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Abstract

We offer a parsimonious definition of large population potential games, provide
some alternate characterizations, and demonstrate the advantages of the new defini-
tion over the existing definition, but also show the equivalence of the two definitions.

1. Introduction

Potential games admit a variety of practical applications and possess appealing theo-
retical properties, most notably the convergence of myopic adjustment processes to Nash
equilibrium. Sandholm (2001), building on the work of Beckmann et al. (1956), Monderer
and Shapley (1996), and Hofbauer and Sigmund (1988), defines and analyzes potential
games in settings with large populations of anonymous agents.

In this paper, we provide a new definition of potential games for these large population
settings. At first glance it may seem that the definition proposed here is more general
but more complicated than the one from Sandholm (2001); however, we show that if
population sizes are fixed, the two definitions are equivalent. Equally importantly, the new
definition is both more parsimonious and easier to verify than the old one: while under the
old definition, checking whether a game is a potential game requires constructing extended
payoff functions that satisfy certain properties, the new definition can be verified directly.

While our analysis allows for multiple populations (i.e., multiple player roles), it is
easier to describe the main ideas informally by focusing on the single population case. In
this setting, an n-strategy population game is defined by a vector of payoff functions F =

(F1, . . . , Fn) defined on the set of population states—that is, the simplex X in Rn.
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In Sandholm (2001), potential games are defined using standard concepts from multi-
variable calculus. A population game F is called a potential game if there is a scalar-valued
function f , the potential function, whose gradient always equals the vector of payoffs; put
differently, the payoff to strategy i must always be given by the ith partial derivative of f .
By standard results, F is a potential game in this sense if and only if its derivative matrices
DF(x) are symmetric, so that corresponding cross partial derivatives of F are equal.

Because the statements above involve partial derivatives, they only make sense if the
relevant functions are defined on a full-dimensional subset of Rn—for instance, on the
positive orthant Rn

+. In particular, checking the symmetry of the derivative matrix DF(x)
requires us to extend the payoff functions from the simplex X to the orthant Rn

+. Since
points outside the simplex are not population states, extending payoffs in this way is
not parsimonious. Worse still, this approach makes it difficult to decide whether a given
population game is a potential game. Even if the extensions one has checked do not
satisfy the symmetry condition, an extension that one has not checked may do so. Simple
examples in Sections 3 and 4 show that this possibility is real.

We therefore offer a definition of potential games that does not require such extensions:
payoffs and potential need only be defined on the simplex. Later on, in Theorem 4.3,
we characterize potential games using a derivative symmetry condition, but one that
continues to make sense when payoffs are only defined on the simplex.

From a game theoretic point of view, the key difference between the new and old
definitions is this: While under the old definition, the gradient ∇ f completely describes
payoffs under F, under the new definition, the gradient need only describe relative payoffs
under F—in other words, differences between the payoffs of pairs of strategies. In this
sense, the new definition accords more closely with that of Monderer and Shapley (1996),
as their normal form potential games are defined by the property that differences in payoffs
are captured by differences in potential.

The new definition and characterization employ the orthogonal projection Φ. When
applied to a payoff vector π, Φ returns the demeaned version of that vector, so that Φπ

only retains information about relative payoffs. Using Φ in the definition of potential
games is an uncomplicated way of ensuring that only relative payoffs are regulated by
the definition.

What is the link between the old and new definitions of large population potential
games? Surprisingly, Theorem 4.1 shows that the two definitions are equivalent: given
a payoff function F and potential function f defined on the simplex, there is always an
extension of these functions to Rn

+ that satisfies the definition of potential games from
Sandholm (2001). In particular, the information about payoffs not initially captured
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by f —namely, information about average payoffs—can always be incorporated into the
extension of f . This result tells us that the old definition of potential games does not entail
a loss of generality. But the new approach is superior: since it does not require extensions,
it allows us to decide whether a population game is a potential game in a systematic way.

Section 2 introduces population games. Section 3 reviews the definition of potential
games from Sandholm (2001), explains the inadequacies of this definition, and proposes
a new one. Section 4 relates the old and new definitions, and also describes situations in
which the old definition is more useful than the new one.

2. Games Played by Large Populations

2.1 Population Games

Let P = {1, ..., p} be a society consisting of p ≥ 1 populations of agents. Agents in
population p form a continuum of mass mp > 0.

The set of strategies available to agents in population p is denoted Sp = {1, . . . ,np
}, and

has typical elements i, j, and (in the context of normal form games) sp. We let n =
∑

p∈P np

equal the total number of pure strategies in all populations.
During game play, each agent in population p selects a strategy from Sp. The set of

population states (or strategy distributions) for population p is thus Xp = {xp
∈ Rnp

+ :
∑

i∈Sp xp
i =

mp
}. The scalar xp

i ∈ R+ represents the mass of players in population p choosing strategy
i ∈ Sp. Elements of X =

∏
p∈P Xp = {x = (x1, . . . , xp) ∈ Rn

+ : xp
∈ Xp
}, the set of social states,

describe behavior in all p populations at once.
We generally take the sets of populations and strategies as fixed and identify a game

with its payoff function. A payoff function F: X → Rn is a continuous map that assigns
each social state a vector of payoffs, one for each strategy in each population. Fp

i : X → R
denotes the payoff function for strategy i ∈ Sp, while Fp: X → Rnp denotes the payoff

functions for all strategies in Sp. When p = 1, we omit the redundant superscript p from
all of our notation.

Example 2.1. Random matching in normal form games. A p-player normal form game is defined
by a strategy set Sp = {1, . . . , np

} and a utility function Up : S → R for each player
p ∈ P = {1, ..., p}, p ≥ 2. The domain of Up is the set of pure strategy profiles S =

∏
q∈P Sq.

Suppose that agents from p unit-mass populations are randomly matched to play the
normal form game U = (U1, . . . ,Up), with one agent from each population q being drawn to
serve in player role q. Then the probability that an agent from population p is matched with
opponents who jointly play strategy profile s−p

∈ S−p =
∏

r,p Sr is
∏

r,p xr
sr . The population
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game defined by this random matching procedure therefore has the multilinear payoff

function

(1) Fp
sp(x) =

∑
s−p ∈S−p

Up(s1, . . . , sp)
∏
r,p

xr
sr for all x ∈ X. §

2.2 Full Population Games

In searching for interesting properties of population games, it seems natural to consider
the marginal effect of adding new agents choosing strategy j ∈ Sq on the payoffs of agents

currently choosing strategy i ∈ Sp. This effect is captured by the partial derivative
∂Fp

i

∂xq
j
.

But if Fp
i is only defined on X, the payoffs that would arise were newcomers to enter the

population are not defined. For this reason, even if Fp
i is differentiable (in a sense to be

made explicit below), its partial derivatives do not exist.
To ensure that partial derivatives exist, we can extend the domain of payoff functions

from the state space X = {x = (x1, . . . , xp) ∈ Rn
+ :

∑
i∈Sp xp

i = mp
} to the entire positive orthant

Rn
+. We call the resulting game F̃ : Rn

+ → Rn a full-dimensional population game, or simply a
full population game.

As suggested above, one can sometimes interpret this extended definition of payoffs as
describing the values that payoffs would take were the population masses to change. For
instance, this interpretation is the natural one in congestion games: here it makes sense
to consider the effects of changing the number of drivers commuting between a certain
origin/destination pair, and it is clear how one ought to define the payoffs at any newly
feasible state x ∈ Rn

+ − X.1 But in other settings, there may be no one choice of extension
that is obviously “correct” from a game-theoretic point of view.

Example 2.2. Random matching in normal form games revisited. Suppose we would like to
define a full population game version of the random matching game (1). Many extensions
of definition (1) from X to Rn

+ are equally good in principle. But of these, the easiest to
write down is the extension that retains the multilinear functional form from (1):

(2) F̃p
sp(x) =

∑
s−p ∈S−p

Up(s1, . . . , sp)
∏
r,p

xr
sr for all x ∈ Rn

+. §

1In particular, the cost of choosing path i should equal the sum of the delays on the links in the path,
where the delay on a link is described by a nondecreasing function of the number of drivers on that link—see
Beckmann et al. (1956) or Sandholm (2001).
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3. Large Population Potential Games

3.1 Full Potential Games

We can now present a definition of potential games used in Sandholm (2001).2

Definition. We call the full population game F̃ : Rn
+ → Rn a full potential game if there exists

a continuously differentiable function f̃ : Rn
+ → R satisfying

(FP) ∇ f̃ (x) = F̃(x) for all x ∈ Rn
+.

Property (FP) can be stated more explicitly as

∂ f̃
∂xp

i

(x) = F̃p
i (x) for all p ∈ P , i ∈ Sp and x ∈ Rn

+.

We call the function f̃ , which is unique up to an additive constant, the full potential function
for the game F̃.

That payoffs are fully captured by the scalar-valued function f̃ is the source of full
potential games’ attractive properties. Nash equilibria of F̃ can be characterized in
terms of Kuhn-Tucker conditions for maximizers of f̃ . Moreover, reasonable evolutionary
dynamics—namely, dynamics in which strategies’ growth rates are positively correlated
with their payoffs—ascend potential, and therefore converge to sets of rest points from
all initial conditions. Since under many dynamics the rest points are identical to the
Nash equilibria of F̃, this global convergence result provides a strong justification of the
prediction of Nash equilibrium play.

Suppose that F̃ is continuously differentiable (C1). Then by the standard integrability
condition from multivariable calculus (see, e.g., Lang (1997)), F̃ is a full potential game if
and only if it satisfies full externality symmetry:

(FES) DF̃(x) is symmetric for all x ∈ Rn
+.

More explicitly, F̃ is a full potential game if and only if

(3)
∂F̃p

i

∂xq
j

(x) =
∂F̃q

j

∂xp
i

(x) for all i ∈ Sp, j ∈ Sq, p, q ∈ P , and x ∈ Rn
+.

2Actually, while we suppose here that payoffs and potential are defined on Rn
+, in Sandholm (2001) we

assumed that these were defined on the smaller set X̄ =
∏

p∈P X̄p
⊂ Rn

+, where X̄p = {xp
∈ Rnp

+ :
∑

i∈Sp xp
i ∈

[mp
− ε,mp + ε]} for some ε > 0. As both of these domains are full-dimensional, they accomplish the same

purpose.
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Thus, full externality symmetry has a natural game-theoretic interpretation: the effect on
the payoffs to strategy i ∈ Sp of introducing new agents choosing strategy j ∈ Sq must
always equal the effect on the payoffs to strategy j of introducing new agents choosing
strategy i.

3.2 An Example

The difficulties that the definition of full potential games allows are illustrated in the
following example.

Example 3.1. Random matching in normal form potential games. The normal form game U is
a potential game (Monderer and Shapley (1996)) if there is a potential function V : S → R
such that

(4) Up(ŝp, s−p)−Up(sp, s−p) = V(ŝp, s−p)−V(sp, s−p) for all ŝp, sp
∈ Sp, s−p

∈ S−p, and p ∈ P .

In words, U is a potential game if any unilateral deviation has the same effect on the
deviator’s payoffs as it has on potential. Equivalently, U is a potential game if there is a
potential function V and auxiliary functions Wp : S−p

→ R such that

(5) Up(s) = V(s) + Wp(s−p) for all s ∈ S and p ∈ P ,

so that each player’s payoff is the sum of a common payoff term and a term that only
depends on opponents’ behavior.

Suppose that p populations of agents are randomly matched to play the normal form
potential game U . The full population game we obtain from equation (2) is

(6) F̃p
sp(x) =

∑
s−p∈S−p

(V(s) + Wp(s−p))
∏
r,p

xr
sr for all x ∈ Rn

+,

where V and Wp are the potential and auxiliary functions from equation (5).
Since the normal form game U admits a potential function, it seems natural to expect

F̃ to admit one as well. But if we compute the partial derivatives of payoffs, we find that

∂F̃p
sp

∂xq
sq

(x) =
∑

s−{p,q}∈S−{p,q}

(
V(s) + Wp(sq, s−{p,q})

) ∏
r,p,q

xr
sr , while

∂F̃q
sq

∂xp
sp

(x) =
∑

s−{p,q}∈S−{p,q}

(
V(s) + Wq(sp, s−{p,q})

) ∏
r,p,q

xr
sr .

–6–



Thus, without further assumptions about Wp and Wq, F̃ is not a full potential game.
If each Wp is identically zero, so that U is a common interest game, then the partial

derivatives above are equal, and so F̃ is a full potential game. In this case, if we let f̃ :
Rn

+ → R equal aggregate payoffs in F̃ divided by p,

(7) f̃ (x) = 1
p

∑
p∈P

∑
sp∈Sp

xp
spF̃

p
sp(x) =

∑
s∈S

V(s)
∏
r∈P

xr
sr ,

we find that

∂ f̃
∂xp

sp

(x) =
∑

s−p∈S−p

V(s)
∏
r,p

xr
sr = F̃p

sp(x).

Thus, ∇ f̃ (x) = F̃(x) for all x ∈ Rn
+, and so f̃ is a full potential function for F̃. §

This example seems to suggest that random matching in a normal form potential
game does not generate a full potential game. But we will soon see that the example
is misleading. While equation (6) is the only way to define the payoffs of the random
matching game on the state space X, equation (6) implicitly uses extension (2) to define
payoffs on the rest of Rn

+. Theorem 4.1 shows that by choosing the extension more carefully,
one can ensure that conditions (FP) and (FES) are satisfied.

More fundamentally, Example 3.1 illustrates the difficulties inherent in definitions that
require the existence of extensions satisfying certain properties. If we only know how
payoffs must be defined on the state space X, it is not obvious how to determine whether
an extension to Rn

+ satisfying conditions like (FP) and (FES) exists: the fact that we have
not found an extension satisfying these properties does not necessarily mean that no such
extension exists.

The most parsimonious approach to this problem is to work directly with payoff and
potential functions defined on the state space X. Since in this case partial derivatives of
payoffs and potential are not defined, the usual definitions from multivariate calculus do
not apply, and so must be replaced by notions of differentiation for functions defined on
affine spaces. In geometric terms, this means that derivatives can only be evaluated with
respect to directions tangent to X, which represent feasible changes in the social state. As
we will see, the game theoretic consequence of this restriction is that potential functions
defined on X only provide information about relative payoff levels.

Once this parsimonious analysis has been carried out, it is not difficult to introduce
alternative definitions that use payoff extensions, and thus avoid affine calculus, but that
do not cause the difficulties illustrated in the example above. We show how this is done
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in Section 3.4 and Corollary 4.6 below.

3.3 Derivatives and Tangent Spaces

We now introduce the definitions we need to proceed with the analysis proposed
above. For a more thorough treatment of these ideas, see Akin (1990).

The tangent space TX of the state space X is the smallest subspace of Rn containing all
directions of motion through X. One can verify that TX =

∏
p∈P TXp, where the set TXp =

{zp
∈ Rnp :

∑
i∈Sp zp

i = 0} is the tangent space of Xp.
Let f : X→ R be a scalar-valued function on X. Then f is differentiable at x ∈ X if there

is a linear map D f (x) : TX→ R, the derivative of f at x, satisfying

f (x + z) = f (x) + D f (x)z + o(z) for all z ∈ TX.

The gradient of f at x is the unique vector ∇ f (x) ∈ TX such that D f (x)z = ∇ f (x)′z for all
z ∈ TX. It is worth emphasizing that the uniqueness requirement here is with respect to
the set TX. More generally, if v ∈ Rn is any vector that represents D f (x) in the sense above,
then ∇ f (x) = Φv, where the matrix Φ ∈ Rn×n is the orthogonal projection of Rn onto TX
defined below.

Analogous definitions apply to vector-valued functions on X. If F : X → Rn is C1,
its derivative at x ∈ X is a linear map from TX to Rn; while many matrices in Rn×n can
represent this derivative, applying the logic above to each component of F shows that
there is a unique such matrix, the derivative matrix DF(x), whose rows are in TX.

A leading role in our analysis is played by the orthogonal projection onto TXp, repre-
sented by the symmetric matrix Φ ∈ Rnp

×np . This matrix can be written explicitly as

Φ = I − 1
np 11′,

where I is the identity matrix and 1 ∈ Rnp is the vector of ones. Since TX =
∏

p∈P TXp,
it follows that the orthogonal projection onto TX is given by the block diagonal matrix
Φ = diag(Φ, . . .,Φ) ∈ Rn×n.

If πp
∈ Rnp is a payoff vector for population p, then the projected payoff vector

Φπp = πp
− 1 · 1

np

∑
i∈Sp

πp
i ≡ π

p
− 1 π̄p

subtracts the average payoff π̄p from each component of πp. In other words, Φ preserves
the differences between components of πp while normalizing their sum to zero. The
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residual from the projection, (I − Φ)πp = 1 π̄p, is a constant vector whose components
all equal π̄p, the average payoff of strategies belonging to population p. By the same
logic, if π = (π1, . . ., πp) ∈ Rn is a payoff vector for the society, then Φπ = (Φπ1, . . .,Φπp)
normalizes each of the p pieces of the vector π separately, and (I −Φ)π = (1π̄1, . . ., 1π̄p)
describes average payoffs in each population.

3.4 Potential Games

With these preliminaries in hand, we present our new definition.

Definition. Let F: X → Rn be a population game. We call F a potential game if it admits a
potential function: a C1 function f : X→ R that satisfies

(P) ∇ f (x) =ΦF(x) for all x ∈ X.

Since the potential function f has domain X, the gradient vector ∇ f (x) is by definition
an element of the tangent space TX. Condition (P) requires that this gradient vector
always equalΦF(x), the projection of the payoff vector F(x) onto TX. Put differently, the
gradient of the potential function f must capture relative payoffs in F.

At the cost of sacrificing parsimony, one can avoid affine calculus by using a function
defined throughout Rn

+ to play the role of the potential function f . To do so, one simply
includes the projectionΦ on both sides of the analogue of equation (P).

Observation 3.2. If F is a potential game with potential function f : X → R, then any C1

extension f̃ : Rn
+ → R of f satisfies

(8) Φ∇ f̃ (x) =ΦF(x) for all x ∈ X.

Conversely, if the population game F admits a function f̃ satisfying condition (8), then F is a
potential game, and the restriction f = f̃

∣∣∣
X

is a potential function for F.

This observation is immediate from the relevant definitions. In particular, if f̃ and f
agree on X, then for all x ∈ X the gradient vectors ∇ f̃ (x) and ∇ f (x) define identical
linear operators on TX, implying that Φ∇ f̃ (x) = Φ∇ f (x). But since Φ∇ f (x) = ∇ f (x) by
definition, it follows thatΦ∇ f̃ (x) = ∇ f (x); this equality and definition (P) yield the result.

Observation 3.2 can be restated in a way that uses simple differences rather than the
orthogonal projectionΦ.3 Note that condition (8) is equivalent to the dual condition

z′∇ f̃ (x) = z′F(x) for all z ∈ TX and x ∈ X.
3I thank an anonymous referee for suggesting condition (9).
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Since the set of vectors of the form ep
j − ep

i span the subspace TX, this condition is itself
equivalent to

(9)
∂ f̃
∂xp

j

(x) −
∂ f̃
∂xp

i

(x) = Fp
j (x) − Fp

i (x) for all p ∈ P , i, j ∈ Sp and x ∈ X.

We therefore have

Proposition 3.3. Observation 3.2 remains true if condition (8) is replaced by condition (9).

For an application of this result, see Section 3.5 below.
We conclude with a representation of potential games and potential functions that uses

multipopulation versions of conditions due to Hofbauer and Sigmund (1988, p. 243). Let
X p = {x p

∈ Rnp
−1

+ :
∑np

−1
i=1 x p

i ≤ mp
} denote the projection of Xp

⊂ Rnp onto Rnp
−1, and let

X =
∏

p∈P X p. Then ψ(x p) = (x p
1 , . . . , x

p
np−1,m

p
−

∑np
−1

i=1 x p
i ) is a bijection from X p to Xp, and

ψ(x ) = (ψ1(x 1), . . . , ψp(x p)) is a bijection from X to X.

Proposition 3.4. Let F : X → Rn be a population game, and define the function G : X → Rn−p

by

(10) Gp
i (x ) = Fp

i (ψ(x )) − Fp
np(ψ(x )) for all p ∈ P , i < np and x ∈ X .

Then F is a potential game with potential function f : X→ R if and only if there exists a function
g : X → R such that

(11)
∂g
∂x p

i

(x ) = Gp
i (x ) for all p ∈ P , i < np and x ∈ X .

When these statements are true, f and g are related by g(x ) = f (ψ(x )) + c.

Proof. Suppose first that F is a potential game with potential function f . Then defining
g : X → R by g(x ) = f (ψ(x )), and letting ep

i denote the (i, p)th standard basis vector in Rn,
we find that

∂g
∂x p

i

(x ) =
∂ f

∂(ep
i − ep

np)
(ψ(x )) = Fp

i (ψ(x )) − Fp
np(ψ(x )) = Gp

i (x ),

so equation (11) holds.
Conversely, suppose that G and g satisfy equation (11). If we define f : X → R by
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f (x) = g(ψ−1(x)), then since ψ−1(x) = (. . . , xp
1, . . . , x

p
np−1, x

p+1
1 , . . .) it follows that

∂ f
∂(ep

i − ep
np)

(x) =
∂g
∂x p

i

(ψ−1(x)) = Gp
i (ψ−1(x)) = Fp

i (x) − Fp
np(x).

As vectors of the form ep
i − ep

np span TX, we conclude that F is a potential game with
potential function f . �

3.5 Example Revisited

For a first application of our new definition, we revisit random matching in normal
form potential games (Example 3.2).4

Let U be a normal form potential game with potential function V and auxiliary func-
tions Wp, and let F : X→ Rn be the corresponding population game:

Up(s) = V(s) + Wp(s−p);

Fp
sp(x) =

∑
s−p∈S−p

(V(s) + Wp(s−p))
∏
r,p

xr
sr

This F is the restriction to X of the full potential game F̃ : Rn
+ → Rn from equation (6). If

we define the function f̃ : Rn
+ → R as in equation (7),

f̃ (x) =
∑
s∈S

V(s)
∏
r∈P

xr
sr ,

we find that

∂ f̃
∂xp

ŝp

(x) −
∂ f̃
∂xp

sp

(x) =
∑

s−p∈S−p

(
V(ŝp, s−p) − V(sp, s−p)

)∏
r,p

xr
sr

= Fp
ŝp(x) − Fp

sp(x).

Therefore, by Proposition 3.3, F is a potential game with potential function f = f̃
∣∣∣
X

.
Conversely, let U be a normal form game, and let F : X → R be the corresponding

population game as defined in equation (1). Since the payoffs to an agent in population p
do not depend on the choices of other agents in population p, we can write Fp(x) = Fp(x−p)
whenever it is convenient to do so.

4I thank an anonymous referee for suggesting the arguments to follow, which improve significantly on
my initial proof.
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Suppose that F is a potential game with potential function f : X → R as defined in
equation (P). Fix a player p and two strategies ŝp, sp

∈ Sp, and let ep
i denote the (i, p)th

standard basis vector in Rn. Since ep
ŝp − ep

sp ∈ TX, definition (P) implies that

(ep
ŝp − ep

sp)′∇ f (x) = (ep
ŝp − ep

sp)′F(x) = Fp
ŝp(x) − Fp

sp(x) = Fp
ŝp(x−p) − Fp

sp(x−p)

for all x ∈ X. Thus, letting ιpi denote the ith standard basis vector in Rnp , and setting
yp(t) = t ιpŝp + (1 − t) ιpsp , we have that

f (ιpŝp , x−p) − f (ιpsp , x−p) =

∫ 1

0
∇ f (yp(t), x−p)′(ep

ŝp − ep
sp) dt = Fp

ŝp(x−p) − Fp
sp(x−p).

Now define V : S → R by V(s) = f (ι1
s1 , . . . , ι

p
sp ). Fix a strategy sq

∈ Sq for each player
q , p; then setting yq = ιqsq for each such q, we find that

Up(ŝp, s−p) −Up(sp, s−p) = Fp
ŝp(y−p) − Fp

sp(y−p)

= f (ιpŝp , y−p) − f (ιpsp , y−p)

= V(ŝp, s−p) − V(sp, s−p).

Therefore, V is a potential function for U as defined in equation (4).
In summary, we have established

Proposition 3.5. Let U be a normal form game, and let F : X → Rn be the population game
generated by random matching in U. Then F is a potential game if and only if U is a potential
game.

4. Characterizations of Large Population Potential Games

4.1 Creating Full Potential Games from Potential Games

What is the relationship between full potential games and potential games? Under the
former definition, condition (FP) requires that payoffs be completely determined by the
potential function, which is defined on Rn

+. Under the latter, condition (P) asks only that
relative payoffs be determined by the potential function, now defined just on X.

To understand the relationship between the two definitions, take a potential game
F : X → Rn with potential function f : X → R as given, and extend f to a full potential
function f̃ : Rn

+ → R. Theorem 4.1 shows that the link between the full potential game
F̃ ≡ ∇ f̃ and the original game F depends on how the extension f̃ is chosen.
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Theorem 4.1. Let F : X → Rn be a potential game with potential function f : X → R. Let
f̃ : Rn

+ → R be any C1 extension of f , and define the full potential game F̃ : Rn
+ → Rn by

F̃(x) = ∇ f̃ (x). Then
(i) The population games F and F̃

∣∣∣
X

have the same relative payoffs: ΦF(x) = ΦF̃(x) for all
x ∈ X.

(ii) One can choose the extension f̃ in such a way that F and F̃
∣∣∣
X

are identical.

Part (i) of the theorem shows that the full potential game F̃ generated from an arbitrary
extension of the potential function f exhibits the same relative payoffs as F on their
common domain X. It follows that F and F̃ have the same best response correspondences
and Nash equilibria, but may exhibit different average payoff levels. Part (ii) of the
theorem shows that by choosing the extension f̃ appropriately, we can make F̃ and F
identical on X. To accomplish this, we construct the extension f̃ in such a way (equation
(12) below) that its derivatives at states in X evaluated in directions orthogonal to TX
encode information about average payoffs from the original game F.

In conclusion, Theorem 4.1(ii) demonstrates that if population masses are fixed, so that
the relevant set of social states is X, then definition (FP), while more difficult to check,
does not entail a loss of generality relative to definition (P).

Proof of Theorem 4.1. Part (i) follows from the fact thatΦF̃(x) =Φ∇ f̃ (x) = ∇ f (x) =ΦF(x)
for all x ∈ X; compare the discussion following Observation 3.2.

To prove part (ii), we first extend f and F from the state space X to its affine hull
aff(X) = {y = (y1, . . . , yp) ∈ Rn :

∑
i∈Sp yp

i = mp
}. Let f̂ : aff(X) → R be a C1 extension of

f : X → R, and let ĝp : aff(X) → R be a continuous extension of population p’s average
payoff function, 1

np 1′Fp : X → R. (The existence of these extensions follows from the
Whitney Extension Theorem—see Krantz and Parks (1999).) Then define Ĝ : aff(X)→ Rn

by Ĝp(x) = 1ĝp(x), so that F(x) = ΦF(x) + (I −Φ)F(x) = ∇ f̂ (x) + Ĝ(x) for all x ∈ X. If after
this we define F̂ : aff(X)→ Rn by F̂(x) = ∇ f̂ (x) + Ĝ(x), then F̂ is a continuous extension of
F, and ∇ f̂ (x) =ΦF̂(x) for all x ∈ aff(X).

With this groundwork complete, we can extend f to all of Rn
+ via

(12) f̃ (y) = f̂ (ξ(y)) + (y − ξ(y))′F̂(ξ(y)),

where ξ(y) = Φy + z⊥TX is the closest point to y in aff(X). (Here, z⊥TX is the orthogonal
translation vector that sends TX to aff(X): namely, (z⊥TX)p = mp

np 1.) Since F̃ ≡ ∇ f̃ , the chain
and product rules imply that

F̃(y)′ = ∇ f̃ (y)′

–13–



= ∇ f (ξ(y))′Φ + (y − ξ(y))′DF(ξ(y))Φ + F(ξ(y))′(I −Φ)

= (ΦF(ξ(y)))′Φ + (y − ξ(y))′DF(ξ(y))Φ + F(ξ(y))′ − F(ξ(y))′Φ

= F(ξ(y))′ΦΦ + (y − ξ(y))′DF(ξ(y))Φ + F(ξ(y))′ − F(ξ(y))′Φ

= (y − ξ(y))′DF(ξ(y))Φ + F(ξ(y))′.

In particular, if x ∈ X , then ξ(x) = x, and so F̃(x) = F(x). This completes the proof of the
theorem. �

Example 4.2. Random matching in symmetric normal form potential games. If a single pop-
ulation of agents are randomly matched to play the symmetric two-player game U =

(U1,U2) = (A,A′), the resulting population game F : X→ Rn has payoff function F(x) = Ax.
If U is a normal form potential game, then any potential function V of U is a symmetric

matrix. In fact, Sandholm (2008) shows that U is a potential game if and only if ΦAΦ is
symmetric, and that in this case V = ΦAΦ+ΦA(I−Φ)+(I−Φ)A′Φ is a potential function for
U. If we define f : X→ R by f (x) = 1

2x′Vx, then ∇ f (x) = ΦVx = ΦAx = ΦF(x) for all x ∈ X,
so F is a potential game with potential function f . Moreover, if we define f̃ : Rn

+ → R by

(13) f̃ (x) = 1
2ξ(x)′Vξ(x) + (x − ξ(x))′Aξ(x), where ξ(x) = x + 1

2 (1 − 1′x)1,

then the proof of Theorem 4.1 shows that ∇ f̃ (x) = F(x) for all x ∈ X, so that f̃ encodes all
information about payoffs in F, not just information about relative payoffs.

For a simple example, suppose that

A =

4 0
3 2

 , so that V =

1 0
0 2


is a potential function for U = (A,A′). Then f (x) = 1

2x′Vx = 1
2

(
(x1)2 + 2(x2)2) satisfies

∇ f (x) = ΦF(x) = ΦAx for all x ∈ X, while applying equation (13) shows that

f̃ (x) =
1
8

(
13(x1)2

− 7(x2)2
− 6x1x2 + 6x1 + 30x2

)
satisfies ∇ f̃ (x) = F(x) = Ax for all x ∈ X. §

4.2 Differential Characterizations of Potential Games

Like full potential games, potential games can be characterized by a symmetry condi-
tion on the payoff derivatives DF(x).
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Theorem 4.3. Suppose that the population game F : X→ Rn is C1. Then F is a potential game if
and only if it satisfies externality symmetry:

(ES) DF(x) is symmetric with respect to TX × TX for all x ∈ X.

Condition (ES) requires that at each state x ∈ X, the derivative DF(x) be a symmetric
bilinear form on TX × TX. This condition can be stated more explicitly as

(14) z′DF(x)ẑ = ẑ′DF(x)z for all z, ẑ ∈ TX and x ∈ X.

Proof of Theorem 4.3. To begin, suppose that F is a potential game with potential function
f : X → R as in condition (P). This means that for all x ∈ X we have ∇ f (x) = ΦF(x), or,
equivalently, that for all x ∈ X, ∇ f (x) = F(x) as linear forms on TX. Taking the derivative
of each side of this identity with respect to directions in TX, we find that∇2 f (x) = DF(x) as
bilinear forms on TX × TX. But since ∇2 f (x) is a symmetric bilinear form on TX × TX (by
virtue of being a second derivative—see Lang (1997, Theorem 17.5.3)), DF(x) is as well.

Next, suppose that F satisfies condition (ES). Define ξ : Rn
→ aff(X) by ξ(y) =Φy+z⊥TX,

as in the proof of Theorem 4.1. Let X = {y ∈ Rn : ξ(y) ∈ X}, and define F : X→ Rn by

F(y) =ΦF(ξ(y)).

Then differentiating yields

(15) DF(y) = D
(
ΦF(ξ(y))

)
=ΦDF(ξ(y))Φ.

By the standard integrability condition, F admits a potential function if and only if DF(y)
is symmetric for all y ∈ X. Equation (15) tells us that the latter statement is true if and
only if F satisfies condition (ES).

Now let f be a potential function for F, and let f = f
∣∣∣∣
X

. Then since ξ(x) = x for all
x ∈ X, we find that

∇ f (x) =Φ∇ f (x) =ΦF(x) =Φ
(
ΦF(ξ(x))

)
=ΦF(x),

and so f is a potential function for F in the sense of condition (P). This completes the proof
of the theorem. �

Example 4.4. Two-strategy games. If F: X → Rn is a two-strategy game (i.e., if p = 1, m = 1,
and n = 2), the state space X is the simplex in R2, so the tangent space TX is spanned by
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the vector d = e2 – e1. Thus, if z and ẑ are vectors in TX, then z = kd and ẑ = k̂d for some real
numbers k and k̂. This implies that that z′DF(x)ẑ = k k̂ d′DF(x) d = ẑ′DF(x)z for all x ∈ X,
and so that F is a potential game.

Indeed, it is easy to verify that the function f : X → R defined by f (x1, 1 − x1) =∫ x1

0
(F1(t, 1 − t) − F2(t, 1 − t)) dt is a potential function for F. While one can arrive at this f

by an educated guess, one can also construct f from F mechanically using Proposition 3.4:
The function G : X = [0, 1]→ R defined by G(x ) = G1(x ) = F1(x , 1− x )−F2(x , 1− x ) has a
one-dimensional domain, and so is integrable; if we let g(x ) =

∫ x
0

G(t) dt, then f (x) = g(x1)
is the potential function for F introduced above. §

Let ep
i denote the (i, p)th standard basis vector in Rn. Since the equality in (14) is linear

both in z and in ẑ, and since the set of vectors of the form ep
j − ep

i span the subspace TX,
condition (14) can be expressed equivalently as

(16)
∂(Fp

j − Fp
i )

∂(eq
l − eq

k)
(x) =

∂(Fq
l − Fq

k)

∂(ep
j − ep

i )
(x) for all i, j ∈ Sp, k, l ∈ Sq, p, q ∈ P , and x ∈ X.

The left hand side of equation (16) captures the change in the payoff to strategy j ∈ Sp

relative to strategy i ∈ Sp as agents switch from strategy k ∈ Sq to strategy l ∈ Sq. This
effect must equal the change in the payoff of l relative to k as agents switch from i to j, as
expressed on the right hand side of (16). Evidently, this condition and its interpretation
are akin to those of full externality symmetry (FES) (see equation (3) and the subsequent
discussion); however, equation (16) only refers to relative payoffs and to feasible changes
in the social state.

In the single population case, conditions (14) and (16) are equivalent to a condition
introduced by Hofbauer (1985) (also see Hofbauer and Sigmund (1988, Theorem 24.4)).
While the three conditions are mathematically equivalent, condition (16) seems to admit
the simplest game theoretic interpretation.

Proposition 4.5. Suppose that F is a C1 single population game (p = 1). Then F is a potential
game if and only if it satisfies triangular integrability:

(17)
∂Fi

∂(e j − ek)
(x) +

∂F j

∂(ek − ei)
(x) +

∂Fk

∂(ei − e j)
(x) = 0 for all i, j, k ∈ S and x ∈ X.

Proof. In the single population context, condition (16) can be written as

(e j − ei)′DF(x) (el − ek) = (el − ek)′DF(x) (e j − ei) for all i, j, k, l ∈ S and x ∈ X.
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Since for each fixed j ∈ S, the sets {(ei − e j)}i, j and {(e j − ek)}k, j each span TX, this condition
is itself equivalent to the requirement that

(ei − e j)
′DF(x) (e j − ek) = (e j − ek)

′DF(x) (ei − e j) for all i, j, k ∈ S and x ∈ X.

Expanding the above equality and collecting terms yields

∂Fi

∂(e j − ek)
(x)+

∂F j

∂(−e j + ek − ei + e j)
(x)+

∂Fk

∂(ei − e j)
(x) = 0 for all i, j, k ∈ S and x ∈ X.

This condition is clearly identical to condition (17). �

The conditions stated above characterize potential games in terms of the derivatives of
the payoff function F, whose domain is the set of social states X. Can we obtain a similar
characterization that only requires differentiation of the usual sort—that is, differentiation
of functions defined on the full-dimensional set Rn

+? Corollary 4.6, a direct consequence
of Theorem 4.3 and the relevant definitions, provides such a result.

Corollary 4.6. Suppose that the population game F : X→ Rn is C1, and let F̃ : Rn
+ → Rn be any

C1 extension of F. Then F is a potential game if and only ifΦDF̃(x)Φ is symmetric for all x ∈ X.

4.3 Uses of Full Potential Functions

Despite the previous results, there are still situations in which the use of full potential
functions as defined by condition (FP) is warranted. For one example, consider population
games with entry and exit, in which the mass mp of agents in population p not only can
choose among the strategies in Sp, but also can select an outside option whose payoff

is always zero. In such games, the relevant set of social states is Y =
∏

p∈P Yp, where
Yp = {xp

∈ Rnp

+ :
∑

i∈Sp xp
i ≤ mp

}: that is, the number of active agents in population p varies
between 0 and mp, and all remaining agents choose the outside option.5

In this setting, we call F a potential game if there exists a function f : Y → R satisfying
condition (FP) on Y. It is not difficult to show that the basic results from Sandholm (2001)
extend to potential games with entry and exit: the Nash equilibria of F are the states that
satisfy the Kuhn-Tucker first-order conditions for maximizing f on Y, and evolutionary
dynamics under which growth rates are positively correlated with payoffs converge to
connected sets of rest points from all initial conditions.

5Of course, one could also model such an interaction as game with fixed population masses mp, aug-
mented strategy sets Sp

0 = Sp
∪ {0}, and state space Y0 =

∏
p∈P Yp

0, where Yp
0 = {xp

∈ Rnp+1
+ :

∑
i∈Sp

0
xp

i = mp
}.
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The next example shows why condition (FP) is the appropriate definition of potential
when entry and exit are allowed.

Example 4.7. A congestion model with (and without) entry and exit. Suppose that agents in a
single unit-mass population select either an active strategy from the set S = {1, . . . ,n} or
the outside option, so that the set of population states is Y = {x ∈ Rn

+ :
∑

i∈S xi ≤ 1}. Each
active strategy i ∈ S has a C1 payoff function F̃i : Y→ R of the form

(18) F̃i(x) = ui(xi) + vi (xT) ,

where we write xT ≡
∑

k∈S xk. The payoff to strategy i is thus the sum of two terms, one
depending on the mass of agents playing strategy i, and the other on the total mass of
active agents. By definition, the payoff to the outside option is identically zero.

For the moment, assume that there is no entry or exit: that is, restrict the population
state to the set Xm = {x ∈ Rn

+ :
∑

i∈S xi = m} ⊂ Y, where m ∈ (0, 1] represents the (fixed)
mass of active players. In this case, differences between the payoffs of active strategies
completely determine incentives, and so are enough to characterize equilibria and evolu-
tionary dynamics. These payoff differences are precisely what is captured by a potential
function f : Xm → R satisfying condition (P):6

∇ f (x) = ΦF̃(x) for all x ∈ Xm.

It is easy to verify that the game defined in equation (18) satisfies externality symmetry
(ES) throughout the state space Y, and so admits a potential function on Xm in the sense
of condition (P). Indeed, such a function is given by

(19) f (x) =
∑
i∈S

∫ xi

0
ui(a) da +

∑
i∈S

xi vi (xT) for all x ∈ Xm.

If agents are free to choose the outside option, then understanding incentives requires
us to know not only the relative payoffs of different active strategies, but also the absolute
payoffs of each strategy, so that they can be compared to the the outside option payoff of
zero. This requires a full potential function f̃ : Y→ R, one that satisfies condition (FP):

∇ f̃ (x) = F̃(x) for all x ∈ Y.

Even if we extend its domain to Y in the obvious way, the potential function f from

6If f were defined throughout Y, the appropriate analogue of condition (P) would require that Φ∇ f (x) =
ΦF̃(x) at all x ∈ Y; see Observation 3.2.
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equation (19) is not a full potential function for the game F̃ from equation (18):

∂ f
∂xi

(x) = ui(xi) + vi(xT) +
∑
k∈S

xk v′k (xT) , F̃i(x).

In fact, a full potential function for this game does not exist in general, since F̃ violates
condition (FES):

(20)
∂F̃i

∂x j
(x) = v′i (xT) , v′j (xT) =

∂F̃ j

∂xi
(x).

But F̃ does satisfy condition (FES) under additional assumptions. Suppose that vi ≡ v
for all i ∈ S, so that the payoff to each active strategy depends on the number of active
players in the same way. Then it is clear from equation (20) that condition (FES) is satisfied,
and in this case

f̃ (x) =
∑
i∈S

∫ xi

0
ui(a) da +

∫ xT

0
v(a) da

defines a full potential function for F̃. §

Since condition (FP), unlike condition (P), ensures that potential provides information
about average payoffs, it leaves open the possibility of using potential functions to inves-
tigate efficiency. Hofbauer and Sigmund (1988, p. 240-241) and Sandholm (2001, Section
5) show that if the full potential function f̃ of a full potential game F̃ is homogeneous of
positive degree, then f̃ is proportional to aggregate payoffs in F̃;7 thus, since evolution
increases potential, it increases aggregate payoffs as well. Of course, homogeneity is de-
fined in terms of a function’s behavior along rays from the origin, and so is not meaningful
for functions defined only on X. Consequently, even in games without outside options,
the full force of definition (FP) is needed to prove efficiency results.
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