for the projection dynamic in the three-strategy coordination game

A =


1 0 0
0 2 0
0 0 3

 .
This phase diagram provides the solution trajectories generated by the vector field pictured
in Figure 5(i). In both Figure 6 and Figure 7, the background color represents the speed
of motion: regions where motion is fastest are red, while regions where motion is slowest
are blue. (Since the dynamic changes discontinuously at the boundary of X, the colors are
only guaranteed to represent speeds at interior states.)

As one travels away from the completely mixed equilibrium, the speed of motion
increases until the boundary of the state space is reached; thus, bd(X) is reached in finite
time. At this point, the solution changes direction, merging with a solution that travels
along the boundary of the simplex, implying that backward-time solutions from boundary
states are not unique. All solutions reach one of the seven symmetric Nash equilibria of A
in finite time, with solutions from almost all initial conditions leading to one of the three
strict equilibria. §

Example 5.3. Rock-Paper-Scissors games. Consider the payoffmatrix

A =


0 −l w
w 0 −l
−l w 0

 .
with w, l > 0. A is a good RPS game if w > l (that is, if the winner’s profit is higher than
the loser’s loss). A is a standard RPS game if w = l, and A is a bad RPS game if w < l. In all
cases, the unique symmetric Nash equilibrium of A is x∗ = ( 1

3 ,
1
3 ,

1
3 ).

Figure 7 presents phase diagrams for the projection dynamic in good RPS (w = 3, l = 2),
standard RPS (w = l = 1), and bad RPS (w = 2, l = 3). In all three games, solutions spiral
around the Nash equilibrium in a counterclockwise direction. In good RPS (Figure 7(i)),
all solutions converge to the Nash equilibrium. Solutions that start at an interior state
close to a vertex first hit and then travel along the boundary of X; they then reenter int(X)
and spiral inward toward x∗. In standard RPS (Figure 7(ii)), all solutions enter closed
orbits at a fixed distance from x∗. Solutions starting at distance 1

√
6

or greater from x∗ (i.e.,
all solutions at least as far from x∗ as the state (0, 1

2 , 1
2 )) merge with the closed orbit at

distance 1
√

6
from x∗; other solutions maintain their initial distance from x∗ forever. In bad
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P S

(i) Good RPS (w = 3, l = 2).

R

P S

(ii) Standard RPS (w = l = 1).

R

P S

(iii) Bad RPS (w = 2, l = 3).

Figure 7: Phase diagrams of (P) for three Rock-Paper-Scissors games. Grayscale represents speeds:
lighter shades indicate faster motion.

–21–



RPS (Figure 7(iii)), all solutions other than the one starting at x∗ enter the same closed
orbit. This orbit alternates between segments through the interior of X and segments that
traverse the boundaries of X.

In all three versions of RPS, there are solution trajectories starting in int(X) that reach
bd(X) in finite time. By Theorem 3.4, solutions leave bd(X) at the point where the unused
strategy’s payoff exceeds the average payoff of the two strategies in use. §

6. Equilibrium and Convergence Properties

6.1 Nash Stationarity and Positive Correlation

Next, we first establish two basic game-theoretic properties of the projection dynamic.
To state these properties, suppose that F is a population game and ẋ = V(x) an evolutionary
dynamic for this game. Define RP(V) = {x ∈ X : V(x) = 0} to be the set of rest points of V.

(NS) Nash stationarity RP(V) = NE(F).
(PC) Positive correlation [Vp(x) , 0⇒ Vp(x)′Fp(x) > 0] for all p ∈ P .

Nash stationarity (NS) requires that the Nash equilibria of the game F and the rest
points of the dynamic V coincide. Dynamics satisfying this condition provide the strongest
support for the fundamental solution concept of noncooperative game theory. Positive
correlation (PC) imposes restrictions on disequilibrium dynamics. It requires that when-
ever population p ∈ P is not at rest, there is a positive correlation between the growth
rates and payoffs of strategies in Sp. In geometric terms, (PC) demands that the direction
of motion Vp(x) and the payoff vector Fp(x) form acute angles with one another whenever
Vp(x) is not null. This property, versions of which have been studied by Friedman (1991),
Swinkels (1993), and Sandholm (2001), is an important ingredient in establishing global
convergence results—see Section 6.2 below.

Both (NS) and (PC) are simple consequences of the developments in Section 3.

Proposition 6.1. The projection dynamic satisfies Nash stationarity (NS) and positive correlation
(PC).

Proof. Property (NS) is a restatement of Corollary 3.3. To prove property (PC), we take
the Moreau decomposition of the payoff vector Fp(x):

Vp(x)′Fp(x) = ΠTXp(xp)(Fp(x))′
(
ΠTXp(xp)(Fp(x)) +ΠNXp(xp)(Fp(x))

)
=

∣∣∣ΠTXp(xp)(Fp(x))
∣∣∣2
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≥ 0.

The inequality is strict if and only if ΠTXp(xp)(Fp(x)) = Vp(x) , 0. �

6.2 Global Convergence in Potential Games

In the remainder of this section, we show that the projection dynamic converges to
Nash equilibrium from all initial conditions in two important classes of games: potential
games (Monderer and Shapley (1996), Sandholm (2001, 2008)) and stable games (Hofbauer
and Sandholm (2008)).

In a potential game, information about all strategies’ payoffs is encoded in a single
scalar-valued function on the state space X. Following Sandholm (2008), we call the
population game F : X → Rn a potential game if it admits a potential function f : X → R
satisfying

(7) ∇ f (x) =ΦF(x) for all x ∈ X.

Since the domain of f is X, the gradient vector ∇ f (x) is the unique vector in TX that
represents the derivative of f at X, in the sense that f (y) = f (x) + ∇ f (x)′(y − x) + o(|y − x|)
for all y ∈ X. Definition (7) requires that this gradient vector always equal the projected
payoff vectorΦF(x). Common interest games, congestion games, and games defined by
variable externality pricing schemes are all potential games.

In potential games, all limit points of the projection dynamic are Nash equilibria.

Theorem 6.2. Let F be a potential game with potential function f . Then f is a strict Lyapunov
function for the projection dynamic (P) on X. Therefore, each solution to (P) converges to a
connected set of Nash equilibria of F.

Proof. Property (PC) and the fact that V(x) ∈ TX imply that

˙f (x) = ∇ f (x)′ẋ = (ΦF(x))′V(x) = F(x)′V(x) =
∑
p∈P

Fp(x)′Vp(x) ≥ 0,

and that ˙f (x) = 0 if and only if V(x) = 0. Therefore, standard results (e.g., Theorem 7.6 of
Hofbauer and Sigmund (1988)) imply that every solution of (P) converges to a connected
set of rest points of V. By Nash stationarity, these rest points are all Nash equilibria. �

–23–



6.3 Global Convergence and Cycling in Stable Games

The population game F is a stable game (Hofbauer and Sandholm (2008)) if

(8) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

If inequality (8) is strict whenever y , x, then F is a strictly stable game; if (8) is always
satisfied with equality, then F is a null stable game. The set of Nash equilibria of any stable
game is convex; if F is strictly stable, then NE(F) is a singleton. Games with an interior
ESS, wars of attrition, and congestion games in which congestion is a bad are all stable
games, while zero-sum games are null stable games.17

Let

Ex∗(x) =
∣∣∣x − x∗

∣∣∣2 ,
the squared Euclidean distance from the Nash equilibrium x∗. Nagurney and Zhang
(1997) show that Ex∗ is a Lyapunov function in any stable game. The analysis to follow
includes a streamlined proof of their result.

Theorem 6.3. Let x∗ be a Nash equilibrium of F.
(i) If F is a stable game, then Ex∗ is a Lyapunov function for (P), so x∗ is Lyapunov stable

under (P).
(ii) If F is a strictly stable game, then Ex∗ is a strict Lyapunov function for (P), so NE(F) = x∗

is globally asymptotically stable under (P).
(iii) If F is a null stable game and x∗ ∈ int(X), then Ex∗ defines a constant of motion for (P) on

int(X).

Proof. The proof of Theorem 3.1 shows that x∗ is a Nash equilibrium if and only if

(9) (x − x∗)′F(x∗) ≤ 0 for all x ∈ X.

By adding this inequality to inequality (8), Hofbauer and Sandholm (2008) show that if F
is a stable game, then x∗ ∈ NE(F) if and only if x∗ is a globally neutrally stable state of F:

(10) (x − x∗)′F(x) ≤ 0 for all x ∈ X;

while if F is a strictly stable game, then its unique Nash equilibrium x∗ is also its unique

17In the variational inequality literature, condition (8) is known as monotonicity—see Minty (1967), Kinder-
lehrer and Stampacchia (1980), Harker and Pang (1990), and Nagurney (1999). Further discussion of
condition (8) can be found in Hofbauer and Sandholm (2008).
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globally evolutionarily stable state:

(11) (x − x∗)′F(x) < 0 for all x ∈ X − {x∗}.

Now suppose that F is stable. Using the Moreau decomposition, equation (10), and
the fact that x∗ − x ∈ TX(x), we compute the time derivative of Ex∗ over a solution to (P):

Ėx∗(x) = ∇Ex∗(x)′ẋ(12)

= 2(x − x∗)′ΠTX(x)(F(x))

= 2(x − x∗)′F(x) + 2(x∗ − x)′ΠNX(x)(F(x))

≤ 2(x∗ − x)′ΠNX(x)(F(x))

≤ 0.

Thus, Ex∗ is a Lyapunov function for (P), which implies that x∗ is Lyapunov stable. If F is
strictly stable, then equation (11) implies that the first inequality in (12) is strict; thus, Ex∗

is a strict Lyapunov function for (P), and so x∗ is globally asymptotically stable.
Finally, suppose that F is null stable and that x∗ is an interior Nash equilibrium. The

first of these assumptions tells us that equation (8) always holds with equality, while the
second implies that all pure strategies are optimal, and hence that equation (9) always
holds with equality. Adding these two equalities shows that equation (10), and hence the
first inequality in (12), always holds with equality. If x ∈ int(X), then NX(x) and TX(x) are
orthogonal, so the the second inequality in (12) holds with equality as well. Therefore,
Ėx∗(x) = 0 on int(X), and so Ex∗ defines a constant of motion for (P) on this set. �

To conclude this section, we show that at interior states, the squared speed of motion
under (P) also serves as a Lyapunov function for (P). Unlike that of the distance function
Ex∗ , the definition of this function does not directly incorporate the Nash equilibrium x∗.

Theorem 6.4. Let F be continuously differentiable. If F is a stable game, then L(x) = |ΦF(x)|2 is
a Lyapunov function for (P) on int(X). If F is a null stable, then L defines a constant of motion for
(P) on int(X).

Proof. Since F is C1, the Fundamental Theorem of Calculus implies that F is stable if
and only if

(13) z′DF(x)z ≤ 0 for all z ∈ TX and x ∈ X,

and that F is null stable game if and only if inequality (13) always binds.
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When x ∈ int(x), the projection dynamic is given by ẋ = ΦF(x). Therefore, since
DΦF(x) =ΦDF(x) andΦ2 =Φ, we find that

L̇(x) = ∇L(x)′ẋ = 2(ΦF(x))′DΦF(x)(ΦF(x)) = 2(ΦF(x))′DF(x)(ΦF(x)).

Of course, ΦF(x) ∈ TX. Therefore, if F is stable, then L̇(x) ≤ 0 on int(X), and if F is null
stable, then L̇(x) = 0 on int(X). �

The results in this section are illustrated by our phase diagrams for the projection
dynamic in Rock-Paper-Scissors games (Example 5.3). Good RPS defines a strictly sta-
ble population game. In its phase diagram (Figure 7(i)), we see that distance from the
equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ) falls over time, and that the speed of motion falls over time on

int(X). Standard RPS is a zero-sum game, and so defines a null stable population game.
In this game’s phase diagram (Figure 7(ii)), both distance from equilibrium and the speed
of motion remain fixed over time on int(X).

As with its behavior in potential games, the behavior of the projection dynamic in
stable games provides a link between it and the replicator dynamic. This link and others
are explored in the companion paper, Sandholm et al. (2008).

A. Appendix

The Proof of Theorem 3.4
In this section, we derive the formula for the projection map ΠTXp(xp)(vp) stated in

Theorem 3.4. To eliminate superscripts, we suppose that p = 1. Then Theorem 3.4 is an
immediate consequence of the two propositions to follow.

Proposition A.1. The vector z∗ = ΠTX(x)(v) is defined by

(14) z∗i =

 vi − µ if xi > 0, or if xi = 0 and vi > µ,

0 if xi = 0 and vi ≤ µ

for some µ = µ(v, x).

Proof. Let Y = {i ∈ S : xi > 0} and N = {i ∈ S : xi = 0} denote the sets of strategies that
are used and unused at x. Then z∗ is the solution to the following quadratic program:

min
z∈Rn

1
2

∑
i∈S

(
zi − vi

)2 s.t.
∑
i∈S

zi = 0

and zi ≥ 0 for all i ∈ N.
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The Lagrangian for this program is

L
(
z, µ, γ

)
= −1

2

∑
i∈S

(zi − vi)2
− µ

∑
i∈S

zi +
∑
j∈N

λ jz j,

so the Kuhn-Tucker first order conditions are

z∗i = vi − µ for all i ∈ Y,(15a)

z∗j = v j − µ + λ j for all j ∈ N,(15b)

λ j ≥ 0 for all j ∈ N, and(15c)

λ jz∗j = 0 for all j ∈ N.(15d)

If we let N+ = {i ∈ N : z∗i > 0} and N0 = { j ∈ N : z∗j = 0} we can rewrite the Kuhn-Tucker
conditions (15a-15d) as

z∗i = vi − µ > 0 for all i ∈ Y ∪N+,(16a)

v∗j = z j − µ + λ j = 0 for all j ∈ N0, and(16b)

λ j ≥ 0 for all j ∈ N0.(16c)

It follows immediately from equations (16a-16c) that

(17) N+ = {i ∈ N : vi > µ} and N0 = {i ∈ N : vi ≤ µ}.

Equations (16a-16c) and (17) together yield equation (14). �

To complete our description of z∗ = ΠTX(x)(v), and hence of the projection dynamic (P),
we need to determine the value of µ = µ(x, v). To accomplish this, we permute the names
of the strategies in S so that strategies 1 through nY = #Y are in Y and strategies nY + 1
through n are in N, with the latter strategies ordered so that vnY+1 ≥ vnY+2 ≥ · · · ≥ vn. For
k ∈ {1, . . . ,n}, let

µk =
1
k

k∑
i=1

vi

be the average of the first k components of v. Throughout the analysis, we make use of
the recursion

µk+1 =
1

k + 1
vk+1 +

k
k + 1

µk,
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which tells us that µk+1 and vk+1 deviate from µk in the same direction. Finally, to simplify
the statement of the result to follow, we set µn+1 = −∞.

Proposition A.2. The Lagrange multiplier µ is equal to µk∗ , where

k∗ = min
{
k ∈ {nY, . . . ,n} : µk+1 ≤ µk

}
.

Therefore, the set of unused strategies with positive components in z∗ is N+ =
{
nY + 1, . . . , k∗

}
.

Proof. To prove the proposition, it is enough to show that µk∗ satisfies

vi > µk∗ for all i ∈ N+, and

µk∗ ≥ v j for all j ∈ N0.

Therefore, by our ordering assumption, we need only show that

if k∗ > nY, then vk∗ > µk∗ , and(18)

if k∗ < n, then µk∗ ≥ vk∗+1.(19)

We divide the analysis into four cases. If nY = n, then k∗ = n as well, and conditions
(18) and (19) are vacuous. (In this case, we obtain µ = µn =

1
n

∑n
i=1 vi and z∗ = Φv, as

expected.) Therefore, for the remainder of the proof we can suppose that nY < n.
If k∗ = nY, then condition (18) is vacuous. Since µk∗+1 ≤ µk∗ by the definition of k∗, it

follows from the recursion that vk∗+1 ≤ µk∗ , which is condition (19).
If k∗ ∈ {nY, . . . ,n − 1}, then the definition of k∗ tells us that µk∗ > µk∗−1. It then follows

from the recursion that vk∗ > µk∗−1, and hence that

vk∗ >
1
k∗

vk∗ +
k∗ − 1

k∗
µk∗−1 = µk∗ ,

which is condition (18). The definition of k∗ also tells us that µk∗+1 ≤ µk∗ ; the recursion
then reveals that vk∗+1 ≤ µk∗ , which is condition (19).

Finally, if nY < n and k∗ = n, then condition (19) is vacuous, and repeating the
corresponding proof from the previous case gives us condition (18). �

The Proof of Proposition 4.1
Observe that the weighted average of the components of the excess payoff vector F̂(x)
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is 0:

∑
k∈S

xkF̂k(x) =
∑
k∈S

xk

Fk(x) −
∑
l∈S

xlFl(x)

 =∑
k∈S

xkFk(x) −
∑
l∈S

xlFl(x) = 0.

It follows directly that

(20)
∑
k∈S

xk[F̂k(x)]+ =
∑
k∈S

xk[F̂k(x)]−.

Now fix a state x ∈ X. If both sides of equation (20) equal 0 at x, then the mean dynamic
generated by protocol (3) has a rest point at x; but since in this case xkF̂k(x) = 0 for all k ∈ S,
the dynamic (R) has a rest point at x as well. On the other hand, if both sides of equality
(20) are positive at state x, we can use this equality to compute as follows:

ẋi =
∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j

=
∑
j∈S

x j

(
[F̂ j(x)]−

xi[F̂i(x)]+∑
k∈S xk[F̂k(x)]+

)
− xi

∑
j∈S

[F̂i(x)]−
x j[F̂ j(x)]+∑

k∈S xk[F̂k(x)]+


= xi[F̂i(x)]+ − xi[F̂i(x)]−

= xiF̂(x),

This too agrees with equation (R), completing the proof. �

The Proof of Proposition 4.2
Write S for S (F(x), x). Since

∑
k∈S

F̃S
k (x) =

∑
k∈S

FS
k (x) −

1
#S

∑
l∈S

FS
l (x)

 = 0,

we see that

(21)
∑
k∈S

[F̃S
k (x)]+ =

∑
k∈S

[F̃S
k (x)]−.

Also, we note these two implications of Theorem 3.4:

if j ∈ S and x j = 0, then [F̃S
j (x)]− = 0;(22)

if j < S , then [F̃S
j (x)]+ = 0.(23)
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Fix a state x ∈ X. If both sides of equation (21) equal 0 at x, then the mean dynamic
generated by protocol (5) has a rest point at x; but since in this case F̃S

k (x) = 0 for all k ∈ S ,
the dynamic (P) has a rest point at x as well.

Suppose instead that both sides of equation (21) are positive at state x. If xi > 0, we
can use equations (22), (23), and (21) to compute as follows:

ẋi =
∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j

=
∑

j: x j>0

x j

 [F̃S
j (x)]−

x j
·

[F̃S
i (x)]+∑

k∈S [F̃S
k (x)]+

 − xi

∑
j∈S

 [F̃S
i (x)]−
xi

·

[F̃S
j (x)]+∑

k∈S[F̃S
k (x)]+


=


∑

j: x j>0
[F̃S

j (x)]−∑
k∈S

[F̃S
k (x)]+

 [F̃S
i (x)]+ −


∑
j∈S

[F̃S
j (x)]+∑

k∈S
[F̃S

k (x)]+

 [F̃S
i (x)]−

=


∑
j∈S

[F̃S
j (x)]−∑

k∈S
[F̃S

k (x)]+

 [F̃S
i (x)]+ −


∑
j∈S

[F̃S
j (x)]+∑

k∈S
[F̃S

k (x)]+

 [F̃S
i (x)]−

= [F̃S
i (x)]+ − [F̃S

i (x)]−

= F̃S (x).

This agrees with equation (P). If xi = 0, then the second term in the previous calculation
drops out immediately, and the calculation of the first term shows that ẋi = [F̃S

i (x)]+, again
in agreement with equation (P). This completes the proof of the theorem. �

The Proof of Theorem 5.1
We first sketch a proof of existence of solutions to (P) due to Aubin and Cellina (1984).

Define the multivalued map V : X→ Rn by

V(x) =
⋂
ε>0

cl

conv

 ⋃
y∈X:|y−x|≤ε

ΠTX(y)(F(y))


 .

In words, V(x) is the closed convex hull of all values of ΠTX(y)(F(y)) that obtain at points
y arbitrarily close to x. It is easy to check that V is upper hemicontinuous with closed
convex values. Moreover, V(x) ∩ TX(x), the set of feasible directions of motion from
x contained in V(x), is always equal to {ΠTX(x)(F(x))}, and so in particular is nonempty.
Because V(x) ∩ TX(x) , ∅, the Viability Theorem for differential inclusions (Aubin and
Cellina (1984, Theorem 4.2.1)) implies that for each ξ ∈ X, a Carathéodory solution {xt}t≥0
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to ẋ ∈ V(x) exists. But since V(x)∩ TX(x) = {ΠTX(x)(F(x))}, this solution must also solve the
original equation (P).

Our proof of uniqueness and Lipschitz continuity of solutions to (P) follows Cojocaru
and Jonker (2004). Let {xt} and {yt} be solutions to (P). Using the chain rule, Theorem 3.2,
and the Lipschitz continuity of F, we see that

d
dt

∣∣∣yt − xt

∣∣∣2 = 2(yt − xt)
′(ΠTX(yt)(F(yt)) −ΠTX(xt)(F(xt)))

= 2(yt − xt)
′(F(yt) − F(xt)) − 2(yt − xt)

′(ΠNX(yt)(F(yt)) −ΠNX(xt)(F(xt)))

= 2(yt − xt)
′(F(yt) − F(xt)) + 2(xt − yt)

′ΠNX(yt)(F(yt))

+ 2(yt − xt)
′ΠNX(xt)(F(xt))

≤ 2(yt − xt)
′(F(yt) − F(xt))

≤ 2K
∣∣∣yt − xt

∣∣∣2 ,
and hence that∣∣∣yt − xt

∣∣∣2 ≤ ∣∣∣y0 − x0

∣∣∣2 + ∫ t

0
2K

∣∣∣ys − xs

∣∣∣ ds.

Gronwall’s inequality then implies that∣∣∣yt − xt

∣∣∣2 ≤ ∣∣∣y0 − x0

∣∣∣2 e2Kt.

Taking square roots yields the inequality stated in the theorem. �
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