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Abstract

We study potential games with continuous player sets, a class of
games characterized by an externality symmetry condition.
Examples of these games include random matching games with
common payoffs and congestion games.  We offer a simple
description of equilibria which are locally stable under a broad
class of evolutionary dynamics, and prove that behavior
converges to Nash equilibrium from all initial conditions.  W e
consider a subclass of potential games in which evolution leads to
efficient play.  Finally, we show that the games studied here are
the limits of convergent sequences of the finite player potential
games studied by Monderer and Shapley [22].

JEL Classification Numbers:  C72, C73, D62, R41.
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1.  Introduction

Nash equilibrium is the cornerstone of non-cooperative game theory, providing
a necessary condition for stable behavior among rational agents.  Still, to justify the
prediction of Nash equilibrium play, one must explain how players arrive at a Nash
equilibrium; if equilibrium is not reached, the fact that it is self-sustaining becomes
moot.  This question has launched a search for procedures by which players can
learn to play Nash equilibria, and for games in which such procedures are effective.

In this paper, we study potential games with continuous player sets, a class of
games in which a wide range of evolutionary processes converge to Nash
equilibrium. We offer simple characterizations of all equilibria of these games and
of the equilibria which are locally stable under evolutionary dynamics.  We establish
the global convergence of solution trajectories to equilibria.  We describe a subclass
of potential games in which evolution leads to efficient play.  Finally, we
characterize the games studied here as the limiting case of the finite player potential
games of Monderer and Shapley [22].

Monderer and Shapley's [22] finite player potential games are games which admit
a potential function:  a real-valued function defined on the space of pure strategy
profiles such that the change in any player's payoffs from a unilateral deviation is
exactly matched by the change in potential.  It follows immediately that Nash
equilibria are the local maximizers of potential.  Moreover, since profitable
deviations increase potential, better reply adjustment processes lead to equilibrium
play.

There are many reasons why introducing a notion of potential games for infinite
populations is worthwhile.  The basic convergence results for potential games
concern myopic adjustment processes, which are most natural to study when the
number of players is large; since games with large, finite populations can be
cumbersome to analyze, infinite population models offer a convenient alternative.
Moreover, since most work in evolutionary game theory concerns such models, our
results on infinite player potential games allows us to connect this notion to a large
segment of the literature.  Most importantly, the infinite player model allows us to
base our analysis on calculus.  This allows us to find a simple, economically
meaningful condition which characterizes infinite player potential games.  It also
enables us to derive conditions under which evolution leads to efficient play; we do
not know of a finite player analogue of these efficiency results.

Formally, a game with continuous player sets is a potential game  if it admits a
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potential function:  in this context, a real valued function on the space of strategy
distributions whose gradient is the vector of payoff functions.  If payoffs are smooth,
an equivalent definition of potential games is that payoffs satisfy externality

symmetry:  that for any pair of strategies i and j, the effect of adding players choosing
strategy i on the payoffs of those choosing strategy j is equal to the effect of adding
players choosing strategy j on the payoffs of those choosing strategy i.  Examples of
games satisfying this property are random matching games in which all players in a
match receive the same payoff, and congestion games, a class of games used to
model congestion in networks.1

Externality symmetry guarantees that reasonable behavior adjustment processes
converge to Nash equilibria.  The class of processes we consider is defined by two
natural conditions.  The first, positive correlation, requires that strategies' growth
rates be positively correlated with their payoffs.2  Positive correlation is the weakest
monotonicity condition used in the evolutionary literature.3  We show that all
dynamics which satisfy positive correlation ascend the potential function.  This
observation is the key to our convergence results.

While we are able to prove a number of results using positive correlation alone,
for others we must also be sure that players eventually take advantage of
opportunities to improve their payoffs.  Our second condition, noncomplacency,
formalizes this idea by requiring all rest points of the dynamics to be Nash
equilibria.

In finite player potential games, all equilibria are local maximizers of potential;
since better reply adjustment processes increase potential, all equilibria are locally
stable.  In infinite player settings, these statements are false.  We characterize Nash
equilibria as the states which satisfy the Kuhn-Tucker first order conditions for a
maximizer of potential.  Thus, while all maximizers are equilibria, not all equilibria
are maximizers.  However, since dynamics satisfying positive correlation must

                                                
1 A related model of congestion is considered by Beckmann, McGuire, and Winsten [1], who use a
potential function to characterize equilibrium and to establish conditions under which equilibrium is
unique.  Rosenthal [27] defines finite player congestion games and uses a potential function argument to
establish the existence of a pure strategy equilibrium.
2  The condition we use is actually somewhat weaker than this – see Section 4.
3 Positive correlation is satisfied by both the replicator dynamics (Taylor and Jonker [33]) and the
best response dynamics (Gilboa and Matsui [13], Matsui [20], Hofbauer [14]).  Nachbar [25], Friedman
[11], Samuelson and Zhang [28], Swinkels [32], Ritzberger and Weibull [25], and Hofbauer and Weibull
[17] study classes of dynamics whose members satisfy some basic evolutionary desiderata.  Of these, the
conditions considered by Friedman [11] and Swinkels [32] are both the weakest and the closest to the
condition considered here.
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ascend the potential function, we are able to show that the states which locally
maximize potential are precisely those which are locally stable.  Thus, by restricting
attention to locally stable equilibria, we recover the link with the finite player
analysis.

A full evolutionary justification of Nash equilibrium requires a global stability
result:  solution trajectories from all initial conditions must converge to a Nash
equilibrium.  Despite the presence of unstable equilibria, we are able to extend
Monderer and Shapley's [22] global convergence result to the infinite player setting:
all trajectories of dynamics satisfying positive correlation and noncomplacency lead
to Nash equilibria.

Our efficiency results concern potential games which are homogenous: that is, i n
which each strategy's payoff function is a homogenous function of the same degree.
All random matching games with common payoffs are homogenous potential
games, as are congestion games in which all facilities (e.g., streets) are equally
sensitive to congestion.
 We measure efficiency in terms of the aggregate payoffs earned by all players i n
the game.  Together, homogeneity and externality symmetry imply that a player's
payoff to choosing a strategy is always proportional to the marginal impact of his
choice on aggregate payoffs.  Using this observation, we show that every
homogenous potential game has a homogenous potential function which is
proportional to aggregate payoffs.  We can therefore establish that evolution
increases aggregate payoffs, that locally stable equilibria are precisely those which are
locally efficient, and that unique equilibria are not only globally stable, but also
globally efficient.

While the results on behavior adjustment obtained by Monderer and Shapley
[22] are quite similar to those obtained here, the formal connections between the
finite and infinite player models are not obvious.  To draw comparisons, we restrict
attention to finite player potential games in which players are anonymous and
identical.  We find a simple representation for these games in terms of an extended
potential function, and use this representation to define a notion of convergence for
sequences of games whose populations grow without bound.  We then prove that
the limits of such sequences are the infinite player potential games studied here.
The existence of this fundamental link between the two models renders the choice
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between them a matter of analytical convenience.4

 Building on work of Fisher [10] and Kimura [18], Hofbauer and Sigmund [15, p.
240-241] consider single population potential games in a population genetics setting.
They show that the replicator dynamics must ascend potential,5 and observe that
homogenous potential functions are proportional to average payoffs.  We establish
these results for multipopulation settings, and show that positive correlation alone
ensures that evolution increases potential.  Moreover, by introducing non-
complacency, a plausible requirement for economic models, we are able to establish
a number of stronger results, including global convergence to Nash equilibrium.

The existence of a potential function is a rather strong requirement; this may
lead one to question the practical relevance of our results.  However, in mechanism
design settings, one often assumes the presence of a social planner who is uncertain
about players' preferences, but is able to alter their payoffs using transfer payments.
Such a planner can use transfers to create a game which admits a potential function,
ensuring convergence to equilibrium play.  In Sandholm [30], we use this
observation as the basis for an evolutionary approach to implementation theory.

Section 2 defines potential games and introduces three classes of examples.
Section 3 characterizes equilibria.  Section 4 studies evolutionary dynamics.  Section
5 introduces homogenous potential games and investigates their efficiency
properties.  Finally, Section 6 establishes the connections between the finite player
potential games of Monderer and Shapley [22] and the infinite player potential
games studied here.  Readers who are especially interested in these last results may
prefer to read Section 6 immediately following Section 2.

                                                
4 Monderer and Shapley [22] propose the global maximizer of potential as an equilibrium selection
device.  A number of papers provide formal justifications for this idea.  Blume [3, 4, 5] shows that i f
players are randomly matched to play a finite player potential game, then the global maximizer of
potential is the unique stochastically stable outcome when mutation probabilities are determined v ia
the log-linear choice rule.  He also proves related results for local interaction models.  Hofbauer and
Sorger [16] consider populations of players who are randomly matched to play a game with common
payoffs.  They show that in perfect foresight equilibria (Matsui and Matsuyama [21]) of these games,
behavior converges to the global maximizer of the potential function of the random matching game.
5  In fact, they use differential geometry techniques of Shahshahani [31] to prove that if the state
space is stretched appropriately, the replicator dynamics climb the potential function at a maximal
rate.
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2.  Potential Games

2.1  Population Games, Potential Games, and Externality Symmetry

A population game with r continuous populations of players is defined by a mass
and a strategy set for each population and a payoff function for each strategy.  The set
of populations is denoted P = {1, ... , r}, where r ≥ 1; population p has mass   m

p .  The
set of strategies for population p is denoted   S

p  = {1, ... ,   n
p }, and n  = 

  
np

p∑  equals the

total number of pure strategies.
The set of strategy distributions within population p ∈  P is denoted   X

p  = {x ∈

    R+
np

:    xi
p

i∑  =   m
p}, while X = {x = (    x

1 , ... ,   xr ) ∈      R+
n :    x

p ∈    X
p} is the set of overall

strategy distributions.  While behavior is always described by a point in X, it will be
useful to define payoffs on the set   X  = {x ∈      R+

n :    m
p  – ε ≤   xi

p

i∑  ≤   m
p  + ε  ∀  p ∈  P},

where ε is a positive constant.  The set   X  contains the strategy distributions which
can arise if each population's mass stays within ε of   m

p .  Defining payoffs on this set
is useful because it enables us to speak of the marginal impact of a newcomer, but is
otherwise innocuous: versions of all of our results hold if payoffs are only defined
on X.
 The payoff function for strategy i ∈    S

p  is denoted   Fi
p :   X  → R, and is assumed to

be continuous.  Note that the payoffs to a strategy in population p can depend on the
strategy distribution within population p itself.  We let   F

p :   X  →     R
np

 refer to the
vector of payoff functions for strategies belonging to population p and let F:   X  →     Rn

denote the vector of all payoff functions.  Similar notational conventions are used
throughout the paper.  However, when considering single population games, we
omit superscripts and assume that the population mass equals one.

We call F a potential game if condition (P) holds:

(P) There exists a     C
1 function f:   X  → R such that 

  

∂f
∂xi

p (x) =   Fi
p (x)

for all x ∈    X , i ∈   S
p , and p ∈  P.

Condition (P) says that there is a continuously differentiable function f whose
gradient,   ∇f , equals the payoff vector F.  The function f, which is unique up to an

additive constant, is called the potential function of the game.
For intuition, consider a state x ∈  X at which     Fi

p(x) >     Fj
p(x).  At such a state, a

player choosing strategy j would prefer to switch to strategy i.  But since 
    

∂f

∂ (xi
p −x j

p )
(x) ≡
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∂f

∂xi
p (x) – 

  
∂f

∂x j
p (x) =     Fi

p(x) –     Fj
p(x) > 0, this profitable strategy change leads to a marginal

increase in potential.  More generally, we show in Section 4 that the uphill
directions of the potential function include all those in which reasonable
adjustment processes might lead.  This property lies at the heart of our analysis.

We do not require payoff functions to be differentiable, but if they are we can
characterize potential games in a more intuitive fashion.  In particular, if payoffs are

    C
1 (continuously differentiable), then condition (P) is equivalent to externality

symmetry (ES):

(ES)
  

∂Fi
p

∂xj
q ≡

∂Fj
q

∂xi
p  for all i ∈    S

p , j ∈    S
q , and p, q ∈  P.

Externality symmetry requires that the marginal effect of adding a player choosing
strategy i on the payoffs of players choosing strategy j is the same as the marginal
effect of adding a player choosing strategy j on the payoffs of players choosing
strategy i.  This symmetry property has striking implications for the evolution of
aggregate behavior.

2.2  Examples

2.2.2  Random Matching Games with Common Payoffs  

Most work in evolutionary game theory focuses on populations of players who
are randomly matched to play normal form games.  In this setting, externality
symmetry requires that the players in any random match all obtain the same
payoffs.
 An r player normal form game is defined by a payoff function   U

p :     S
1 × … ×   S

r  →
R for each player p;   U

p (    i
1 , … ,   i

r ) is the payoff player p receives if pure strategy profile
(    i

1 , … ,   i
r ) is followed.  The game exhibits common payoffs if   U

p  = U for all p:  that is,
if each pure strategy profile yields the same payoff for every player.6

                                                
6  These normal form games are potential games in the sense of Monderer and Shapley [22].  In fact, as
we observe in Section 6, Monderer and Shapley's games are precisely those whose payoffs take the form
Up = U + Ap, where Ap = Ap(i1, …, ip–1, ip+1, … , ir) is independent of ip.  Since the Ap terms do not alter
players' incentives, our results on evolution continue to hold when players are randomly matched to
play these games.  However, our efficiency results, which are defined in terms of aggregate payoffs, do
not generalize to these games.  
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   Most of the literature considers a single population which is randomly matched
to play a symmetric two player game:  one in which     S

1 =     S
2  and     U

1(i, j) =     U
2(j, i) for

all i and j.  The latter condition implies that a player's payoff only depends on his
strategy and that of his opponent, not on whether he is called player 1 or player 2.  If
a continuum of players is randomly matched to play such a game, the (expected)
payoffs from a match are given by

 Fi(x) = 
    

U i j xj
j S

1

2

( , )
∈
∑ .

 If a symmetric two player game exhibits common payoffs, its payoff matrix U is
symmetric:  U(i, j) =     U

1(i, j) =     U
2(j, i) = U(j, i). Hence, payoffs in the random

matching game satisfy externality symmetry:  
  
∂
∂

F
x

i

j
 ≡ U(i, j) = U(j, i) ≡   

∂
∂
F

x
j

i
.  The

potential function for this matching game is

f(x) = 
    

1
2

1 2

U i j x xi j
i j S S

( , )
( , )∈ ×

∑ .

 The discussion following condition (P) shows that profitable changes in behavior
must ascend the function f.  Since f(x) is equal to one-half of average payoffs at state
x, evolution leads to locally efficient states.

Analogous results hold in the multipopulation case, in which a separate
population of mass one is assigned to each role in the game.  If there are r

populations, the payoffs to strategy   i
p  ∈    S

p  in the random matching game are

    F x
i
p
p ( ) = 

      

( ( , , ) )
( , , , , , )

U i i xp r

i i i i
S S S S

i
q

q pp p r

p p r

q
1

1 1 1

1 1 1

K
K K

K K

− +

− +
∈

× × × × ×
≠

∑ ∏ .

If {  U
p }p∈ P exhibits common payoffs, then the matching game F admits the potential

function

f(x) = 
    

( ( ,..., ) )
( ,..., ) ...

U i i xr

i i S S
i
p

p Pr r

p
1

1 1∈ × × ∈
∑ ∏ ,

which equals aggregate payoffs divided by r. 7

 While the games we have just described have linear and multilinear payoffs,

                                                
7 Versions of our stability and efficiency results still hold if the payoffs to different players in the
underlying game are multiples of one another:  that is, if for all p ∈  P, Up = kpU for some kp > 0.
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population games which are not based on random matching generally have non-
linear payoffs.  In such cases, externality symmetry does not reduce to commonality
of payoffs; when externality symmetry does hold, efficiency does not immediately
follow.  The next class of examples illustrates these points.

2.2.2  Congestion Games

Consider a collection of towns connected by a network of streets.  We associate
each of r pairs of home and work locations with a group of commuters who must
travel between them.  Each player chooses a route (i.e., a subset of the streets)
connecting home to work; his driving time depends upon the traffic on the streets
he has chosen.

A congestion model is a collection {P, 
  

mp{ }p∈P
,     {S

p }p∈P , 
    

Φ i
p{ }i∈Sp ,p∈P

, 
  

cφ{ }φ ∈Φ
}.  P is a

set of one or more populations, one for each home/work location pair.  The finite
set Φ = 

    
Φi

p

p Pi Sp ∈∈ UU  contains all available streets.  We associate each strategy i ∈    S
p

with a complete route   Φ i
p connecting the home/work pair of population p.8

 Let   ρ
p (φ) = {i ∈    S

p :  φ ∈    Φ i
p} denote the set of population p strategies which

require street φ.  The utilization of street φ ∈  Φ is the total mass of the players whose
strategies use that street:

    uφ (x) = 
    

xi
p

ip S pp ∈∈
∑∑
ρ φ( )

.

When a player selects a route, he experiences the delays on each street in the
route.  The street costs, cφ: R+ → R, are continuous functions which report the delays
on a street as a function of its utilization.  The congestion game  derived from a
congestion model is defined by its payoff functions:

  Fi
p (x) = –

    
cφ (uφ (x))

φ ∈Φ i
p

∑ .

In models of traffic flow, the cost functions cφ are increasing; we can study settings
with positive externalities by using cφ which are decreasing.

Since payoffs to the strategies in a congestion game are sums of street costs, the
payoffs to any pair of strategies are bound together by the streets used in common.

                                                
8  We do not assume any graph theoretic structure on the set Φ.  Hence, the congestion model is
applicable in settings in which the set of facilities used by the players does not possess such a structure.
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Increasing the proportion of players from population p using route i affects the
players taking route j ∈    S

q  through increased traffic on streets in   Φ i
p ∩ Φ j

q .  If street

costs are differentiable, the marginal effect of this increase can be expressed as 
  
∂F j

q

∂xi
p  ≡

–
    

cφ'φ ∈Φ i
p ∩Φ j

q∑ .  An increase in the use of route j has an the same marginal effect on

route i drivers 
  
∂F j

q

∂xi
p  ≡ –

    
cφ'φ ∈Φ i

p ∩Φ j
q∑ .  Hence, externality symmetry holds:  

  
∂Fi

p

∂x j
q  ≡ 

  
∂F j

q

∂xi
p .

  Even if street costs are not differentiable, we can verify directly that F is a
potential game by observing that

f(x) = 
    
− cφ (z)dz

0

uφ (x)

∫
φ ∈Φ
∑

is a potential function for F.  The discussion after condition (P) shows that profitable
deviations ascend this function.  However, the function f is typically not
proportional to aggregate payoffs, so evolution need not lead to efficient play.  In
Section 5, we show that if all streets are equally sensitive to congestion, efficient
behavior is ensured. 9

2.2.3  Two Strategy Games

 If a game played by a single population has only two strategies, all strategy
distributions lie on a line.  Since continuous dynamics on a line are easy to analyze,
two strategy games are quite common in the evolutionary literature.  It is therefore
worth noting that these games are all potential games.  Given any continuous payoff
functions F1, F2: X → R, a potential function satisfying condition (P) is given by10

f(x1, x2) = 
    

F z z dz F z z dz
x x

10 20
1 1

1 2
( , ) ( , )− + −∫ ∫ .

                                                
9 Monderer and Shapley [22] establish an equivalence between finite player potential games and
Rosenthal's [27] finite player congestion games; Voorneveld et. al . [34] provide a simpler proof.  It is
easy to generate examples which show that this result does not extend to the infinite player setting.
The equivalence proofs rely on constructions in which the number of facilities grows exponentially in
the population size; this growth persists under the symmetry conditions we impose in Section 6.  Thus,
when there are a continuum of players, these constructions cannot be used.
10 To fully satisfy condition (P), we must extend the payoff functions from X to   X  by letting F1(x1, x2) =
F1(x1, 1 – x1) and F2(x1, x2) = F2(1 – x2, x2) for all (x1, x2) ∈    X  – X.  While in the previous examples there
are natural interpretations of payoffs at points outside X, in the current example such payoffs have no
obvious interpretation.
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3.  Equilibrium

We begin our analysis of potential games by characterizing their Nash equilibria.
Let the best response correspondence, BR: X → X, map each state x ∈  X to the set of
states whose supports consist entirely of best responses to x.  Letting   C

p (  x
p) = {i ∈  Sp:

xi > 0} denote the support of   x
p, we define   BRp and BR by

  BRp(x) = {  z
p  ∈   X

p :    C
p (  z

p ) ⊂   
    
arg max

j∈Sp
Fj

p(x)}, and

BR(x) = {z ∈ X:    z
p  ∈    BRp(x) ∀  p ∈  P}.

A Nash equilibrium  is a state whose support consists solely of best responses to
itself: x ∈  BR(x).

We noted earlier that all profitable strategy revisions lead to increases i n
potential.  This suggests that the Nash equilibria of the game are related to the local
maximizers of potential.  The Lagrangian for this maximization problem is

L(x, µ, λ) = f(x) + 
    

µ p p
i
p

i Sp P

m x
p

( )−
∈∈
∑∑  + 

  
λi

p
i
p

i Sp P

x
p∈∈

∑∑ ,

so the Kuhn-Tucker first-order necessary conditions are

(KT1)
    

∂f

∂xi
p (x) =   µ

p  –   λ i
p ,

(KT2)   λ i
pxi

p  = 0,  and
(KT3)   λ i

p  ≥ 0

for all i ∈    S
p  and p ∈  P.  The Kuhn-Tucker conditions completely characterize the set

of Nash equilibria.

Proposition 3.1:  The state x ∈  X is a Nash equilibrium of the potential game  F if a n d

only if (x, µ, λ) satisfies (KT1), (KT2), and (KT3) for some λ  ∈      R
n  and µ ∈      R

r .

Proof:  If x is a Nash equilibrium of F, then since F(x) =   ∇f (x), the Kuhn-Tucker
conditions are satisfied by x,   µ

p  =     max j Fj
p(x) , and   λ i

p  =   µ
p  –   Fi

p (x).

Conversely, if (x, µ, λ) satisfies the Kuhn-Tucker conditions, then for every p ∈  P,
(KT1) and (KT2) imply that   Fi

p (x) = 
    

∂
∂

f

xi
p x( )  =   µ

p  for all i ∈      C
p(xp ) .  Furthermore, (KT1)

and (KT3) imply that   Fj
p (x) =   µ

p  –   λ j
p  ≤   µ

p  for all j ∈    S
p .  Hence,     C

p(xp )  ⊂

    arg max j Fj
p(x), and so x is a Nash equilibrium of F.  ■
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Observe that the multiplier   µ
p  equals the equilibrium payoffs in population p.

Since the set X satisfies constraint qualification, satisfaction of the Kuhn-Tucker
conditions is necessary but not sufficient for local maximization of potential.
Therefore, while all local maximizers of potential are equilibria, not all equilibria
locally maximize potential.  In contrast, in Monderer and Shapley's [22] finite player
games, the only equilibria are the local maximizers of potential.

For intuition, consider a single population of players who are randomly matched
to play the coordination game in Figure 1.  Whether the population is finite or
infinite, (expected) payoffs in this game are given by F1(x1, x2) = x1 and F2(x1, x2) = x2.11  

Figure 1

If N  (< ∞) players are matched to play this game, there are two equilibria i n
which all players choose the same pure strategy, but there is no pure strategy
equilibrium corresponding to mixed equilibrium of the normal form game.  If
exactly     

N
2  players chose each strategy, then the payoffs to each are   

1
2 .  But if a player

switches strategies, he alters the distribution of strategies in the population by     
1
N  i n

favor of the strategy he switches to; since the underlying game is a coordination
game, this deviation is profitable.  In contrast, a player in an infinite population
cannot change the distribution of strategies in the population; hence, an even split
of the population between the two strategies constitutes an equilibrium.
 Both the finite and infinite versions of this matching game are potential games.
In the infinite player case, the potential function is f(x1, x2) =     

1
2 1

2
2

2(( ) ( ) )x x+ .  The

equilibria (1, 0) and (0, 1) are the maximizers of potential on the set X = {(x1, x2) ∈      R+
2 :

x1 + x2 = 1}; the equilibrium (  
1
2 ,   

1
2 ) minimizes potential on this set, but still satisfies

                                                
11 In the finite population case, these are the payoffs which arise if players can be matched against
themselves; an analogous analysis would hold without self-matching.

1, 1 0, 0

1, 10, 0
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the Kuhn-Tucker first order conditions for a maximum.12

Of course, if even slightly more than half of the players choose one strategy, that
strategy offers higher payoffs, so we would expect a population to move away from
the (  

1
2 ,   

1
2 ) equilibrium.  We show in the next section that under a broad class of

evolutionary dynamics, the locally stable equilibria are precisely those which
maximize potential.  Thus, restricting attention to stable equilibria reestablishes the
connections between our results and those of Monderer and Shapley [22].

4.  Evolutionary Dynamics

Throughout this section we use terminology which is standard in dynamical
systems and in evolutionary game theory.  Formal definitions omitted from the text
can be found in the Appendix.

4.1  Positive Correlation and Noncomplacency

Many papers in the evolutionary literature study behavior adjustment under
some fixed equation of motion, most often the replicator dynamics (Taylor and
Jonker [33]) or the best response dynamics (Gilboa and Matsui [13], Matsui [20],
Hofbauer [14]). Rather than restrict attention to one particular specification of the
dynamics, we instead establish results which hold for any dynamics within a broadly
defined class.
 Evolutionary dynamics are described by a vector field V: X →     Rn  which implicitly
defines an equation of motion     ̇x  = V(x).  We require V to satisfy Lipschitz continuity
(LC) and forward invariance (FI):

(LC) V is Lipschitz continuous.
(FI)     V xi

p( ) ≥ 0 whenever   xi
p = 0, and 

    
V xi

p

i Sp

( )
∈
∑  = 0 for all p ∈  P.

These conditions guarantee the existence of unique solution trajectories which do

                                                
12 In the finite player matching game, the potential function is PN(k1/N, k2/N) =     ∑ =a

k a N0
1 ( / ) +

    ∑ =b
k b N0

2 ( / ).  This is a rescaled, discrete approximation of f; the two pure equilibria maximize this
function.  For a formal treatment of the finite player model and its connections with the infinite player
model, see Section 6.
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not leave X.13

Our main condition on the dynamics is called positive correlation.

(PC) V(x) · F(x) = 
    

Vi
p(x)Fi

p(x)
i∈Sp
∑

p∈P
∑  > 0 whenever V(x) ≠ 0.

To see why this condition is so named, observe that by condition (FI),

    
Vi

p(x)Fi
p(x)

i∈Sp
∑

p∈P
∑ = 

    
( ( ) – )( ( ) ( ))V x F x F xi

p
i
p

n j
p
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∈∈∈
∑∑∑

 = 
    

n Cov V Fp p p

p P

( , )
∈
∑ .

    Cov V Fp p( , ) denotes the covariance between strategy growth rates and payoffs i n
population p.  Hence, condition (PC) holds if there is a positive correlation between
growth rates and payoffs in each population.  However, it only requires the
weighted sum of the covariances in each population to be positive.  The conditions
closest to positive correlation in the evolutionary game theory literature are those of
Friedman [11] and Swinkels [32], who impose restrictions similar to positive
correlation on each population.14

Since F(x) =     ∇f (x), F(x) is the direction of steepest ascent of the potential function.

Hence, geometrically, positive correlation requires that whenever the population is
moving, it is moving uphill.  This observation underlies our main technical
lemma.  We call a     C

1 function f: X → R a global Lyapunov function for the
dynamical system     ̇x  = V(x) if for every solution trajectory {xt}t≥0, (i)     

d
dt f (xt ) ≥ 0 for all t,

and (ii)     
d
dt f (xt ) = 0 implies that V(xt) = 0.  Condition (i) requires that the function f is

weakly increasing along all solution trajectories, while condition (ii) demands that f

is strictly increasing except at rest points of V.  Lemma 4.1 establishes that the
potential function is a global Lyapunov function under any dynamics satisfying
positive correlation, providing a powerful tool for characterizing evolution.

                                                
13 For a proof, see Ely and Sandholm [9].
14 Friedman [11] considers weak compatibility , which combines positive correlation within each
population with extinction:    xi

p  = 0 implies that     Vi
p (x)  = 0.  Swinkels [32] studies myopic adjustment

dynamics, which satisfy positive correlation within each population, but with a weak inequality
replacing the strict one and with the additional requirement that all Nash equilibria are rest points
(although this latter requirement is omitted in some of his results).  For other conditions on
evolutionary game dynamics which are stronger than positive correlation, see Nachbar [24], Samuelson
and Zhang [28], Ritzberger and Weibull [25], and Hofbauer and Weibull [17].  See Weibull [35] for a
survey.
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Lemma 4.1:  If F is a potential game and V  satisfies (PC), then the potential function

of F  is a global Lyapunov function for     ̇x  = V(x).

Proof:  Positive correlation implies that     
d
dt f (xt ) =     ∇f (xt )  ·     ̇xt  = F(xt) · V(xt) ≥ 0 and

that V(xt) = 0 whenever     
d
dt f (xt ) = 0.  ■

Positive correlation restricts the dynamics at all states besides rest points.  Our
next condition, noncomplacency (NC), specifies which states can be rest points.

(NC) V(x) = 0 implies that x is a Nash equilibrium of F.

If a profitable deviation is available, one should expect some players to eventually
take advantage of this opportunity.  Noncomplacency formalizes this notion.

An example of dynamics satisfying all four conditions are the Brown-von

Neumann-Nash  (BNN) dynamics, introduced for symmetric zero-sum games by
Brown and von Neumann [6] and studied more recently by Berger and Hofbauer [2].
Let

  ki
p  = 

    
max ( ) ( ),F x x F xi

p
m j

p
j
p

j S

p

p

−










∈
∑1 0

denote the excess payoff to strategy i relative to the average payoff in its population.
Then the BNN dynamics are defined by15

(BNN)     ̇xi
p = 

  
m k x kp

i
p

i
p

j
p

j Sp

−
∈
∑ .

Proposition 4.2:  The BNN dynamics satisfy (LC), (FI), (PC), and (NC).

 Proof:  In the Appendix (or see Berger and Hofbauer [2]).

It is worth pointing out that the replicator dynamics do not satisfy

                                                
15 An interpretation of the BNN dynamics is as follows:  During any short time interval, all players
in a population are equally likely to switch strategies, and do so at a rate proportional to the sum of
the excess payoffs in the population.  Those who switch choose strategies with above average payoffs,
choosing each with probability proportional to the strategy's excess payoff.
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noncomplacency:  these dynamics do not allow extinct strategies to resurface, and so
exhibit non-Nash rest points on the boundaries of the state space.  We feel that this
property of the replicator dynamics is unreasonable in most economic contexts.
However, as noncomplacency is not needed for all of our results, we will note
explicitly when it is required.16

4.2  Evolutionary Stability

Our first stability result compares the rest points of the dynamics V  to the Nash
equilibria of the game F.  At a Nash equilibrium, no agent can unilaterally improve
his payoffs.  Hence, escape from a Nash equilibrium violates positive correlation.
All Nash equilibria are therefore rest points.  Under the additional assumption of
noncomplacency, only Nash equilibria can be rest points under V.

Proposition 4.3:  (i) If V  satisfies (PC), all Nash equilibria of F are rest points of     ̇x  =
V(x).
 (ii)  If V  also satisfies (NC), Nash equilibria of F and rest points of     ̇x  = V(x)
coincide.

As the proof of this proposition does not depend on the existence of a potential
function, the result is valid for any population game.

Proof:  To prove part (i), let x be a Nash equilibrium of F, and let V  be dynamics
satisfying positive correlation.  Suppose   D

p(x) is the set of strategies in   S
p  that are i n

decline at x:    D
p(x) = {i ∈    S

p :    Vi
p (x) < 0}.  Then forward invariance and the definition

of equilibrium imply that   D
p(x) ⊂    C

p (  x
p) ⊂      arg max j Fj

p(x).  But forward invariance
also implies that     V xi

p

i Sp ( )
∈∑  = 0; therefore, the inclusion implies that

    V x F xi
p

i S i
p

p ( ) ( )
∈∑  ≤ 0.  Summing over p, we see that 

    
V x F xi

p

i S i
p

p P p ( ) ( )
∈∈ ∑∑  ≤ 0.

Positive correlation then implies that V(x) = 0.
 The proof of part (ii) follows immediately from part (i) and the definition of
noncomplacency.  ■

                                                
16  Since all violations of (NC) under the replicator dynamics occur on the boundary X, versions of our
results requiring both conditions hold under the replicator dynamics if attention is restricted to solution
trajectories which avoid the boundary of X.  The best response dynamics also fail to satisfy all four of
our conditions:  they fail the Lipschitz continuity condition (LC).
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 Since dynamics satisfying positive correlation ascend the potential function, it
seems plausible that connections between its local maximizers and the game's
locally stable equilibria exist.  These connections are established in Theorem 4.4.

There are two main conditions used in evolutionary game theory to capture
local stability.  Roughly speaking, an equilibrium is Lyapunov stable if no small
change in behavior can lead the population away from the equilibrium.  The
stronger criterion of asymptotic stability requires that in addition, the population
eventually returns to equilibrium.  Formal definitions of these criteria can be found
in the Appendix.

The statement of Theorem 4.4 requires three additional definitions.  A set A  ⊂  X
is a local maximizer  set of the potential function f if (i) A  is connected; (ii) f is
constant on A; and (iii) there exists a neighborhood B of A such that f(y) < f(x) for all
y ∈  B – A  and x ∈  A.  Since f is continuous, all local maximizer sets are closed.
Moreover, Proposition 3.1 implies that all local maximizer sets consist entirely of
Nash equilibria.  We call a closed set isolated if there is a neighborhood of the set
containing no Nash equilibria outside the set.  Finally, set A  ⊂  X is smoothly

connected if for any points x and y in A  there exists a continuous, piecewise
differentiable curve γ contained in A whose endpoints are x and y.17

We now state our local stability result.

Theorem 4.4:  Let F be a potential game with potential function f.  Then:
 (i)  If V  satisfies (PC), then any local maximizer set is Lyapunov stable.

(ii)  If V also satisfies (NC), then

(a) Any isolated local maximizer set is a minimal asymptotically stable set;
(b) Any smoothly connected, minimal asymptotically stable set is an isolated

 local maximizer set.

Proof:  In the Appendix.

Part (i) of the theorem tells us that under dynamics satisfying positive
correlation, all local maximizers of potential are Lyapunov stable:  small
perturbations in behavior are not enough to move the population away from these
sets.  Without noncomplacency we cannot say more:  since the population can
become stuck at non-Nash states, local maximizer sets need not be asymptotically

                                                
17 Smooth connectedness is a slightly stronger property than connectedness.  For examples of sets
which are connected but not smoothly connected, see Munkres [23, p. 156-158].
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stable, and sets larger than local maximizers can be locally stable.  However, part (ii)
of the theorem shows that if we assume both positive correlation and
noncomplacency, the local maximizer sets and the asymptotically stable sets
coincide.

Local stability results are most important once a population reaches equilibrium,
as they establish whether we should expect the equilibrium to persist.  However,
they do not guarantee that equilibrium will ever be reached.  In general,
evolutionary game dynamics can exhibit closed orbits and chaotic behavior, with
solution trajectories perpetually avoiding neighborhoods of rest points.18  When
this occurs, equilibrium prediction is obviously inappropriate, and characterizations
of local stability are of less interest.

Fortunately, we are able to establish that in potential games, convergence to
equilibrium is assured.  Let {xt}t≥0 be the solution trajectory with initial condition x0.
The limit set of x0, ω(x0), is the set of limit points of this solution trajectory:  ω(x0) = {z
∈  X:  

    
lim
k→∞

xtk
 = z for some tk → ∞}.

Theorem 4.5: Let F be a potential game.  Then:
 (i) If V satisfies (PC), each limit set ω(x) is a closed, connected set of rest points o f

V .
 (ii)   If V  also satisfies (NC), these limit sets only contain Nash equilibria.

Proof:  Follows from Lemma 4.1, Proposition 4.3, and Lemma A.1 in the
Appendix.  ■

The first claim of Theorem 4.5 establishes that under positive correlation,
solution trajectories starting from each initial condition must converge to rest
points:  closed orbits and chaotic behavior cannot occur.  If noncomplacency holds as
well, all of these limit points must be Nash equilibria.  This result fully justifies
Nash equilibrium prediction.

                                                
18 Examples of limit cycles under the replicator dynamics and under the best response dynamics can be
found in Weibull [35] and Gaunersdorfer and Hofbauer [12], respectively.  Cowan [7] analyzes an
example in which fictitious play of a 3 x 3 game leads to chaotic behavior.
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5.  Efficiency

 Nash equilibria often fail to be social optima:  because players do not consider
how their actions affect opponents' payoffs, equilibrium behavior is often
inefficient.  In homogenous potential games, individual and social payoffs are
perfectly aligned; for this reason, self-interested choices lead to efficient play.

5.1  Homogenous Potential Games

 A potential game F is homogenous of degree k if each of its payoff functions   Fi
p :

  X  → R is     C
1 and homogenous of degree k; we assume throughout that k  ≠ –1.  W e

will explain why this condition ensures efficient behavior after presenting Lemma
5.2 below; before doing so, we offer some examples.

5.1.1  Random Matching Games with Common Payoffs

We saw earlier that all random matching games with common payoffs are
potential games; in fact, all are homogenous potential games.  In the single
population case, the payoffs to each strategy are linear in the population state x:  Fi(x)
= 

    
U i j xjj S

( , )
∈∑ 2 .  Therefore, such games are homogenous of degree 1.  In the

multiple population case, the payoffs to population p 's strategies are multilinear i n
(    x

1 , … ,     x
p−1,     x

p+1 , … ,   x
r ); such games are homogenous of degree r – 1.

5.1.2  Isoelastic Congestion Games

Recall that the payoffs of congestion games take the form   Fi
p (x) = 

    
−

∈∑ c u x
i
p φ φφ

( ( ))
Φ

,

where the functions cφ represent the costs of using each street.  Let

ηφ(u) = 
    

u ′cφ (u)
cφ (u)

denote the cost elasticity of street φ, which is well defined whenever cφ(u) ≠ 0.  W e
call a congestion game isoelastic with elasticity η  if ηφ ≡ η for all φ ∈  Φ:  that is, if all
streets are equally sensitive to congestion at all levels of use.  This condition implies
homogeneity.
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Proposition 5.1:  Any isoelastic congestion game with elasticity η is a h o m o g e n o u s

potential game of degree η .

Proof:  Since the street costs are isoelastic functions with elasticity η, they must
take the form cφ(u) =   αφ

ηu , where the αφ are constants.  (Observe that η cannot be
negative, as this would force street costs to become infinite at u = 0.)  Since each uφ is
linear in x, each payoff function   Fi

p  is a sum of functions which are homogenous of
degree η  in x, and so is itself homogenous of degree η .  ■

5.2  Evolution and Efficiency

 Lemma 5.2 provides the basis for our efficiency results.  We measure efficiency i n
terms of aggregate payoffs   F :   X  → R, defined by

  F (x) = 
    

x F xi
p

i
p

i Sp P p

( )
∈∈
∑∑ .

Lemma 5.2:  If a potential game F is homogenous of degree k, the function     
1

1k F x+ ( ) is

a potential function for F .

Proof:  Externality symmetry and Euler's law imply that

    
∂

∂x k
i
p F x1

1+( )( ) = 
    

1
1k j

q F

x
j Sq P

i
px x F xj

q

i
p

p
+

∈∈
∑∑ +











∂

∂
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1
1k j
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x
j Sq P

i
px x F xi

p

j
q

p
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∈∈
∑∑ +











∂

∂
( ) ( )

=     
1

1k i
p

i
pk F x F x+ +( )( ) ( )  =   Fi

p (x).  ■

To see why homogeneity leads to efficient play, consider the expression 
    

∂
∂xi

p F x( ),

which represents the impact on aggregate payoffs of introducing a new player
choosing strategy i to the game.  We can split this impact into two terms:  the first,

    
x xj

q F

xjq

j
q

i
p

∂

∂∑∑ ( ), represents the effect that the new player has on the incumbent

population; the second,   Fi
p (x), represents the new player's own payoffs.  In

homogenous potential games, these two effects are precisely balanced:  the payoff a
player receives from choosing a strategy is directly proportional to the social impact
of his choice.  For this reason, self-interested behavior leads to desirable social
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outcomes.19

We saw in Section 4 that evolution always increases potential.  But i n
homogenous potential games, potential measures aggregate payoffs.  Hence,
aggregate payoffs must increase over all evolutionary paths.20

Theorem 5.3:  If the potential game F is homogenous of degree k  > –1 and t h e
dynamics V  satisfy (PC), then all solutions of     ̇x  = V(x) satisfy     

d
dt F(xt ) ≥ 0, with

equality only at rest points of V .  If k < –1, then solutions satisfy     
d
dt F(xt ) ≤ 0.

Proof:  Follows from Lemmas 4.1 and 5.2.  ■

Theorem 4.4 established connections between local maximizers of potential and
locally stable equilibria.  By introducing Lemma 5.2, we can link these states with the
locally efficient states:  those which locally maximize aggregate payoffs.

Theorem 5.4:  Let F be a potential game which is homogenous of degree k > –1.
 (i) If V satisfies (PC), then all locally efficient states are locally stable.
 (ii) If V also satisfies (NC), then all locally stable states are locally efficient.

Proof:  Follows from Theorem 4.4 and Lemma 5.2.  ■

In general, homogeneity only ensures local stability:  for example, coordination
games with common payoffs admit multiple stable equilibria, but only those with
the highest payoffs are globally efficient.  However, if a game admits a unique
equilibrium, this situation cannot arise.  Theorem 5.5 shows that in homogenous
potential games, the existence of a unique equilibrium ensures both global stability
and global efficiency.

Theorem 5.5:  Let F be a potential game which is homogenous of degree k  > –1.  If F

admits a unique Nash equilibrium, this equilibrium is globally efficient and is

                                                
19 We note that homogeneity is not a complementarity condition.  For example, in congestion games
homogeneity is consistent both with positive externalities (i.e., decreasing facility costs), which lead
to multiple equilibria, and with negative externalities (increasing facility costs), which generate
unique equilibria.  For an analysis of the latter case, see Corollary 5.6.
20 Fisher's [10] Fundamental Theorem of Natural Selection, a basic result from population genetics, is
Theorem 5.3 specialized to single populations, the replicator dynamics, and linear payoffs.
 Theorem 5.3 also shows that in homogenous potential games with k < –1, evolution decreases social
efficiency.  In these games, individual and social incentives are perfectly misaligned.  However, note
that in random matching games with common payoffs, k ≥ 1, while in isoelastic congestion games, k ≥ 0.
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globally stable under all dynamics satisfying (PC) and (NC).

Proof:  Since the potential function f is continuous and the set X is compact, the
set argmaxx∈ X f(x) is nonempty.  Proposition 3.1 implies that the unique equilibrium
of F must lie in this set.  Global efficiency then follows from Lemma 5.2, and global
stability from Theorem 4.5.  ■

We conclude this section by applying our results from the last two sections to
congestion games.  To model traffic flows or other settings with negative
externalities using congestion games, one assumes that the cost functions cφ(uφ) are
increasing in the utilization levels uφ.  This ensures uniqueness and global stability
of equilibrium.  If costs are also isoelastic, global efficiency is also guaranteed.21

Corollary 5.6:  Let F be a congestion game whose costs satisfy   ′cφ  > 0, and suppose that

V satisfies (PC) and (NC).  Then F has a unique , globally stable equilibrium.  If F is

also isoleastic, this equilibrium is globally efficient.

 Proof:  Recall that the potential function of the congestion game F is f(x) =

    
− ∫∑ ∈

c z dz
u x

φφ

φ
( )

( )

0Φ
.  Since street costs are strictly increasing, it is easily verified that f

is strictly concave.  Thus, uniqueness of equilibrium follows from Proposition 3.1,
global stability from Theorem 4.5, and global efficiency from Theorem 5.5.  ■

6.  Potential Games as Limits of Finite Player Games

In this final section, we establish connections between infinite population
potential games and the finite player potential games (FPP games) of Monderer and
Shapley [22].  We prove that infinite population potential games are precisely the
limits of convergent sequences of FPP games in which the number of players
approaches infinity.  For notational convenience, we restrict attention to the case of
single population games; our results are easily extended to the multipopulation
case.

                                                
21 Beckmann, McGuire, and Winsten [1] prove a uniqueness result for their congestion model using a
potential function argument.  Dafermos and Sparrow [8] use different techniques to prove a global
efficiency result for congestion games; their conditions on costs are somewhat stronger than those used in
Corollary 5.6.  Neither of these works proves evolutionary stability results.
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An N  player normal form game is defined by a strategy set   S
α  and a utility

function   U
α :   Sα

α∏  → R for each player α ∈  {1, … , N}.  We let     S
–α  = 

  
Sβ

β α≠∏  denote

the set of strategy profiles for α 's opponents.  Following Monderer and Shapley [22],
we call a game a finite player potential game  if there exists a potential function U:

  Sα
α∏  → R such that

    U i i U i i U i i U i iα α α α α α α α α α(ˆ , ) ( , ) (ˆ , ) ( , )− − − −− = −

for all     ̂i
α ,   i

α  ∈    S
α ,   i

−α  ∈      S
–α , and α ∈  {1, …, N}.  That is, any unilateral deviation has

the same effect on both the deviator's payoffs and potential.  Thus, the potential
function serves as proxy for each player's payoff function when the strategies of his
opponents are held fixed.  It is easily verified that FPP games can be characterized as
the class of games which admit the representation

    U i i U i i A iα α α α α α α( , ) ( , ) ( )− − −= + ,

where for each player α,   A
α  is a function from opponents' strategy profiles     S

–α  to
the real line.

To make sense of the notion of a convergent sequence of FPP games, we restrict
attention to games in which players are identical and anonymous.  In particular, we
assume that all players share the same strategy set S and payoff functions {ui}i∈ S, and
that the payoff and potential functions only condition on the population's aggregate
behavior.  We call FPP games which satisfy these requirements anonymous finite

player potential games (AFP games).
 Payoff functions of AFP games must take the form

ui(x) = P(x) + a(x –   
e
N

i )

where P denotes the potential function, x the current strategy distribution, and ei a
basis vector in     R

n .  The domains of the functions P, ui, and a are   X
N ,   Xi

N , and   Xd
N ,

respectively, where

  X
N  = {x ∈      R+

n : 
  

xjj∑  = 1, and Nxj ∈  Z for all j ∈ S},

  Xi
N  = {x ∈    X

N :  xi ≠ 0}, and

  Xd
N  = {x ∈      R+

n : 
  

xjj∑  =     
N

N
−1 , and Nxj ∈  Z for all j ∈ S}.
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The set   X
N  contains all possible strategy distributions when the population size is

N, while   Xi
N  is the set of strategy distributions in which at least one player chooses

strategy i.  We call   Xd
N  the set of diminished strategy distributions; points in this set

represent distributions of strategies in a subpopulation with one absent player.
The connection between AFP games and infinite player potential games becomes

clearer if we represent the former in a slightly different way.  Without loss of
generality, we can extend the domain of the potential function P from   X

N  to   X
N  ∪

  Xd
N  by defining P(y) = –a(y) for all y ∈   Xd

N .  We can then express payoffs as

ui(x) = P(x) – P(x –   
e
N

i ).

In this representation, the extended potential function summarizes all information
about payoffs.  The payoff to a player choosing strategy i when the strategy
distribution is x is the difference between the values of the potential function at two
points:  the current distribution x, and the diminished distribution x –   

e
N

i  which

would arise if the player left the population.
  This suggests that in the infinite population limit, the payoffs to strategy i should
be related to the partial derivative of P with respect to i.  The first step in formalizing
this intuition is to define a notion of convergence.  We say that a sequence of AFP

games 
    

{ } ,u Pi
N

i S
N

N N∈ =

∞{ }
0
 converges if there exists a     C

1 function P:   X  → R and a

vanishing sequence of real numbers     { }KN
N N=
∞

0
 such that

(C)     ( ( ) ( )) ( ( ) ( ))1 1
N

N
N

NP x P x P y P y− − −  ≤   K x yN −

for all x and y  in   X
N  ∪    Xd

N  and all N .  In words:  for each N , we require the
difference between     

1
N

NP  and P to be a Lipschitz continuous function; the Lipschitz

constant   K
N  must vanish as N grows large.

 To understand this condition, first observe that in the finite player games, the
potential functions have magnitudes of order N ; for this reason, we consider the
rescaled potential functions     

1
N

NP .  Second, notice that potential functions are only

unique up to an additive constant.  Since   X  is bounded, condition (C) implies that
the functions     

1
N

NP (x) –   c
N  ≡     

1
N

NP (x) – (    
1
N

NP (e1) – P(e1)) converge uniformly to P(x).
Finally, condition (C) requires that for each fixed N , the difference     

1
N

NP (x) – P(x)

varies little when x is changed by a small amount; the larger is N , the less the
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difference may vary.22

  If the potential functions of a sequence of AFP games converge, their payoff
functions also converge.  Furthermore, the collection {{ui}i∈ S, P} defined by the
various limits is an infinite player potential game.  This is the content of our
convergence theorem.

Theorem 6.1:  Let 
    

{ } ,u Pi
N

i S
N

N N∈ =

∞{ }
0
 be a convergent sequence of AFP games wi th

limit potential function P.  Then

 (i) The sequences of payoff functions are uniformly convergent:  for each i

∈ S there exists a     C
0  function ui:   X  →  R such that

    
lim sup ( ) ( )
N x X

i
N

i
i
N

u x u x
→∞ ∈

−  = 0.

(ii) The limit payoff functions and potential function define an infinite player

potential game.  That is,

ui(x) =   
∂P
∂xi

(x) for all x ∈    X  and i ∈  S.

Proof:  Fix i ∈  S and x ∈    Xi
N .  By the Mean Value Theorem,

    P x P x z xe
N N

P
x i

Ni

i
( ) ( ( ))− −( ) = 1 ∂

∂

for some     zi
N (x)  on the linear segment connecting x and   x − ei

N .  Therefore, equation

(C) implies that

    
u x xi

N P
xi

( ) ( )− ∂
∂  = 

    
( ( ) ( )) ( )P x P x xN N e

N
P
x

i

i
− − − ∂

∂

 =     ( ( ) ( )) ( ( ) ( ))P x P x N P x P xN N e
N

e
N

i i− − − − −  + 
    

∂
∂

∂
∂

P
x i

N P
xi i

z x x( ( )) ( )−

=     N P x P x P x P xN
N

N
N e

N
e
N

i i( ( ) ( )) ( ( ) ( ))1 1− − − − −  + 
    

∂
∂

∂
∂

P
x i

N P
xi i

z x x( ( )) ( )−

≤   K
N  + 

    
∂
∂

∂
∂

P
x i

N P
xi i

z x x( ( )) ( )− .

Since   K
N  vanishes, and since P is     C

1 on the compact set   X , we conclude that

    
lim sup ( ) ( )
N x X

i
N P

x
i
N i

u x x
→∞ ∈

− ∂
∂  = 0.  ■

                                                
22 For an example of a convergent sequence of AFP games, see the end of Section 3.
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By restricting attention to games in which players are anonymous and by
choosing an appropriate representation for these games, we are able to establish a
basic link between potential games with finite and infinite populations.  Theorem
6.1 shows that the condition which defines infinite population potential games is
the limiting version of the conditions defining AFP games.  Together with our
stability results, the convergence theorem shows that in settings in which players
are anonymous, the choice between the finite and infinite player models is a matter
of analytical convenience.

Appendix

A.1  Evolutionary Dynamics:  Definitions and Auxiliary Results

Most of the definitions we require are stated in Section 4; some definitions which
were omitted are provided here.  A neighborhood of a closed set A ⊂ X is a set which
is open relative to X and contains A.  A closed set A  ⊂  X is Lyapunov stable if every
neighborhood B of A contains a neighborhood B' of A  such that every solution
trajectory starting in B ' never leaves B.  In other words, solutions starting at all
points sufficiently close to A always remain close to A.
 Let {xt}t≥0 denote the solution trajectory of     ̇x  = V(x) with initial condition x0.  The
limit set of x0, ω(x0), is the set of accumulation points of this solution trajectory:
ω(x0) = {z ∈  X:  

    
lim
k→∞

xtk
 = z for some tk → ∞}.  A closed set of A  ⊂  X is asymptotically

stable if it is Lyapunov stable and there exists a neighborhood B of A such that ω(x) ⊂
A for all x ∈  B:  in other words, solutions starting from all points close enough to A
remain nearby and eventually converge to A.  The existence of a global Lyapunov
function allows a strong characterization of the limit behavior of a dynamical
system, as the following lemma shows.  The lemma combines results found i n
Losert and Akin [19, Proposition 1] and Robinson [26, Theorem 5.4.1].

Lemma A.1:  If f: X → R is a global Lyapunov function for     ̇x  = V(x), then each l imit

set ω(x) is a non-empty, compact, and connected set consisting entirely of rest points

of V and upon which f is constant.

Global Lyapunov functions can also be used to establish Lyapunov stability.  The
following lemma follows from Theorem 6.4 of Weibull [35].
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Lemma A.2:  If f: X → R is a global Lyapunov function for     ̇x  = V(x) and A is a local

maximizer set of f, then A is Lyapunov stable.

To prove asymptotic stability results, we need slightly stronger conditions.  W e
call a     C

1 function f: X → R a strict local Lyapunov function for the set A  under     ̇x  =
V(x) if (i) A is a local maximizer set of f, and (ii) there exists a neighborhood B of A
such that     

d
dt f (xt ) > 0 whenever x ∈  B – A.  The existence of a strict local Lyapunov

function for the set A  implies its asymptotic stability.  This result also follows from
Theorem 6.4 of Weibull [35].

Lemma A.3:  If f: X → R is a strict local Lyapunov function for A, then  A  is

asymptotically stable.

A.2  Proofs Omitted from the Text

Proof of Proposition 4.2:
We present the proof of the case in which there is a single population of mass

one; the proof of the general case is a straightforward extension.  It is easily verified
that (BNN) satisfies (LC) and (FI).  To check (PC), suppose that x is not a rest point of
(BNN):      ̇x  = V(x) ≠ 0.  It follows that ki > 0 for some strategy i ∈      S

1.  Hence, letting     ̂S =
{ i ∈      S

1:  ki > 0}, we find that

    
V x F xi i

i S

( ) ( )
∈
∑

1

= 
    

k F xi i
i S

( )
∈
∑

1

 – 
    

x F x ki i
i S

j
j S

( ) ( )
∈ ∈
∑ ∑

1 1

= 
    

( ( ) ( )) ( )
ˆ

F x F x F xi i
i S

−
∈
∑  – 

    
F x F x F xj

j S

( ) ( ( ) ( ))
ˆ

−
∈
∑

= 
    

( ( ) ( ))
ˆ

F x F xi
i S

−
∈
∑ 2

= 
    

( )
ˆ

ki
i S

2

∈
∑  > 0.

Thus, property (PC) holds.
To establish (NC), suppose that x is not a Nash equilibrium.  Then there is a

strategy i ∈      S
1 such that xi > 0 and Fi(x) < 

    
max

j S∈ 1  Fj(x).  Let strategy h ∈      S
1 satisfy Fh(x)

= 
    
max

j S∈ 1  Fj(x).  Then it is clear that Fh(x) >     F x( ), and so kh > 0.  Thus, if xh = 0, then     ̇xh

= kh > 0, so x is not a rest point.  On the other hand, if xh > 0, then since Fh(x) >     F x( ),
there must be a strategy l ∈      S

1 such that xl > 0 and Fl(x) <     F x( ).  But then kl = 0, and so

    ̇xl  < 0; hence, x is not a rest point.  This establishes property (NC), completing the

proof.  ■
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Proof of Theorem 4.3:
 Part (i) of the theorem follows immediately from Lemma 4.1 and Lemma A.2.
To prove part (ii)(a), let A  be an isolated local maximizer set.  Since A is isolated,
there is a neighborhood B of A  such that all Nash equilibria in B are in A.  Hence,
noncomplacency implies that V(x) ≠ 0 for all x ∈  B – A, and so positive correlation
implies that     

d
dt f (xt ) =     F x V xt t( ) ( )⋅  > 0 whenever xt ∈  B – A.  Thus, f is a strict local

Lyapunov function for A.  Lemma A.3 then implies that A  is asymptotically stable.
Moreover, since A consists entirely of Nash equilibria, noncomplacency implies that
no strict subset of A  can be asymptotically stable; therefore, A  is a minimal
asymptotically stable set.

To prove part (ii)(b), suppose that A is a minimal asymptotically stable set which
is smoothly connected.  Let   ′A  be the set of points in A  which are Nash equilibria.
Because A  is asymptotically stable, there is a neighborhood B of A  such that all
trajectories starting in B converge to A.  By Lemma A.1 and Proposition 4.3 (ii), the
limit sets of these trajectories must be contained in   ′A .  Therefore,   ′A  is non-empty
and asymptotically stable; it is closed by definition.  But since A  is a minimal
asymptotically stable set, we conclude that A  =   ′A .  Thus, the set A  consists entirely
of Nash equilibria.

We continue with a lemma:

Lemma A.4:  The potential function f is constant on any smoothly connected set o f

Nash equilibria of F.

Proof:  Let A be a smoothly connected set of Nash equilibria of F, and let y and z

be elements of A.  Then there exists a piecewise smooth function   γ : [0, 1] → A  ⊂  X
with γ(0) = y and γ(1) = z.  Since

f(z) – f(y) = 
    

∇f ⋅ d
v
x

γ∫  = 
    

F t t dt( ( )) ( )γ γ⋅ ′( )∫0

1
 = 

    
F t t dtp p

p
( ( )) ( ) ( )γ γ⋅ ′( )∫∑ 0

1
,

it is sufficient to show that for each p ∈  P, the integrand     F t tp p( ( )) ( ) ( )γ γ⋅ ′  equals zero
at all points at which γ is differentiable.

Fix p ∈  P, and let t be a point of differentiability of γ.  Observe that if   γ i
p(t) = 0,

then     (γ i
p ′) (t) = 0; otherwise, the path γ would leave X at time t.  On the other hand, if

  γ i
p(t) ≠ 0, then since γ(t) is a Nash equilibrium,   Fi

p (γ(t)) =   µ
p (γ(t)) ≡ 

    
max ( ( ))

j S
j
p

p
F t

∈
γ .

Hence,
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    F t tp p( ( )) ( )' ( )γ γ⋅ = 
    

F t ti
p

i
p

i C tp p

( ( )) ( ) ( )
( ( ))

γ γ
γ

⋅ ′( )
∈

∑
= 

    
µ γ γ

γ

p
i
p

i C t

t t
p p

( ( )) ( ) ( )
( ( ))

⋅ ′( )
∈

∑
=     µ γp t( ( ))(    

v
1 ·     (γ p ′) (t)),

where     
v
1 = (1, … , 1).  But since γ stays in X,     

v
1 ·     γ

p t( )  ≡   m
p , so differentiating with

respect to t yields     
v
1 ·     (γ p ′) (t) = 0.  Therefore,     F t tp p( ( )) ( ) ( )γ γ⋅ ′  = 0.  ❏

Now let B be the basin of attraction for A  described above.  By definition, B – A

contains no rest points, and hence (by Proposition 4.3 (i)) no Nash equilibria.  Hence,
A is isolated. By Lemma A.4, f takes a unique value on A.  Call this value c.  Let x0 be
an arbitrary point in B – A, and let {xt}t≥0 be the solution trajectory starting from x0.
By the definition of B, ω(x0) ⊂  A, so 

    
lim ( )
t tf x
→∞

 = c.  Because f is a strict local Lyapunov

function for the set A, it follows that f(x0) < c.  Since A  is connected and f is constant
on A, we conclude that A is a local maximizer set.  ■
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