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Abstract

We model externality abatement as an implementation problem.  A
social planner would like to ensure efficient behavior among a group of
agents whose actions are sources of externalities.  However, the planner
has limited information about the agents' preferences, and he is unable
to distinguish individual agents except through their action choices.  We
prove that if a concavity condition on aggregate payoffs is satisfied, the
planner can guarantee that efficient behavior is globally stable under a
wide range of behavior adjustment processes by administering a
variable pricing scheme.  Through a series of applications, we show that
the concavity condition is naturally satisfied in settings involving
negative externalities.  We conclude by contrasting the performance of
the pricing mechanism with that of a mechanism based on direct
revelation and announcement dependent forcing contracts.
 JEL Classification Numbers:  C61, C72, C73, D62, D82, R41, R48

                                                
* I thank Jeff Ely, Philippe Jehiel, Larry Samuelson, Jörgen Weibull, three anonymous referees, and a
Managing Editor, as well as seminar participants at Harvard, the Royal Institute of Technology
(Stockholm), the Stockholm School of Economics, Wisconsin, the 2001 Valencia Game Theory
Conference, the 2002 Econometric Society Winter Meeting, the 2002 Case Western Reserve University
Learning Conference, and the 2002 Society for Economic Dynamics Meeting for helpful comments and
discussions.  Financial support from the National Science Foundation (SES-0092145) is gratefully
acknowledged.



–1–

1.  Introduction

When the choices of economic agents directly impose costs upon others,
equilibrium behavior is inefficient.  Commuters drive too often, on the wrong
routes, and at the wrong times.  Internet users clog network pipelines during peak
hours, and overuse applications with heavy bandwidth requirements.  Firms whose
production processes create pollution produce too much.

A benevolent social planner might attempt to restore efficiency by altering the
agents' incentives.  Unfortunately, without precise information about the agents'
preferences, the planner cannot know exactly what efficient behavior would entail.
He can surely reduce the level of externalities by taxing the activities that generate
them.  But without clear knowledge of preferences, he cannot know whether the
taxes inhibit the activities too much or too little.
 Were the planner fully informed about preferences, he would be able to choose
prices that render efficient behavior an equilibrium.  But this still leaves open the
question of whether the agents would play this equilibrium.  This issue is especially
relevant when the number of agents is large, since the knowledge assumptions that
are traditionally used to justify equilibrium play are particularly difficult to accept i n
these cases.  At worst, standard marginal externality pricing may allow multiple
equilibria, so that even if equilibrium is reached, socially optimal behavior is not
assured.

In this paper, we model externality abatement as an implementation problem.
Our model incorporates techniques from evolutionary game theory, assuming that
agents dynamically adjust their choices in response to the incentives they currently
face.  We offer a simple condition on aggregate payoffs under which a planner with
limited information about preferences can nevertheless ensure that efficient
behavior is globally stable.  Finally, we present a series of applications that show that
our sufficient condition holds in a variety of models involving negative
externalities.
 In our model, the members of a continuous population of agents each choose an
action from a finite set.  Each agent's utility function is the sum of two components.
The first component captures the externalities that the agents impose upon one
another.  It is a function of the agent's own choice and the population's aggregate
behavior, and is common across agents.  The remaining, idiosyncratic component
only depends on the agent's own choice of action, but varies from agent to agent.
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The planner knows the common component of payoffs, but he has no information
about idiosyncratic payoffs.

At each moment in time, the agents' aggregate behavior is described by a
population state, which specifies the number of agents of each type playing each
action.  We model the agents' behavior adjustment process using a differential
equation defined on the set of population states.  Rather than fixing a particular
functional form for this equation, we assume only that it is a member of a wide class
of admissible dynamics.  The main requirement defining this class is a mild payoff
monotonicity condition:  namely, that the average, taken over all types, of the
covariances between action growth rates and payoffs is positive.

The planner would like to ensure that the agents behave efficiently.  He faces two
constraints.  As is usual in implementation problems, the planner has limited
information about the agents' types.  In fact, we assume that the planner has no
information about types at all.  We also assume that the agents are anonymous , i n
that the planner can only distinguish them through the actions they choose.  This
assumption can be viewed as a hidden action constraint under which the planner is
unable to observe precisely which agents choose which actions, but which leaves
him able to tax these choices directly.  We call the simplest mechanisms that satisfy
both constraints price schemes .  Price schemes specify prices for undertaking each
action as functions of current aggregate behavior.  They are easy and inexpensive to
implement even when the number of agents is large.
 We describe the efficiency of a population state in terms of the total utility that
the agents obtain at that state.  Like each individual's utility function, the total
utility function can be decomposed into two terms.  One, the total common payoffs,
captures the aggregate effects of externalities on the agents.  The other, the total
idiosyncratic payoffs, sums the benefits whose exact values are the agents' private
information.
  The main result of the paper can be described as follows.  Suppose that the total
common payoff function is concave.  Then one can construct a price scheme with
the following property:  for any realization of types, the set of efficient population
states is a global attractor under any adjustment process that is admissible given the
payoffs induced by the price scheme.  Therefore, regardless of the their preferences,
their initial behavior, or their precise method of strategy revision, a population of
agents subjected to this price scheme will learn to behave efficiently.

Of course, the usefulness of this result hinges on whether the concavity
condition can be expected to hold.  To address this question, we consider a number
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of applications of our implementation result:  to models of highway congestion
with single and multiple departure times, to a model of computer network
congestion, and to a model of pollution.  In all cases, we show that the required
concavity condition holds, and so that global implementation of efficient behavior
is possible.

Our analysis relies upon the notion of a potential game  (Monderer and Shapley
(1996), Sandholm (2001)).  Potential games admit potential functions, which serve as
Lyapunov functions for all admissible dynamics, and so ensure convergence to
equilibrium behavior.  Typically, the original externality model does not define a
potential game, and so evolutionary dynamics in this model need not converge to
equilibrium.  However, by altering the agents' payoffs using a price scheme, the
planner can create a potential game from one that is not.  It is the planner's
intervention that ensures that evolution leads to equilibrium play.
 Our analysis shows that regardless of the realization of types, the optimal price
scheme guarantees that the agents play a potential game.  Moreover, the potential
function of the game created by the price scheme is the total utility function induced
by the (known) common payoff function and the (unknown) realization of types.
Hence, no matter which types are realized, evolution under any admissible
dynamics increases total utility.  The assumption that total common payoffs are
concave implies that total utility is concave as well, enabling us to conclude that the
evolutionary process converges to its global maximizer.  Thus, the price scheme
always ensures that the agents learn to behave efficiently.
 Our optimal price scheme can be viewed as a form of marginal externality
pricing.  In the classical approach to externality pricing, dating back to Pigou (1920),
one charges agents for the externalities that they would create at the efficient state i n
order to render this state an equilibrium.  In contrast, under our price schemes,
prices are specified as a function of current aggregate behavior.  This variability
allows our price scheme to exhibit two important properties.  First, variable pricing
enables a planner to ensure that efficient behavior is an equilibrium without
knowing what efficient behavior will turn out to be.  Second, variable pricing lets
the planner guarantee that this efficient equilibrium is unique and globally stable,
even when such guarantees are not available in the original game without the price
scheme, or in the game obtained by imposing a standard Pigouvian pricing scheme.

In an earlier paper (Sandholm (2002)), we studied an implementation problem
set on a highway network during a single peak usage period.  In that problem, agents
chose among different routes from their hometowns to the towns of their
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workplaces or elected to stay home; externalities took the form of congestion delays
on the streets in the network.  We showed that the planner could ensure efficient
behavior by employing an appropriate price scheme.
 This single departure time congestion model possesses two features that make
the corresponding implementation problem relatively simple.  First, the single
departure time model defines a concave potential game, even before the price
scheme is imposed.  Global convergence to equilibrium is therefore guaranteed
even without pricing, so the only role of the price scheme is to ensure that equilibria
always constitute efficient play.  Second, each agent's type in the single departure
time model represents his net benefit from commuting, and so is one-dimensional.
In Sandholm (2002), we took advantage of this feature by using a "reduced form"
model of the evolution of behavior, an approach that cannot be extended to settings
with multidimensional types.1

 In the present paper, we eliminate both of these simplifying assumptions.  This
is important because typical models of negative externalities do not define potential
games and do exhibit multidimensional types.  For example, suppose we make our
congestion model more realistic by allowing commuters to choose their times of
departure.2  Allowing idiosyncratic preferences over when to commute
immediately requires vector-valued types in order to describe preferences for
commuting at different times of day.  Moreover, as we explain in detail below,
asymmetries in the externalities that early and late drivers impose upon one
another imply that the multiple departure time game is not a potential game.  The
model of evolutionary implementation developed in this paper addresses both of
these complications, allowing us to ensure global convergence to efficient play i n
settings with uncertain convergence properties and with multidimensional types.
 The price schemes we study in this paper are quite different from standard
mechanisms based on direct revelation.  To facilitate comparisons, we show how
when the type distribution is continuous, the implementation problem studied i n
this paper can be solved using mechanisms that combine direct revelation with
announcement dependent forcing contracts.  The solution concept we apply to these
mechanisms utilizes backward induction and dominance.  If the hidden action
component of the planner's problem is assumed away, so that the forcing contracts

                                                
1 For a more precise description of the reduced form dynamics, see Section 6.
2  Departure time choice is a focus of Vickrey's (1963, 1969) work on congestion pricing; see Arnott, de
Palma, and Lindsey (1990, 1993) for more recent results.  These authors all emphasize that the full
benefits of congestion pricing can only be obtained by modifying commuters' time of use decisions.
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are unnecessary, the mechanism that remains can be viewed as an infinite player
extension of the Vickrey-Clarke-Groves mechanism.  Interestingly, equilibrium
transfers under the VCG mechanism and the optimal price scheme are the same,
although the game forms that lead to these transfers are quite different.
  Each of the solutions we offer to the implementation problem has its advantages.
The standard mechanism does not require the concavity condition that is needed to
ensure global stability of efficient behavior under the price scheme.  Moreover, the
effectiveness of our price scheme also depends on the fact that agents’ types enter
their utility functions in an additively separable way; the standard mechanism does
not require this restriction.
 On the other hand, the standard mechanism is labor-intensive for the planner,
since it is based on direct command and control:  the planner must collect reports,
compute an optimal assignment of agents to actions, and punish agents who do not
obey.  Each of these tasks may be demanding when the population is large.  The
optimal price scheme is only effective in settings with negative externalities, but
utilizes indirect control:  prices are specified for each action, and the agents
themselves decide which actions to choose.  Because of this decentralization, the
price scheme is easy to administer, and is adept at handling changes in the
preferences or composition of the population.  Given the different features of the
two types of mechanism, the choice between the two should depend on the
intended application.

Section 2 describes our model of externalities and defines admissible
evolutionary dynamics.  Section 3 introduces our definition of evolutionary
implementation and presents our main result.  The proof of this result is contained
in Section 4, and a number of extensions are offered in Section 5.  Section 6 applies
the implementation theorem to four models of negative externalities.  Section 7
solves the implementation problem using a standard mechanism and contrasts this
mechanism with the optimal price scheme.  Concluding remarks are offered i n
Section 8.
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2.  The Model

2.1  Population Games

We consider games with a unit mass of agents, each of whom chooses actions
from the same set S = {1, … , n}.  Each agent's payoff is the sum of two components:  a
common payoff, which depends on the agent's action choice and the overall
distribution of actions in the population, and an idiosyncratic payoff, which varies
from agent to agent and only depends on the agent's own action choice.3

 We first define the common component of payoffs.  Let X = {x ∈     R+
S :    xii∑  = 1}

denote the set of distributions of agents over actions in S.  A common payoff game is
defined by a   C

2 payoff function F: X →     R
S , where Fi(x) is the common payoff to

action i when the action distribution is x.4

In what follows, it will be helpful to be able to speak of the marginal impact that
an agent choosing strategy j has on the common payoffs of other agents.  This is
most naturally done using partial derivatives of the form 

  
∂
∂

F
x

i

j
.  However, if common

payoffs are only defined on the simplex X, these partial derivatives are undefined.
We therefore find it convenient to define payoffs for populations whose total mass
may be greater or smaller than one.  In particular, we assume without loss of
generality that F is defined on the set   X  = {x ∈     R+

S :    xii∑  ∈ I}, where I is an open

interval containing 1.
  To capture the idiosyncratic aspects of agents' payoffs, we assign each agent a type
in the finite set Θ.  M = {µ ∈   R+

Θ :  µθθ∑  = 1} denotes the set of type distributions.

The set of population states under type distribution µ is given by Zµ = {z ∈      R+
×Θ S :

    z ii θ ,∑  = µθ for all θ ∈ Θ}.  The scalar zθ,i ∈ R represents the number of agents who are

of type θ and who play strategy i, while the vector zθ ∈     R
S  describes the behavior of

the agents of type θ.  Similar notational conventions are used throughout the paper.
In this multitype setting, a game is defined by a pair (U, µ), where µ ∈ M is a type

distribution and U: Zµ →     R
Θ ×S  is a   C

2 payoff function.  Uθ,i(z) is the payoff to action i

                                                
3  The term "common payoff" is not intended to suggest that the value of this payoff is the same for
all agents, only for all agents who choose the same action.
4 If we define a common payoff game by randomly matching agents to play an n x n normal form game
with payoff bimatrix (A,   ′A ), we obtain a game with linear payoff function F(x) = Ax.  Games with
non-linear payoff functions cannot be derived from random matching games.  However, these games can
be viewed as the limits of normal form games with large numbers of anonymous players – see Sandholm
(2001).
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for agents of type θ when the population state is z.  A population state z* ∈ Xµ is a
Nash equilibrium if all agents choose a best response to the play of their opponents:

(NE) i ∈ 
    
arg max ( *),

j S
jU z

∈
θ  whenever     z iθ ,*  > 0

 We are particularly interested in games constructed by adding idiosyncratic
payoffs to a common payoff game.  To accomplish this, we suppose that the type set
Θ is a subset of     R

S , and interpret θi as the idiosyncratic benefit that a agent of type θ
obtains by playing action i.  We also let x(z) =   zθθ∑  ∈ X denote the action

distribution that obtains at the population state z ∈ Zµ.  Then, given any common
payoff game F and any type distribution µ ∈ M, we define the separable game  (F, µ)
to be the multitype game with payoff function

 Uθ,i(z) = Fi(x(z)) + θi.

In this game, the common payoff Fi(x(z)) depends on the agent's action choice i and
on the current action distribution x(z), but not on the agent's type.  This component
captures the externalities that the agents' impose upon one another.  The
idiosyncratic payoff θi depends on an agent's action choice and on his type, but does
not depend on the population state.
 For an example of a separable game, consider the following model of highway
congestion with multiple departure times.5  Each action i represents either the
combination of a route to work a and a departure time τ, or the option of staying
home.  In the former case, the common payoff Fi(x) captures the delay along route a

at time τ; this delay depends upon the other agents' driving choices.  The type
component θi captures an agent's idiosyncratic benefit from commuting at time τ,
and can also be used to describe an idiosyncratic preference for driving on route a.

2.2  Evolutionary Dynamics

 While most applications of game theory begin with the assumption of
equilibrium play, this assumption seems especially strong in the large population
settings that concern us most.  We therefore begin with more primitive
assumptions about how agents adjust their behavior in response to the incentives

                                                
5 This application and others are studied in detail in Section 6.
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they face.  We will ultimately prove that if the planner employs our pricing
mechanism, the dynamics we specify must converge to equilibrium play.  Thus,
equilibrium play is obtained as a conclusion rather than as an assumption of our
approach.
 Since the population's behavior is described by a population state  in Zµ, our
evolutionary dynamics are defined on this space.  These dynamics are defined by a
differential equation

(D)     ̇z = g(z),

where g: Zµ →     R
Θ ×S  is a function from population states to directions of motion

through Zµ.  The component     g ziθ , ( ) ∈ R describes the growth of the use of strategy i

by agents of type θ, while the vector gθ(z) ∈     R
S  captures all type θ growth rates at

once.
 Rather than specify a particular functional form for the dynamics (D), we instead
require that these dynamics be drawn from a broad class.  Our notion of
implementation will require that the behavior that the planner prefers be globally
stable under all dynamics from this class.  
 To define this class of dynamics, we introduce one additional definition:  for any
pair of vectors x, y ∈     R

S , we define

  Cov(x, y) = 
    
1 1 1
n i n jj

i
i n jj

x x y y−( ) −( )∑∑ ∑

to be the covariance between these two vectors when equal weights are placed on
each component.  With this definition in hand, we say that the dynamics (D) are
admissible for the multitype game (U, µ) if the following three conditions hold:

(LC) g is Lipschitz continuous.
(FI) Zµ is forward invariant under (D).
(PC)     Cov g z U z( ( ), ( ))θ θθ∑  > 0 whenever g(z) ≠ 0.

(NC) If g(z) = 0, then z is a Nash equilibrium of (U, µ).

 Condition (LC) ensures that there is a unique solution to (D) from each initial
condition in Zµ, while condition (FI) ensures that these solutions do not leave Zµ.
We call condition (PC) positive correlation.  It requires that whenever the dynamics
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are not at rest, the average, taken over all types, of the covariance between each
type's growth rates and payoffs is positive.  This is a very weak monotonicity
condition, as it restricts behavior in all subpopulations at once using a single scalar
inequality.  The last condition, noncomplacency , (NC), specifies that whenever the
population is at rest, its behavior is in equilibrium.  If equilibrium has not been
reached, there are agents who would benefit from switching strategies;
noncomplacency requires that some of these agents eventually do so.6

It is worth noting the relationship between the rest points of admissible
dynamics and the Nash equilibria of the underlying game.  

Proposition 2.1:  Suppose the dynamics (D) are admissible for the game (U, µ).  T h e n

z ∈  Zµ is a rest point of (D) if and only if it is a Nash equilibrium of (U , µ).

This result, established in Sandholm (2001), is proved in the Appendix.

3.  Evolutionary Implementation

3.1  The Planner's Problem

We now introduce a social planner who would like to ensure that the
population behaves efficiently.  The planner faces two constraints.  The first is due
to hidden information: while the planner knows the common payoff function F, he
has no information about agents' idiosyncratic payoffs, described by the unknown
measure µ.  Information constraints of this kind form the core of most problems i n
mechanism design and implementation theory.
  Our planner also faces another restriction, a form of hidden action constraint
that we call anonymity.  Anonymity requires the planner to employ a mechanism
that only conditions an agent's transfers on that agent's action and on the

                                                
6 An example of an admissible dynamics is the Brown-von Neumann-Nash dynamics:  see Brown and
von Neumann (1950), Weibull (1996), Berger and Hofbauer (2000), or Sandholm (2001).  For a general
class of dynamics that satisfy these conditions, see Sandholm (2003a).
 The best response dynamic (Gliboa and Matsui (1991)) fail condition (LC), which introduces
technical complications (in particular, nonuniqueness of solution trajectories).  Our analysis can be
extended to accommodate this dynamic.  Finally, it is well known that the replicator dynamic fails
condition (NC) on the boundary of the state space:  for example, a state at which all agents choose the
same action is a rest point of this dynamic, even if the action is strictly dominated.  One can incorporate
the replicator dynamic into the analysis by only considering interior initial conditions – see Sandholm
(2002).
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population's aggregate behavior.  As we explained earlier, this condition reflects a
need to choose mechanisms that are easy to administer, even when the number of
agents is large.
 We measure the efficiency of a population state z in terms of the total utility

  U (z) obtained by the agents at that state:

  U (z) =     z U zi ii θ θθ , , ( )∑∑

The function   U  is defined on the set Z = 
    

Z
M µµ∈U , which contains all population

states that can arise under type distributions in M.
  The total utility function for the separable game (F, µ) can be split into two
components:

  U (z) =     z F x zi i ii θθ
θ, ( ( ( )) )+∑∑

 =     x z F x zi ii
( ) ( ( ))∑  +     z i ii θθ

θ,∑∑
=   F (x(z)) +     I z( ).

We call these two components of   U  the total common payoffs,     F x( ) =     x F xi ii
( )∑ ,

and the total idiosyncratic payoffs,     I z( ) =     z i ii θθ
θ,∑∑ .

 We describe the planner's problem in terms of a social choice correspondence

(SCC), φ: M ⇒ Z, which maps type distributions µ to sets of population states φ(µ) ⊆
Zµ.  The efficient social choice correspondence, φ*: M  ⇒  Z, is defined by

φ*(µ) = 
    
arg max ( )

z Z
U z

∈ µ

.

For every type distribution µ, φ*(µ) specifies the set of population states that
maximize total utility among those that are feasible under µ.  It is worth
emphasizing that efficiency of a state z may require that for some type θ ∈ Θ and
distinct strategies i, j ∈ S, the components zθ,i and zθ,j both be strictly positive.  In
other words, efficiency sometimes demands that different agents of the same type
choose different actions.7

                                                
7  For example, suppose that agents must choose between two routes, and that efficiency requires tha t
both routes be utilized.  Then if all agents are of the same type, the efficient state has the property
noted above.  Indeed, this property holds generically so long as the set of types is finite.  When we
study standard mechanisms in Section 7, this fact will lead us to consider a model with a continuum of
types; we refer the reader to that section for further discussion of this issue.
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3.2  Price Schemes and Global Implementation

The simplest mechanisms that respect the planner's hidden information and
anonymity constraints are called price schemes.  A price scheme is a map P: ∆ →     R

n ,
where Pi(x) represents the price paid by agents choosing action i when the action
distribution is x.  Price schemes satisfy the planner's information constraint because
payments do not condition on any information about the agents' types,
distributional or otherwise.  Price schemes respect anonymity because the transfer
paid by an agent only depends on his action and the population's aggregate
behavior.

The original game faced by the agents is defined by a common payoff function F

and a type distribution µ.  Introducing a price scheme does not alter the type
distribution, but it shifts the common payoff function from F to F – P.  More
explicitly, the price scheme changes the common payoff to strategy i under
distribution x from Fi(x) to Fi(x) – Pi(x).

With the definition of a price scheme in hand, we can introduce our notion of
implementation.  We say that the price scheme P globally implements  the social
choice correspondence φ if for each type distribution µ ∈ M, the set φ(µ) is globally
stable under any dynamics (D) that are admissible for the game (F – P, µ).  

Proposition 2.1 shows that the Nash equilibria of (F – P, µ) are precisely the rest
points of the game's admissible dynamics.  Consequently, global implementation
implies unique implementation, since if the set φ(µ) is globally stable, it must equal
the set of Nash equilibria of (F – P, µ).  However, global implementation demands
considerably more than unique implementation:  it requires that the agents learn to
play these equilibria, regardless of their initial behavior and their exact method of
strategy adjustment.

3.3  The Optimal Price Scheme

The price scheme we use to establish our implementation results is denoted P*,
and is defined by

Pi*(x) = 
    
−∑x

F

x
xj

j

ij

∂

∂
( ) .
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Under this scheme, the price an agent pays for choosing action i is equal to marginal
impact that the agent currently has on other agents' payoffs by choosing this action.

It is critical that the price scheme always is defined in terms of the current levels
of common payoffs.  Under standard Pigouvian pricing, the planner fixes prices
equal to the marginal externalities created at the efficient state; by doing so, he
renders this state an equilibrium.  In the implementation problem considered here,
the planner does not know the type distribution µ, and so is unable to identify the
efficient state.  One function of the variability in prices is to ensure that the efficient
state is an equilibrium, regardless of what this state turns out to be.

The variability in prices also serves another crucial role.  To see this, suppose
that the planner had enough information to set the standard Pigouvian prices.
While doing so would render the efficient state an equilibrium, there is generally no
reason to expect that the agents would learn to play this equilibrium if play began at
an arbitrary disequilibrium state.  A successful price scheme must ensure that the
efficient state is not simply an equilibrium; it must be an equilibrium that the agents
can easily learn to play.  This property depends critically on how prices are defined at
out-of-equilibrium states.

Our main result provides a simple sufficient condition for global
implementation.  Its proof is presented in Section 4.

Theorem 3.1  (Global Implementation):
  Suppose that average common payoffs   F  are concave .  Then the efficient social

choice correspondence φ* can be globally implemented using the price scheme P* .

Theorem 3.1 shows that if the average common payoff function is concave, then
the price scheme P* ensures that the agents will learn to behave efficiently.  As our
applications in Section 6 illustrate, the concavity of   F  is a property that arises in a
number of models of negative externalities.  Thus, in such settings, price schemes
can be used to globally implement efficient behavior.

4.  Analysis

4.1  Potential Games

 Our key tool for proving the implementation theorem is the notion of a
potential game, introduced in a finite agent setting by Monderer and Shapley (1996),
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and extended to the continuum of agents setting by Sandholm (2001).  In this
subsection, we review results from Sandholm (2001) that we need to prove
Theorem 3.1.
 We say that the common payoff game F is a potential game if there is a function f

such that

 
    

∂
∂

f
x

x
i

( )  = Fi(x) for all x ∈ X.

We call the function f the potential function for the game F.  Similarly, we say that
the multitype game (U, µ) is a potential game with potential function u if

 
    

∂
∂ θ

u
z

z
i,

( ) = Uθ,i(z) for all z ∈ Zµ.

 Potential games possess two attractive properties.  First, the Nash equilibria of a
potential game can be characterized in terms of its potential function in a simple
way.  Second, the potential function serves as a Lyapunov function for all
admissible dynamics.

To establish the first claim, consider maximizing the potential function u  on the
set of population states Zµ:

max u(z)      subject to     z ii θ ,∑ = µθ  for all θ ∈ Θ

          z iθ , ≥ 0 for all i ∈ S , θ ∈ Θ.

To solve this program, we first specify its Lagrangian:

 L(z, ρ, λ) = u(z) + 
    

ρ µθ θ θθ
−( )∑∑ z ii ,  +     λθ θθ , ,i ii

z∑∑ .

Here, ρ ∈   R
Θ  and λ ∈     R

Θ ×S  are Lagrange multipliers.  We then obtain the following
Kuhn-Tucker conditions:

(KT1)
    

∂
∂ θ

u
z

z
i,

( ) = ρθ – λθ,i;

(KT2)     z iθ ,      λθ ,i  = 0;
(KT3)     λθ ,i  ≥ 0.
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Because the set Zµ satisfies constraint qualification, satisfaction of the Kuhn-Tucker
conditions is necessary (but not sufficient) for maximization of potential.
Interestingly, these conditions also characterize the Nash equilibria of (U, µ).

Proposition 4.1:  (Characterization of equilibrium)
 (i) The population state z ∈ Zµ is a Nash equilibrium of (U, µ) if and only i f

there exist multipliers ρ ∈   R
Θ  and λ ∈     R

Θ ×S  such that the triple (z, ρ, λ) satisfies

(KT1), (KT2), and (KT3) for all θ ∈ Θ and i ∈ S.  
 (ii)  If its potential function u is concave on Zµ, then the set of Nash equilibria

of the game (U , µ) is the convex set of states that maximize u on Zµ.

Proof:  We begin with the proof of (i).  If z is a Nash equilibrium of (U, µ), then
since Uθ,i(z) =     

∂
∂ θ

u
z i,

(z), the Kuhn-Tucker conditions are satisfied by z, ρθ = maxi Uθ,i(z),

and     λθ ,i  = ρθ – Uθ,i(z).  Conversely, let z ∈ Zµ, and suppose that the triple (z, ρ, λ)

satisfies the Kuhn-Tucker conditions.  If     z iθ ,  > 0 for some θ ∈ Θ and i ∈ S, then (KT1)

and (KT2) imply that Uθ,i(z) =     
∂

∂ θ

u
z i,

(z) = ρθ, while (KT1) and (KT3) imply that Uθ,j(z) =

ρθ – λθ,j ≤ ρθ for all j ∈ S.  Thus, i ∈ argmaxj Uθ,j(z), and so z is a Nash equilibrium of
(U, µ).  Given claim (i), claim (ii) follows from the sufficiency of the Kuhn-Tucker
conditions in concave programs.  

The most important property of the potential function is that it serves as a
Lyapunov function for all admissible dynamics.  We say that the function Λ: Zµ → R
is a strict Lyapunov function for the dynamics (D) if   

d
dt Λ(zt) ≥ 0 along any solution

trajectory {zt}, with a strict inequality whenever zt is not a rest point of (D).  Put
differently, a Lyapunov function defines a landscape on the space of population
states that the dynamics always ascend.

Proposition 4.2:  (Characterization of dynamics)
 If (U, µ) is a potential game , then its potential function u  is a strict Lyapunov

function for any dynamics that are admissible under (U, µ).  Hence, every solution

trajectory of such dynamics converges to a connected set of Nash equilibria of (U , µ).

 Proof:  In the Appendix (Lemma A.5), we show if g satisfies condition (FI), then

     Cov g z U z( ( ), ( ))θ θθ∑ = 
    
1
n i i

i

g z U zθ θ
θ

, ,( ) ( )∑∑ .
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We can therefore compute that

     
d
dt tu z( )  =     

∂
∂θ θθ

u
z ti

d
dt t ii

z z
,
( ) ( ) ,∑∑  =     U z g zi ti i tθθ θ, ,( ) ( )∑∑  = n    Cov g z U zt t( ( ), ( ))θ θθ∑ .

Condition (PC) then implies that     
d
dt tu z( )  ≥ 0, with equality only when g(zt) = 0.  The

second claim then follows from Proposition 2.1 and standard results on Lyapunov
functions (e.g., Theorem 7.6 of Hofbauer and Sigmund (1988)).  

4.2  The Proof of the Implementation Theorem

 The proof of the implementation theorem requires two additional lemmas.  To
derive the first lemma, observe that if the planner imposes the price scheme P*, the
agents play a game with common payoff function

Fi(x) – Pi*(x) = Fi(x) + 
    

x
F

x
xj

j

i
j

∂

∂∑ ( ).

The right hand side of this expression is simply the partial derivative of total
common payoffs   F  with respect to xi:

Fi(x) – Pi*(x) = Fi(x) + 
    

x
F

x
xj

j

i
j

∂

∂∑ ( ) = 
    

∂
∂x

F x
i

( ).

This relationship can be expressed equivalently as

F(x) – P*(x) =     ∇F x( ),

and can be interpreted as follows.

Lemma 4.3:  The common payoff game F – P* is a potential game with potential

function   F .

 The second lemma shows that if the common payoff game F is a potential game,
then so is any game (F, µ) obtained by introducing idiosyncratic payoffs to F.
Moreover, the potential function for (F, µ) is obtained by adding the total
idiosyncratic payoffs     I z( ) to the potential function of the original game F.
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Lemma 4.4:  Suppose that the common payoff game     ̂F  is a potential game with

potential function     f̂ .  Then for any type distribution µ , the separable game (    ̂F , µ) is a

potential game with potential function

     f̂ (x(z)) +     z i ii θθ
θ,∑∑  =     f̂ (x(z)) +     I z( ).

 Proof:  Follows from both definitions of potential functions and the fact that

    
∂

∂ θz i
f x z I z

,

ˆ( ( )) ( )+( ) =     
∂

∂ xi
f xˆ( )  + θi = Fi(x(z)) + θi.  

By combining these two lemmas, we obtain the following result.

Proposition 4.5:  Fix any type distribution µ ∈ M .  Then the game (F – P*, µ) = (  ∇F , µ)
is a potential game whose potential function is the total utility function   U (z) =

  F (x(z)) +     I z( ).

The proof of Theorem 3.1 now follows in a straightforward manner.  Fix a type
distribution µ ∈ M, and suppose that the common payoff function F generates a total
common payoff function   F  that is concave.  Proposition 4.5 shows that the game (F
– P*, µ) = (  ∇F , µ) is a potential game with potential function   U .  Hence, Proposition
4.2 implies that any dynamics that are admissible under (F – P*, µ) converge to the
set of Nash equilibria of (F – P*, µ).  Since   F  is concave by assumption, and since   I  is
linear by definition, the potential function   U (z) =   F (x(z)) +   I (z) is concave as well.
Thus, Proposition 4.1 (ii) tells us that all Nash equilibria of (F – P*, µ) maximize   U
on the set Zµ.  We therefore conclude that the efficient set φ*(µ) =     arg max ( )z Z U z∈ µ

 is

globally stable under all dynamics that are admissible for the game (F – P*, µ),
proving the theorem.

We noted earlier that a successful price scheme must serve two roles, ensuring
both that efficient play is always an equilibrium, and that this equilibrium is always
essentially unique and globally stable.  We now examine each of these roles in turn.  
 Consider the marginal impact on total utility of a change in the mass of agents
who are of type θ and who choose strategy i.  Writing x for x(z), we see that

(†)
    

∂
∂ θz

U z
i,

( )  = 
    
F x x

F

x
xi i j

j

ij

( ) ( )+( ) +∑θ
∂

∂
.
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The first term, Fi(x) + θi, is simply the agent's own utility; he responds to this
without intervention by the planner.  The second term, 

    
x xj

F

xj

j

i

∂

∂ ( )∑  = –Pi*(x) is the

marginal effect that the choice of action i has on the other agents' payoffs.  The price
scheme P* forces the agents to internalize this effect, so that payoffs under the price
scheme always equal marginal total utilities.  Moreover, the first order conditions
for maximizing the total utility   U  on the space Zµ imply that at the efficient state z* ,
marginal total utilities satisfy

 
    

∂
∂ θz

U z
i,

( *) = maxj 
    

∂
∂ θz

U z
j,

( *) whenever zθ,i* > 0.

Since these partial derivatives are identical to the payoffs under the price scheme,
the population state that maximizes total utility must be an equilibrium under the
scheme.

At the same time, if we let     U zi
P
θ ,

* ( ) = Fi(x(z)) – Pi*(z) + θi denote the payoffs in the

game (F – P*, µ), then equation (†) is equivalent to the integrability condition

 
    

∂
∂ θz

U z
i,

( )  =     U zi
P
θ ,

* ( ),

which shows that (F – P*, µ) is a potential game.  Thus, even if dynamics for the
original game (F, µ) are badly behaved, dynamics for the new game (F – P*, µ) are
gradient-like, and hence globally convergent.
 The concavity condition on   F  is essential to our results.  Without this condition,
the game (F – P*, µ) could admit multiple stable equilibria, rendering global
implementation impossible.8  Fortunately, our applications in Section 6 will show
that this assumption is justified in a variety of settings involving negative
externalities.

                                                
8  However, while concavity of   F  is sufficient for our implementation results, it is not necessary.
Concavity is only used to ensure that for all realizations of the type distribution µ, the game (F – P*, µ)
has a unique component of equilibria.  If this condition is assumed directly, the implementation
theorem continues to hold.
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5. Extensions

To prepare for these applications, we offer a number of useful extensions of
Theorem 3.1.

5.1  Multiple Populations

 In some applications, different subpopulations of the agents face different sets of
choices.  For example, in modeling highway congestion, it is natural to divide the
population into groups corresponding to origin/destination pairs; the set of actions
(i.e., routes) from which an agent chooses depends on which pair of towns he must
travel between.  At the expense of some additional notation, we can extend our
model to allow for multiple populations.  Let R = {1, … ,   r } denote the set of
populations.  Population r ∈ R is of size   m

r , and its members choose from strategy
set   S

r  = {1, … ,   n
r }.  The set of strategy distributions is denoted X = {x ∈       R+

+ +n nr1 ... :

  xii Sr∈∑  =   m
r  for all r ∈ R}.  The common payoff function for strategy i ∈   S

r  is

denoted Fi, and idiosyncratic payoff vectors for population r are elements of     R
nr

.  A n
immediate extension of our previous analysis shows that when average common
payoffs are concave, the efficient social choice correspondence can be globally
implemented by the price scheme P*, where

     P xi*( ) = 
    
−

∈′∈ ′
∑∑ x

F x

xj
j

ij Sr R r

∂

∂

( )
  for all i ∈   S

r  and r ∈ R.

Thus, the price an agent pays for choosing strategy i again equals the marginal
impact that the agent has on other agents’ payoffs; in computing this marginal
impact, one aggregates over agents from all populations.

5.2  Participation Constraints

 In many applications, agents can avoid being subjected to the price scheme by
choosing an outside option.  For example, a commuter who would like to avoid
paying congestion tolls can always opt to stay at home.  
 A typical feature of outside options is that choosing them does not create
externalities for other agents.  But it follows from the definition of P* that if action j
does not generate externalities (i.e., if 

  
∂
∂

F
x

i

j
 ≡ 0 for all i ∈ S), then it is optimal not to
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price it (Pj* ≡ 0).  Since outside options are not priced under P*, our implementation
results implicitly include participation constraints.9

5.3  Other Social Choice Correspondences

 While we have supposed so far that the planner's goal is to maximize the agents'
total utility, the planner may have other interests as well.  For example, if the
planner is regulating a polluting industry, he may care not only about industry
profits, but also about the effects of pollution on the environment.
 We can incorporate such concerns into the model by defining a function   U

O :   X
→ R, where   U

O(x) represents the impact of the agents' aggregate behavior on the
welfare of outside parties.  We can then specify a social choice correspondence that
incorporates these external effects:

     φ µO( ) = 
    
arg max ( ) ( ( ))

z Z

OU z U x z
∈

+
µ

Then an easy extension of our previous analysis establishes the following result.

Theorem 5.1:  Suppose that the function   F U O+  is concave.  Then the price scheme

   Pi
O(x) = 

    
− +








∑ x

F

x
x

U
x

xj
j

i
j

O

i

∂

∂
∂
∂

( ) ( ) .

globally implements the social choice correspondence   φ
O .

5.4  Discrete Time

 While modeling pricing and behavior adjustment in continuous time is
analytically convenient, in many applications it is an idealization.  For example, i n
the highway congestion model, it is more natural to think of time as passing
discretely, with each time period capturing the driving decisions made on a single
workday.  In Appendix A.1, we provide a discrete time formulation of our
externality pricing model and prove an extension of Theorem 3.1 for this setting.

                                                
9  We should also note that because we use a continuum of agents framework, budget balance can
always be achieved trivially by distributing the planner's revenues equally among all agents.  Since
each agent is infinitesimal, doing so does not alter the agents' incentives.



–20–

6.  Applications

6.1  Highway Congestion

Consider a group of agents who live in a collection of towns connected by a
network of streets.  Each agent can drive from his hometown to the town of his
workplace, or can opt to stay home.  An agent who chooses to commute selects a
route (i.e., a subset of the streets) leading from home to work.  A commuter's total
travel time is the sum of the delays on each street, which are functions of the
number of drivers on that street.
  We model the highway network using a collection {R,   m

r

r R{ }
∈

,   A
r

r R{ }
∈

,   Φa a S{ } ∈
,

  
cφ{ }

φ∈Φ
}.10  R is a set of one or more populations r with masses   m

r , one for each

home/work location pair.  The finite set Φ  = 
    Φaa Sr R r∈∈ UU  contains the streets in the

network.  Each route a ∈   A
r  corresponds to a set of streets Φa ⊆ Φ that connects the

home/work pair r.
 Let ρ(φ) = {a ∈ 

    Ar

r R∈U : φ ∈ Φa} denote the set of routes containing street φ.  The

utilization of street φ ∈ Φ is the total mass of the agents who drive on that street:

    uφ (x) = 
    

xa
a∈
∑
ρ φ( )

.

Here, xa represents the mass of agents choosing route a ∈   A
r .

The cost functions cφ: R+ → R report the delay on each street φ as a function of the
number of drivers using that street.  We suppose that each function cφ is positive,
increasing, and convex.  The delay on any complete route a is simply the total delay
on the streets Φa along this route.  

6.1.1  Highway Congestion with a Single Departure Time

We first consider a model in which all commuters drive to work at the same
time, a version of which was analyzed in Sandholm (2002).  In this case, the strategy
set   S

r  for agents in population r consists of the routes in   A
r  and the outside option

0, which represents staying home.  The common payoff to choosing route a is
determined by the delay on that route:

                                                
10 This model of  highway congestion builds on models introduced by Beckmann, McGuire, and Winsten
(1956) and Rosenthal (1973).  Jehiel (1993) shows how Pigouvian pricing schemes can be used to prove
that certain highway network games are potential games.
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Fa(x)  = 
    
−

∈
∑c u x

a

φ φ
φ

( ( ))
Φ

.

The common payoff to the outside option is always zero:  F0(x) ≡ 0.
Each agent's type θ = (θ0, θ1) ∈     R

2  reflects the benefits he obtains by staying home
and by going to work, respectively.11  Thus, the utility function of a population r

agent of type θ is given by

Uθ,a(z) = Fa(x(z)) + θ1 = 
    
−

∈
∑c u x z

a

φ φ
φ

( ( ( )))
Φ

 + θ1   for a ∈   A
r ;

Uθ,0(z) = F0(x(z)) + θ0 = θ0.

The planner would like to ensure that the agents' behavior maximizes their total
utility, which equals the total benefits obtained by commuters (and by those who
stay home) minus the total costs of delay.  To do so, he must address two types of
inefficiencies:  commuting by agents whose benefits from doing so are small, and
the overuse of easily congested streets.  The planner knows the cost functions cφ, but
has no information about the agents' types.

To apply Theorem 3.1, we must check that the total common payoff function   F

is concave.

Proposition 6.1:  In the single departure time congestion model , the function   F  is

concave .

Proof:  The total common payoff function is given by

    F x( ) = 
    

x F xa a
a

( )∑
= 

    
−

∈
∑∑x c u xa

a a

φ φ
φ

( ( ))
Φ

= 
    
−

∈∈
∑∑ x c u xa

a ρ φ
φ φ

φ ( )

( ( ))
Φ

= 
    
−∑u x c u xφ φ φ

φ

( ) ( ( )).

                                                
11  We are therefore implicitly assuming that the agents do not have idiosyncratic preferences for the
individual routes.  This assumption is not needed to apply Theorem 3.1, but was essential to our earlier
analysis of this problem in Sandholm (2002) – see below.
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Since uφ(x) is linear in x, to prove that   F  is concave it is enough to show that aφ(u) =

    uc uφ ( )  is convex for all φ.  But since cφ is increasing and convex,     ′′a uφ ( ) = u     ′′c uφ ( ) +

2    ′c uφ ( ) is positive, so aφ is indeed convex.  

Theorem 6.2:  In the single departure time congestion model , the efficient SCC φ*
can be globally implemented using the price scheme P*, given by

    P xa*( )  = 
    

u x c u x
a

φ φ φ
φ

( ) ( ( ))′
∈
∑
Φ

;

    P x0*( ) ≡ 0.

Notice that the optimal price scheme P* is separable in φ:  the price of each route can
be decomposed into prices pφ(u) = u    ′c uφ ( ) for each street φ along the route; the price of

each street only depends on the level of congestion on that street.

6.1.2  Highway Congestion with Multiple Departure Times

There are two features of the single departure time model that make the
implementation problem in this setting relatively simple.  First, types in this
example are essentially one-dimensional:  each agent's decisions are only depend on
θ through the difference θ1 – θ0, which represents his net benefit of commuting.  In
Sandholm (2002), we took advantage of this feature by basing our analysis on
"reduced form" evolutionary dynamics, which were defined directly on the space of
action distributions X ⊂     R

S  rather than on the set of population states Zµ ⊂     R
Θ ×S .12

This reduced form approach cannot be applied in settings with multidimensional
types.
 Second, even before the price scheme P* is imposed, the game (F, µ) is a potential
game with concave potential function

    
− ∫∑

∈

c y dy
u x z

φ
φ

φ

( )
( ( ))

0
Φ

 +     I z( ).

                                                
12  In particular, we assumed that at each moment in time, the agents who chose to drive were
precisely those whose net valuations θ1 – θ0 were highest.  This property must hold in equilibrium, but i t
is a strong assumption to make when specifying out of equilibrium dynamics.
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It follows that the equilibria of (F, µ) are essentially unique and globally stable even
before the price scheme is imposed.  Therefore, the only role of the price scheme is
to ensure that equilibria always constitute efficient play.

While abstracting away from the choice of departure time yields a model with
convenient features, doing so obscures an issue that is critical in practice:  the full
benefits of congestion pricing can only be obtained if it is used to alter commuters'
time of use decisions.  The importance of this issue is emphasized in Vickrey's
(1963, 1969) work on congestion pricing, as well as in more recent papers by Arnott,
de Palma, and Lindsey (1990, 1993).  Furthermore, most congestion pricing schemes
currently in operation set prices that vary with the time of day, with the explicit
purpose of smoothing peak usage over a longer time span.13

 Once one introduces time of use decisions, the two convenient features from the
single departure time model vanish.  If commuters have idiosyncratic preferences
not only about staying home versus commuting, but also about when the commute
occurs, it is clear that types will be genuinely multidimensional.  More interestingly,
time of use choice also implies that the commuting game is not a potential game.
To see why, recall that the common payoff function F defines a potential game if
there exists a potential function f satisfying     ∇f x( )  ≡ F(x).  Such a function exists

precisely when

    

∂
∂

F
x

xi

j

( )  ≡ 
    

∂

∂

F

x
xj

i

( )

for all strategies i and j.14  In Sandholm (2001), we call the latter condition externality

symmetry:  it requires that the marginal impact of new strategy j users on current
strategy i users is the same as the marginal impact of new strategy i users on current
strategy j users.  The single departure time model satisfies this condition:  the impact
that route a drivers have on route b drivers occurs through marginal increases i n
delays on the streets Φa ∩ Φb that the two routes share; the impact of the b drivers on
the a drivers is exactly the same.  But when there are multiple departure times,
externality symmetry fails.  Because of the queuing that occurs under congested
conditions, drivers who use the network during the early period can increase the

                                                
13  For a survey of congestion pricing systems currently in use, see Small and Gomez-Ibañez (1998).
14  This is also a necessary and sufficient condition for the multitype game (F, µ) to be a potential
game.
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delays experienced by the drivers who use the network during the late period.15  But
while early drivers impose externalities on late drivers, late drivers do not impose
externalities on early drivers.  Therefore, in the absence of prices, convergence to
equilibrium is not guaranteed.  

We now introduce a simple modification of our simple departure time model
that incorporates the time of use decision, and show that an appropriate price
scheme can be used to globally implement efficient behavior in this more complex
setting.  In this new model, agents not only choose which route to take to work, but
also when to drive.  The agents' active strategies are pairs (a, τ), where a corresponds
to a route Φa ⊆ Φ, and τ ∈ {1, 2} represents the choice of an early (1) or late (2)
departure time; as before, the strategy 0 represents the decision to stay home.
Utilization functions for the two periods are defined as follows:

uφ,1(x) = 
    

xa
a

,
( )

1
∈
∑
ρ φ

;

uφ,2(x) = 
    

xa
a

,
( )

2
∈
∑
ρ φ

.

Each agent's type is a vector θ = (θ0, θ1, θ2), representing his idiosyncratic payoffs to
staying home, commuting early, or commuting late.  Once again, the planner has no
information about the agents' types.
 To capture the dependence of period 2 delays on period 1 behavior, we define the
effective utilization of street φ in period 2 to equal not simply uφ,2, but uφ,2 + sφ(uφ,1).
We call the functions sφ: R+ → R spillover functions, and assume that they are
increasing, convex, and satisfy sφ(0) = 0.  In addition, we assume that     ′s uφ ( )  ≤ 1 for all

u:  an increase in the utilization of a street by du  units in period 1 cannot increase
the effective utilization of this street by more than du units in period 2.  With this
additional notation in hand, we define the utilities obtained by the early and late
drivers as

Uθ,(a,1)(z) = Fa,1(x(z)) + θ1 = 
    
−

∈
∑c u x z

a

φ φ
φ

( ( ( ))),1
Φ

 + θ1;

Uθ,(a,2)(z) = Fa,2(x(z)) + θ2 = 
    
− +

∈
∑c u x z s u x z

a

φ φ φ φ
φ

( ( ( )) ( ( ( )))), ,2 1
Φ

 + θ2.

                                                
15  Arnott, de Palma, and Lindsey (1993) emphasize the importance of capturing this interdependence
between periods when modeling departure time choice.
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Despite the complications that time of use choice creates, global implementation
of efficient behavior is still possible.  To apply Theorem 3.1, we must establish that
the total common payoff function is concave.

Proposition 6.3:  In the two departure time congestion model , the function   F  is

concave .

Proof:  In the Appendix.

Theorem 6.4:  In the two departure time congestion model , the efficient SCC φ* can

be globally implemented using the price scheme P*, given by

    P xa ,* ( )1  = 
    

u x c u x u x s u x c u x s u x
a

φ φ φ φ φ φ φ φ φ φ
φ

, , , , , ,( ) ( ( )) ( ) ( ( )) ( ( ) ( ( )))1 1 2 1 2 1′ + ′ ′ +( )
∈
∑
Φ

;

    P xa ,* ( )2  = 
    

u x c u x s u x
a

φ φ φ φ φ
φ

, , ,( ) ( ( ) ( ( )))2 2 1′ +
∈
∑
Φ

;

    P x0*( ) = 0.

In the two departure time model, the price scheme P* guarantees not only that the
efficient state is always an equilibrium, but also that it is the unique equilibrium and
is globally stable under all admissible dynamics.  Once again, the price scheme is
separable in φ, and so can be administered on a street-by street basis.

6.2  Congestion in a Computer Network

Computer networks are also subject to congestion externalities, but these
networks differ from highway networks in important ways.  At a first
approximation, drivers using a highway network are homogenous in terms of their
contributions to and preferences concerning delays.  In computer networks, the
consumption of network resources and the consequences of delays vary
substantially with the network applications in question.  For example, a user who is
sending an e-mail message uses little of the network's capacity and can tolerate a fair
amount of delay, while a user who participates in a videoconference consumes
substantial network resources and is quite intolerant of delay.16

                                                
16 For further discussion of this issue, see Cocchi et. al . (1993).  Other models of pricing in computer
networks include MacKie-Mason and Varian (1995), Shenker et. al . (1996), and Crémer and Hariton
(1999).
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We capture these features of computer networks using a simple model of a
single segment of network pipeline.  Users of the network choose from a range of
activities {1, … , A}.  Each activity a is characterized by a triple (la, wa, ca(·)).  The
integer la > 0 represents the length of time that the activity takes to complete.  The
scalar wa > 0 equals the bandwidth that activity a requires while in progress.  Finally,
the function ca: R+ → R represents the per period cost of delay for activity a as a
function of current network utilization.  We assume that the functions ca are
positive, increasing, and convex.

An active strategy for an agent consists of an activity a ∈ {1, … , A} and a start time
τ ∈ {0, 1, …, π – 1}, where π is the number of periods into which each day is divided.
Users may choose either an active strategy (a, τ) or the outside option 0.  Each agent's
type is a vector θ ∈       R

Aπ +1.  The scalar θa,τ represents the benefit an agent obtains from
performing activity a at start time τ; θ0 is the value of his outside option.  As always,
the agents' types are unknown to the planner.

To define utility functions, let ρ(τ) = {(b, ψ): τ ∈ {ψ, (ψ + lb – 1)}} be the set of
strategies that use the network during period τ.17  Total network utilization at time τ
is then defined by

uτ(x) = 
    

w xb b
b

,
( , ) ( )

ψ
ψ ρ τ∈
∑ .

Note that the effect of agents who choose activity b on total utilization is scaled by
the bandwidth requirement wb.  Utilities are defined by

Uθ,(a,τ)(z) = Fa,τ(x(z)) + θa,τ = 
    
−

=

+ −

∑c u x za

la

( ( ( )))ψ
ψ τ

τ 1

 + θa,τ.

In general, the computer network congestion model does not define a potential
game.  Consider any pair of strategies (a, τ) and (b, ψ) that are active during
overlapping sets of periods.  In any period ζ during which both strategies are active,
the marginal effect of the activity b users on the payoffs of the activity a users is
–   w cb a′ (uζ); the effect in the reverse direction is –    w c ua b′( )ζ .  For externality symmetry

to hold, these expressions must always be equal, which is only true if for each

                                                
17 For convenience, we assume that agents do not choose pairs (b, ψ) such that ψ + lb – 1 > π – 1, which
use the network during the late periods of one day and the early periods of the next.  This assumption is
not essential to our analysis.
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utilization level u, the marginal delay cost/bandwidth ratio     ′c u wa a( )/  is independent
of the activity a under consideration.  If this strong condition does not hold, then i n
the absence of prices, convergence to equilibrium play is not assured.

Nevertheless, the planner can still globally implement efficient behavior.

Proposition 6.5:  In the computer network model, the function   F  is concave.

Proof:  In the Appendix.

Theorem 6.6:  In the computer network model , the efficient SCC φ* can be globally

implemented using the price scheme P*, given by

    P xa ,* ( )τ  = 
    
w x c u xa b b

b

la

,
( , ) ( )

( ( ))ψ ψ
ψ ρ ζζ τ

τ

′










∈=

+ −

∑∑
1

;

    P x0*( ) = 0.

 Once again, the optimal price scheme P* takes a very simple form.  During each
period ζ, network usage is priced at 

    
x c u xb bb ,( , ) ( )

( ( ))ψ ψψ ρ ζ
′

∈∑  per unit of bandwidth.

Hence, the price at time ζ only depends on the use of the network at time ζ.  As
always, the outside option can be chosen free of charge.

6.3  A Model of Pollution

 Our final example shows how a planner can devise price schemes that achieve
goals other than maximizing the payoffs of active agents, a possibility discussed i n
Section 5.3.  This example concerns the regulation of an industry whose production
generates pollution, and so imposes externalities on outside parties.

Consider a population of firms that posses two production technologies, A and B.
These technologies differ in their productivity and in the amounts of pollution they
generate.  Each firm chooses output levels a, b ∈ {0, 1, … , M} to produce using each
technology.  Total production by the industry using technologies A and B is given by
aT(x) = 

    
axa ba b ,,∑  and bT(x) = 

    
b xa ba b ,,∑ , where xa,b represents the proportion of firms

choosing production plan (a, b).  Total production overall equals qT(x) = aT(x) + bT(x).
The function p: R+ → R is the inverse demand curve for the good; it specifies the
price p(qT) of the good as a decreasing function of overall production.  The
environmental costs of pollution are described by a convex function e:     R+

2  → R of
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the total production levels aT and bT.  Each firm's cost function is described by a
vector θ ∈       R−

+( )M 1 2

, where –θa,b represents the cost of production plan (a, b).  The
firms' costs functions are not known to the planner.

The utility obtained by a firm of type θ is the difference between its revenues and
its costs:

Ua,b(z)(θ) = Fa,b(x(z)) + θa,b = (a + b) p(qT(x(z))) + θa,b.

Total utility equals industry profits:

  U (z) =     F x z( ( )) +     I z( ) = qT(x(z)) p(qT(x(z))) + 
    

z a b a ba b θθ
θ,( , ) ,,∑∑

  While the planner could aim to maximize total profits, we suppose instead that
he prefers to maximize social surplus.  To do so, we define

    U xΟ ( ) = 
    

( ( ) ( ( )))
( )

p y p q x dyT

q xT

−∫0  – e(aT(x), bT(x))

to be the total effect on outside parties when the distribution of production plans is
x.  The first term of   U

O  is the consumer surplus obtained when total production is
qT(x).  The second term reflects the environmental costs of pollution.  The planner's
social choice correspondence accounts for industry profits, consumer surplus, and
environmental costs:

  φ
O (µ) = 

    
arg max ( ) ( ( ))

z Z
U z U x z

∈

+
µ

Ο .

To apply Theorem 5.1 to this model, we must verify that   F +   U
O  is concave.

Proposition 6.7:  In the pollution model, the function    F +   U
O  is concave.

Proof:  Observe that

  F (x) +   U
O(x) = qT(x) p(qT(x)) + 

    
( ( ) ( ( )))

( )
p y p q x dyT

q xT

−∫0  – e(aT(x), bT(x))

= 
    

p y dy
q xT

( )
( )

0∫  – e(aT(x), bT(x)).

Since aT, bT, and qT are linear, p is decreasing, and e is convex, the result follows.  
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Theorem 6.8:  In the pollution model , the SCC   φ
O  can be globally implemented

using the price scheme   P
O, defined by

    P xa b
O
, ( )  = a

    
∂

∂ a T TT
e a x b x( ( ), ( ))( )  + b

    
∂

∂ b T TT
e a x b x( ( ), ( ))( ).

To ensure that social surplus is maximized, the planner simply taxes each firm

    
∂

∂a T TT
e a b( , ) for each unit it produces using technology A, and     

∂
∂b T TT

e a b( , ) for each unit

it produces using technology B.18

7.  Comparison with Standard Mechanisms

 The implementation problem studied in this paper involves both hidden
information and hidden actions (anonymity).  While so far we have considered a
mechanism based on variable prices, it is also possible to solve this implementation
problem using mechanisms built from more standard components, namely type
announcements and announcement dependent forcing contracts.  In this section,
we present a standard mechanism that solves the implementation problem using a
solution concept based on backward induction and dominance.  We then compare
the performance of this mechanism with that of our optimal price scheme.
 The foregoing sections utilized a framework in which the set of types is finite.
However, there is no conceptual difficulty extending our earlier results to settings
with a continuum of types.  This can be accomplished formally using tools
developed in Ely and Sandholm (2003) and Sandholm (2004), though at the cost of
introducing more sophisticated mathematical techniques.
 In this section, we wish to construct an anonymous standard mechanism that
solves our implementation problem.  If we retain the finite type set framework, we
face an immediate difficulty.  While we would like to use announcement
dependent forcing contracts to ensure obedience, anonymity demands that these
contracts yield identical transfers for agents whose announcements and behavior are
the same.  Consequently, whenever efficiency requires agents of the same type to
choose different actions (which, as we argued in Section 3.1, it typically will),

                                                
18 Observe that if there are no pollution externalities (e(aT, bT) ≡ 0), then the optimal tax on
production is always zero (P* ≡ 0).  This fact has two noteworthy implications.  First, without the
planner's intervention, the quantity setting game is a concave potential game, and so admits an
essentially unique and globally stable equilibrium.  Second, in the absence of externalities, this
equilibrium maximizes social welfare.
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anonymous forcing contracts are incapable of rendering obedience a dominant
strategy.19

 One way to contend with this issue is to introduce notions of ε-equilibria and ε-
efficiency and to employ various approximation results.  We prefer instead to utilize
a model with a continuum of types.  As long as the distribution of types is smooth,
efficient states will assign agents of the same type to the same action, precluding the
difficulty described above.  Moreover, since our evolutionary implementation
results can also be established with a continuum of types, direct comparisons of
these results with the results for standard mechanisms developed below are valid.

7.1  A Standard Mechanism

 To define mechanisms based on direct revelation, we must take as our primitive
a set of agents rather than a set of population states.  We therefore let (A, A, m ) be a

probability space, where A is the set of agents and m  is a probability measure.  Each
agent α has a type τ(α) ∈ Θ =     R

S , so the full type profile is denoted τ ∈   Θ
A .  Each type

profile induces a type distribution µτ  defined by µτ (B) = m(α:  τ(α) ∈ B).  For the
reasons discussed above, we assume that each possible type realization τ induces a
distribution µτ  that admits a density on Θ =     R

S .  We denote action profiles by s ∈

  S
A .  Each action profile induces an action distribution   x

s  ∈ X, where   xi
s  = m(α:  s(α)

= i).  Throughout our analysis, we will consider equalities and conditions defined
for all agents satisfied as long as they hold on a full measure subset of A.
 Apart from the move to continuous type distributions, the implementation
problem is unchanged.  The planner knows the common payoff function F, but has
no information about the type profile τ.  He would like to construct a mechanism
that implements the efficient social choice correspondence φ*:   Θ

A  ⇒   S
A , defined by

                                                
19  To see why, suppose as in footnote 7 that all agents are of the same type, that they must choose
between two routes, and that efficiency requires that both routes be utilized (say, in equal proportions).
One can certainly find route specific transfers that make obedience of an efficient assignment of agents
to routes a Nash equilibrium.  Indeed, this can be accomplished using the equilibrium prices arising
under the optimal price scheme P*.  However, coordinated disobedience is also an equilibrium.  Suppose
that agents are labeled with numbers in the interval [0, 1] (see Section 7.1 below).  Then even if the
planner tells agents in the interval [0, 1/2] to take route a and chooses route specific transfers that make
obedience a Nash equilibrium, each disobedient allocation in which the agents in the interval [α, α +
1/2] ⊂  [0, 1] take route a is a Nash equilibrium as well.  Moreover, obedience cannot be even a weakly
dominant strategy:  if all of an agent’s opponents take route a, then the agent himself strictly prefers
route b, but if the opponents all take b, the agent strictly prefers a.
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 φ*(τ) = 
    
arg max ( ) ( ) ( )

{ : ( ) }s S

s
i

s iiA

F x dm
∈ =

+








∫∑ τ α α

α α

.

To be feasible, the planner's mechanism cannot condition on any information about
realized types, and must respect the agents' anonymity.  
 Mechanisms from the class we will consider are executed as follows:

Stage 1: Each agent α announces a type   ̂τ (α) ∈ Θ.  After receiving these
announcements, the planner assigns actions     ̂s (α) ∈ S for each agent α.
Stage 2: Upon receiving his assignment, agent α chooses an action s(α) ∈ S.  After
observing the agents' announcements and assignments, the planner collects
transfers t(α) ∈ R from each agent α.

Formally, such a mechanism can be described by a pair (    ̂S, T), where     ̂S:   Θ
A  →   S

A

and T:   Θ
A  ×   S

A  →     R
A .  The mechanism specifies an assignment profile     ̂s  =     ̂ ( ˆ)S τ  ∈

  S
A  for each announcement profile   ̂τ  ∈   Θ

A , and a transfer profile t = T(  ̂τ , s) ∈     R
A  for

each assignment profile/action profile pair (  ̂τ , s) ∈   Θ
A  ×   S

A .  Mechanisms of this
kind clearly respect the planner's information constraint, as they only condition on
type announcements, not on actual types.  To ensure anonymity, we impose two
additional requirements.  We call the mechanism (    ̂S, T) anonymous  if for any two
profile pairs (  ̂τ , s) and (  ̂ ′τ ,   ′s ), the resulting play sequences (  ̂τ ,     ̂s  =     ̂ ( ˆ)S τ , s, t = T(  ̂τ , s))
and (  ̂ ′τ ,     ̂ ′s  =     ̂ ( ˆ )S ′τ ,   ′s ,   ′t  = T(  ̂ ′τ ,   ′s )) have the following properties:

(A1)  If   µ
τ̂  =   µ

τ̂ ′  and   ̂τ (α) =   ̂ ( )′ ′τ α , then     ̂s (α) =     ̂ ( )′ ′s α .
(A2)  If   µ

τ̂  =   µ
τ̂ ′ ,   ̂τ (α) =   ̂ ( )′ ′τ α , and s(α) =     ′ ′s ( )α , then t(α) =     ′ ′t ( )α .

Condition (A1) captures two restrictions.  When   ̂τ  and   ̂ ′τ  are identical, (A1) requires
that agents who send the same announcement receive the same action
recommendation.  More generally, (A1) asks that recommendations be invariant
with respect to permutations of the announcement profile from   ̂τ  to   ̂ ′τ .  Similarly,
condition (A2) requires that agents who send the same announcement and choose
the same action are told to pay the same transfer, and also requires invariance of
transfers with respect to synchronized permutations of the announcement and
action profiles.  If these conditions hold, the mechanism does not condition in any
way on the agents' names.
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 Theorem 7.1 establishes the existence of an anonymous mechanism that
implements the efficient social choice correspondence.  The proof of this result,
which includes the explicit construction of the mechanism, is provided in the
Appendix.

Theorem 7.1:  There is an anonymous mechanism (    ̂S, T) that implements t h e

efficient social choice correspondence φ* under the following solution concept:
elimination of strictly dominated strategies at all stage 2 decision nodes , followed by

selection of a profile of weakly dominant strategies in stage 1.  In this equilibrium ,
agents tell the truth and obey their assignments.  If the agents announce type profile

  ̂τ , the planner specifies the assignment profile     ̂s  =     ̂S(  ̂τ ), and the agents choose t h e

action profile s, transfers are given by

 
    
t T s

P x if s s

L otherwise
s

s

( ) ( ˆ, )( )
* ( ) ( ) ˆ( ),

,
ˆ( )

ˆ

α τ α
α αα= =

=



 

where P* is the optimal price scheme and L is a large real number.

 The mechanism (    ̂S, T) described in the theorem is constructed as follows.  As
long as the agents send a profile of announcements   ̂τ  that is feasible (in that it
admits a density), the mechanism specifies an assignment     ̂s  =     ̂S(  ̂τ ) of agents to
actions that is efficient conditional on reports being truthful.  Honesty and
obedience are ensured using transfer payments.  
 To guarantee obedience, the mechanism incorporates announcement dependent
forcing contracts:  any agent who disobeys his assignment is required to pay a stiff
fine.  Consequently, during the second stage of the mechanism each agent finds it
dominant to choose his assigned action.20

 To ensure honesty, the mechanism charges agents who are assigned to and select
action i a price of     P xi

s*( )ˆ , where     x
ŝ  is the action distribution under     ̂s , and P* is the

optimal price scheme defined in Section 3.  To understand the role played by the

                                                
20  In standard moral hazard models, a principal receives a possibly imperfect signal of an agent’s
action.  The term “forcing contract” is used when the signals generated by actions the principal finds
desirable and the signals generated by actions the principal finds undesirable have disjoint supports.  A
forcing contract levies a fine when signals from the latter set occur, coercing the agent into choosing an
action from the principal’s preferred set.  Under our announcement dependent forcing contracts, transfers
depend on perfectly observed action choices as well as on type reports solicited during the mechanism’s
previous stage.  By fining agents who disobey their report contingent assignments, the planner is able to
compel agents to obey.
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optimal price scheme, let   µ
τ̂  denote the distribution of type announcements.  By the

logic of Section 4, state     x
ŝ , which is by definition an efficient assignment of agents to

actions in the multitype game (F,   µ
τ̂ ) is also an equilibrium of the multitype game

(F – P*,   µ
τ̂ ).21  Hence, if an agent of type θ is assigned to action i, it must be that

(*) Fi(    x
ŝ ) – Pi*(    x

ŝ ) + θi ≥ Fj(    x
ŝ ) – Pj*(    x

ŝ ) + θj  for all j ∈ S.

Thus, as long as all agents are obedient, each agent has an incentive to tell the truth
in stage 1:  doing so ensures that he is assigned to an action i that satisfies equation
(*); lying may cause him to be assigned to another action, which can only yield h im
a lower payoff.  In other words, once disobedience is ruled out in stage 2, honesty
becomes weakly dominant in stage 1.
 We can simplify our analysis by eliminating certain of our requirements for our
mechanism.  If we drop the anonymity requirement and instead allow the planner
to condition transfers on agents' names, then the planner can ensure obedience
even when agents of the same type are assigned to different actions.  Hence, efficient
behavior can be implemented without the restriction to continuous type
distributions.  If we take the further step of directly assuming obedience, then
forcing contracts become unnecessary; in the pure revelation mechanism that
remains, truth telling is a weakly dominant strategy.  This truncated mechanism can
be viewed as an infinite player version of the VCG mechanism (Vickrey (1961),
Clarke (1971), Groves (1973)).  
 The VCG mechanism is commonly described as a mechanism that forces agents
to pay for the externalities they impose on others.  The fact that the transfer
payments are the marginal externality prices seems to validate this description.
However, it is important to note that under the VCG mechanism, the externality
that an agent must pay for is that which his announcement  creates for other agents,
by way of its effect on the action to which he is assigned.  In contrast, under a price
scheme, each agent directly chooses an action, and the externality he pays for is that
due to the direct impact of his action choice on the others' payoffs.22

                                                
21  For details on the definition and analysis of multitype games with a continuum of types, see the
Appendix.
22  Since each agent in our model is of negligible size, an agent who changes his announcement does not
affect the distribution of action assignments.  The only externality an agent creates by changing his
announcement occurs through its impact on the action to which he himself is assigned, and so his
transfer is therefore just the externality that he creates by taking this action.  In contrast, in a finite
player framework one agent's announcement can alter how the planner distributes the other agents over
the actions.  Consequently, if the standard VCG mechanism is applied to a finite player version of our
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7.2  Comparing Standard Mechanisms and Price Schemes

 We have offered two rather different mechanisms for solving the planner's
problem.  We now assess the relative strengths of each.
 7.2.1  Payoff restrictions.  The biggest advantage of the standard mechanism is
that it works without any restriction on the common payoff function F.  In contrast,
the success of the price scheme depends on the concavity of total common payoffs

  F , and so restricts application of the mechanism to settings with negative
externalities.
 7.2.2  Solution concepts.  The solution concept for the standard mechanism
combines backward induction and dominance arguments, while the solution
concept for the price schemes is global stability under admissible dynamics.  Both of
these concepts are quite weak, and so the mechanisms seem comparable in terms of
the demands placed on the agents.23

 7.2.3  Ease of use and flexibility.  The greatest advantage of the price scheme is the
ease with which a planner can administer it.  Standard mechanisms are based upon
direct command and control.  To administer an standard mechanism, the planner
must collect reports from each agent, compute an efficient assignment based on
these reports, and then monitor behavior to ensure that assignments are obeyed.
Each of these tasks may be quite demanding, especially when the number of agents
is large.  In contrast, price schemes rely on an indirect form of control.  The planner
sets prices for each action as a function of current aggregate behavior, and allows the
agents to decide for themselves how to behave.  This decentralization allows the
planner to administer price schemes with relative ease.
 Decentralization also creates flexibility in the face of variations in preferences.
For example, suppose that a number of new commuters move into the planner's
region, or that the types of the old commuters change.  While the planner would
need to rerun the standard mechanism to elicit the agents' new preferences, the
optimal price scheme contends with these changes automatically.  Hence, price
schemes may be preferable to revelation mechanisms when preferences are expected
to vary over time.

                                                                                                                                                            
model, agent α's transfer will  generally not equal the externality he creates by performing the action
to which he is assigned—see Sandholm (2003b).
23 Under the standard mechanism, agents' equilibrium action choices are efficient, while under the
price scheme the efficient state is only reached after the adjustment process is complete.  For this
reason, if revelation and optimization are not too time consuming, time preferences might lead the
planner to prefer the standard mechanism.
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8.  Conclusion

We considered evolutionary implementation in a general model of negative
externalities.  Our main result showed that a planner with limited information
about agents' preferences can ensure the global stability of efficient behavior by
administering a variable price scheme.

We studied the implementation problem using a continuum of agents model.
In potential games with a continuum of agents, concavity of the potential function
implies the existence of a unique component of equilibria that is the global attractor
of any admissible dynamics.  When we analyzed the optimal price scheme, this fact
helped us establish the global stability of the set of efficient states.  Moreover, as we
saw in Section 6, the continuum model is convenient in applications, where the
concavity condition can be verified in intricate models of externalities by applying
standard calculus-based techniques.  Still, versions of all of our results can be
established for models with large, finite populations by applying suitable
approximation results.24

Our analysis relies on the assumption that the total common payoff function is
concave, which ensures uniqueness of equilibrium under the optimal price scheme.
While this condition is natural in models of negative externalities, it does not hold
more generally.  In particular, when externalities are positive, the concavity
condition fails, and the game created by the price scheme typically exhibits multiple
stable equilibria.25

  In Sandholm (2003b), we study externality pricing using a finite agent, discrete
time model without imposing the restriction that externalities be negative.  Unlike
in the present paper, behavior adjustment in Sandholm (2003b) is stochastic, with
choice probabilities determined by the logit choice rule.  We show that if a planner
executes an appropriate price scheme, the efficient strategy profiles are the only ones

                                                
24 In particular, the continuum model can be viewed as the limit of finite population models, the
equilibria of which converge to the unique component of equilibria of the continuum model when the
population size grows large.  For the connections between finite and infinite player potential games, see
Sandholm (2001).  Also, note that in the continuum model, no single agent's action choices can alter the
payoffs experienced by the others.  While this property slightly simplifies the construction of the
optimal price scheme, it is not essential – see Sandholm (2003b).
25 When there are increasing returns to choosing different actions, coordination on any action can
constitute a local welfare optimum, which implies that   F  cannot be concave.  Indeed, if the common
payoff to each action is increasing and convex in its level of use, and is independent of the use of other
actions, then   F  is actually convex.  In these cases, (F – P*, µ) generally possesses multiple equilibria.
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that are stochastically stable:  in other words, only socially optimal behavior is
observed in a non-negligible fraction of periods after a long enough history of play.
Thus, the current paper and Sandholm (2003b) demonstrate the effectiveness of
price schemes in two different classes of environments and on two different time
scales.  The results presented here show that when externalities are negative, price
schemes can ensure efficient play within a moderate time span; those in Sandholm
(2003b) show that if the planner is very patient, the restriction to negative
externalities becomes unnecessary.

Appendix

A.1  Pricing and Evolution in Discrete Time

In this section, we show how our results can be extended to a discrete time
setting.  We do so using the simplest possible discrete time specification; other
specifications are also possible.  We suppose that time passes in discrete periods t

∈ N0.  At the beginning of each period t, each agent chooses an action.  At the end of
the period, the planner observes the realized distribution of actions, and assigns
prices to actions based on this information.  Hence, if xt is the realized action
distribution in period t, agents obtain base payoffs of F(xt) and are charged prices of
P*(xt) during that period.  We model the evolution of behavior using the difference
equation

(DD) zt+1 = zt + s g(zt).

As before, g is a vector field that is admissible with respect to the game (F – P*, µ).
The step size parameter s represents the length of a single period; it determines the
rate at which the population's behavior adjusts.  
 Intuitively, one expects that if the step size is sufficiently small, the evolution of
behavior under the difference equation (DD) should approximate evolution under
the differential equation (D).  By formalizing this idea, we can establish the
following analogue of Theorem 3.1.

Theorem A.1:  Suppose that the common payoff function   F  is concave , and fix any

type distribution µ.  Let g be a vector field that is admissible with respect to (F – P*,
µ).  Then for each ε > 0, there exists an   s  > 0 such that for any step size s ∈ (0,   s ],
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(i) Zµ is forward invariant under (DD);
 (ii) The set {z ∈ Zµ:      max ( ˆ)ẑ U z  –     U z( ) < ε} of ε-efficient states is globally stable

 under (DD).

Theorem A.1 shows that our implementation results continue to hold in a discrete
time framework so long as there is sufficient inertia in the behavior adjustment
process.26  The proof of this result is provided below.  It follows immediately from
Proposition 4.5 and the following result.

Theorem A.2:  Let (U, µ) be a potential game with concave ,   C
2 potential function u .

Suppose that the vector field g is admissible with respect to (U, µ). Then for each  ε >
0, there exists an   s  > 0 such that for any step size s ∈ (0,   s ],

(i) Zµ is forward invariant under (DD);
 (ii) The set   Zµ

ε  ≡ {z ∈ Zµ:      max ( ˆ)ẑ u z  – u(z) < ε} is globally stable under (DD).

 The proof of Theorem A.2 requires two lemmas.

Lemma A.3:  Suppose that s ≤ 
    

1
2 K

, where K is the Lipschitz coefficient for g.  T h e n

(DD) is forward invariant on Zµ.

 Proof:  Since the directions of motion specified by g are always tangent to the
space Zµ, the only way that solutions to (DD) can leave Zµ is if the transition from the
current state z to the new state     ̂z(s) = z + sg(z) causes some component of     ̂z(s) to
become negative.  If g(z) = 0, then     ̂z(s) = z ∈ Zµ, so this cannot occur.  We therefore
suppose that g(z) ≠ 0.  Define     s z( ) = max {s:     ̂z(s) ∈ Zµ}.  It is enough to show that     s z( )
≥ 

    
1
2 K

.

 In two places below, we will use the following observation, which follows from
the forward invariance condition (FI):  if y ∈ Zµ is a state with yθ,i = 0, then gθ,i(y) ≥ 0.
 Let (θ, i) be a type/strategy pair such that     ̂zθ,i(s) < 0 when s >     s z( ).  Then gθ,i(z) < 0,
so the observation implies that zθ,i > 0.  Define the state     ̃z  ∈ Zµ as follows:

                                                
26  In fact, even the assumption of inertia does not seem essential.  By supposing that the step size s is
small, we are able to show that under the price scheme P*, the evolutionary process converges
monotonically to the set of ε-efficient states.  The assumption of inertia rules out large behavior
adjustments that overshoot the set of welfare improving states.  However, as long as overshooting does
not occur too often and becomes rare when payoffs are nearly equalized, the population will tend to
congregate at the ε-efficient states.
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The state     ̃z  is the closest state to z on the (θ, i) boundary of Zµ.  Notice that

     z z− ˜  =     1 1
1+ −n izθ ,  ≤     2 z iθ , .

Thus, appealing again to the observation, we see that

     g ziθ , ( )  ≤     g z g zi iθ θ, ,( ) ( ˜)−  ≤     g z g z( ) ( ˜)−  ≤ K    z z− ˜  ≤     2 K z iθ , .

Hence, if s ≤ 
    

1
2 K

, then     ̂zθ,i(s) = zθ,i + s gθ,i(z) ≥ 0.  We thus conclude that     s z( ) ≥ 
    

1
2 K

.  

Lemma A.4:  For all ε > 0, there exists a c > 0 such that if s > 0 is sufficiently small,
(i) u(z + sg(z)) – u(z) ≥ –  

ε
2 for all z ∈ Zµ;

(ii) u(z + sg(z)) – u(z) ≥ cs  for all z ∈ Zµ –     Zµ
ε/2.

Proof:  Fix z ∈ Zµ.  Taylor's theorem implies that for every s ∈ (0, 
    

1
2 K

), there is an

    ̂s  ∈ [0, s] such that

 u(z + sg(z)) – u(z) = s     ∇ ⋅( )u z g z( ) ( )  +     s g z u z sg z g zT2 1
2

2( ) ( ˆ ( )) ( )∇ +( ).

Now the definition of potential and Lemma A.5 (in Section A.2 below) show that

(1)     ∇ ⋅u z g z( ) ( ) =  
    

U z g zi i
i

θ θ
θ

, ,( ) ( )∑∑
 = n    Cov g z U z( ( ), ( ))θ θθ∑

Thus, condition (PC) implies that

(2)     ∇ ⋅u z g z( ) ( ) ≥ 0, with equality only when g(z) = 0.

Since u is   C
2 on the compact set Zµ, and since g is Lipschitz continuous on Zµ, there

is a constant k2 > –∞ such that
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(3)     
1
2

2g z u y g zT( ) ( ) ( )∇  ≥ k2  for all y, z ∈ Zµ.

Combining equations (1), (2), and (3), we see that u(z + sg(z)) – u(z) ≥ k 2    s
2  for all z ∈

Zµ.  Thus, if s ≤ 
    

ε
2 2k , statement (i) holds.

 We now consider statement (ii).  Condition (NC) tells us that g(z) = 0 only if z is a
Nash equilibrium of (U, µ), while Proposition 4.1 (ii) implies that all Nash equilibria
of (U, µ) maximize u on Zµ, and so in particular lie in     Zµ

ε/2.  Since     Zµ
ε/2 is the inverse

image of an open set, it is open, and so Zµ –     Zµ
ε/2 is compact.  These observations,

statement (2), and the continuity of   ∇u  and g imply that there is a k1 > 0 such that

(4)     ∇ ⋅u z g z( ) ( ) ≥ k1 for all z ∈ Zµ –     Zµ
ε/2.

Combining statements (1), (3), and (4), we conclude that if s ≤ min
    

k
k K
1

22
1
2

,{ }, then

u(z + sg(z)) – u(z) ≥ k1 s + k2    s
2  ≥     

k s1
2  for all z ∈  Zµ –     Zµ

ε/2.  

We now prove Theorem A.2.  Suppose that s > 0 is small enough to satisfy the
preconditions of Lemmas A.3 and A.4.  Statement (i) of the theorem then follows
immediately from Lemma A.3.  
 We therefore consider statement (ii) of the theorem. Since u  is continuous, it is
bounded on Zµ.  Hence, Lemma A.4 (ii) implies that any solution to (DD) must enter

  Zµ
ε  in a finite number of periods.  Moreover, Lemma A.4 (i) shows that if zt ∈     Zµ

ε/2,

then zt+1 ∈   Zµ
ε , while Lemma A.4 (ii) shows that if zt ∈   Zµ

ε  –     Zµ
ε/2, then zt+1 ∈   Zµ

ε .  In
conclusion, all solutions to (DD) enter the set   Zµ

ε  within finite number of periods

and never depart.  This establishes statement (ii), completing the proof of the
theorem.  

A.2  Proofs Omitted from the Text

The Proof of Proposition 2.1

 Every rest point of (D) is a Nash equilibrium of (F, µ) by condition (NC).  To
prove the converse, we introduce a simple lemma.

Lemma A.5:  If g satisfies condition (FI), then
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Cov g z U z( ( ), ( ))θ θ
θ
∑ = 

    
1
n i i

i

g z U zθ θ
θ

, ,( ) ( )∑∑ .

Proof:  Condition (FI) implies that the mass of agents of each type θ remains
constant over time.  Hence, for each θ ∈ Θ, we have that     

˙ ,z ii θ∑  =     g zii θ , ( )∑  = 0.  W e

therefore conclude that

 
    

Cov g z U z( ( ), ( ))θ θ
θ
∑ = 

    

1 10n i
i

i n j
j

g z U z U zθ θ θ
θ

, , ,( ) ( ) ( )−( ) −


















∑ ∑∑

 = 
    
1
n i i

i

g z U zθ θ
θ

, ,( ) ( )∑∑ .  

Now, observe that condition (FI) and the definition of Nash equilibrium imply
that {i ∈ S: gθ,i(z)  < 0} ⊆ {i ∈ S: zθ,i > 0} ⊆ argmaxi Uθ,i(z) for all θ ∈ Θ.  But condition
(FI) also implies that     g zii θ , ( )∑  = 0, so the inclusion yields     g z U zii iθ θ, ,( ) ( )∑  ≤ 0.

Summing over θ, and applying Lemma A.5, we see that 0 ≥     g z U zii iθ θθ , ,( ) ( )∑∑  =

n     Cov g z U z( ( ), ( ))θ θθ∑ .  We therefore conclude from condition (PC) that g(z) = 0.  

The Proof of Proposition 6.3

In the two departure time congestion game, total common payoffs are given by

    F x( ) = 
    

x F xa a
a

, ,
,

( )τ τ
τ
∑

= 
    
− + +











∈ ∈
∑ ∑∑ x c u x x c u x s u xa a

a a a

, , , , ,( ( )) ( ( ) ( ( )))1 1 2 2 1φ φ
φ

φ φ φ φ
φΦ Φ

= 
    
− + +( )

∈
∑ u x c u x u x c u x s u xφ φ φ φ φ φ φ φ
φ

, , , , ,( ) ( ( )) ( ) ( ( ) ( ( )))1 1 2 2 1
Φ

.

Since uφ,1 and uφ,2 are linear in x, to prove that   F  is concave it is enough to show
that

 bφ(u, v) = u cφ(u) + v cφ(v + sφ(u))

is convex for all φ.  
 The proof of Proposition 6.1 shows that the first term of bφ is convex.  Let βφ(u, v )
= v cφ(v + sφ(u)) denote the second term.  Its Hessian matrix is given by
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    ∇
2βφ ( , )u v  = 

    

v s c s c s vc c

s vc c vc c

( )′ ′′+ ′′ ′( ) ′ ′′+ ′( )
′ ′′+ ′( ) ′′+ ′













φ φ φ φ φ φ φ

φ φ φ φ φ

2

.

The eigenvalues of this matrix are

    
1
2

22 1′ + ′′ + ′ + ′ ′′( )c vc s vc sφ φ φ φ φ( )

    
± ′ ′ − ′′ ′ + ′′ − ′ + ′′ + ′ + ′ ′′( )1

2
2 2 2 2 2

4 2 2 1( ) ( ) ( ) ( )c s s vc v c c vc s vc sφ φ φ φ φ φ φ φ φ φ .

Both eigenvalues are positive if the first term is larger than the second term.
Multiplying both sides of this inequality by 2, squaring, and rearranging, we find that
the desired inequality will hold if

2    2 1 2 42 2 2 2 2′ + ′′ + ′ + ′ ′′( ) + ′′ ′ + ′′ ≥ ′ ′c vc s vc s s vc v c c sφ φ φ φ φ φ φ φ φ φ( ) ( ) ( ) ( )

Since v,   ′cφ ,   ′′cφ ,   ′sφ , and   ′′sφ  are all positive, when we expand the squared sum, every

term in the resulting expression is positive.  If we do this, and then throw away all
terms on the left hand side except the initial one, we see that the previous equality
will be true if

    8 42 2 2( ) ( ) ( )′ ≥ ′ ′c c sφ φ φ .

But   ′sφ  ≤ 1 by assumption, so this inequality holds.  Therefore, the Hessian     ∇
2βφ ( , )u v

is positive semidefinite, the functions βφ(u, v) and bφ(u, v) are convex, and the
function   F  is concave, completing the proof.  

The Proof of Proposition 6.5

The total common payoffs in the computer network game are given by

    F x( ) = 
    
−









∑ ∑

=

+ −

x c u xa
a

a

la

,
,

( ( ))τ
τ

ψ
ψ τ

τ 1

= 
    
−

∈
∑∑ x c u xa

a
a,

( , ) ( )

( ( ))τ
τ ρ ψψ

ψ .

It is therefore enough to show that for each fixed time ψ, the function

Gψ(x) = 
    

x c u xa a
a

,
( , ) ( )

( ( ))τ ψ
τ ρ ψ∈
∑  = 

    
x c w xa a b b

ba
, ,

( , ) ( )( , ) ( )
τ ζ

ζ ρ ψτ ρ ψ ∈∈
∑∑
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is convex in x.  
 Since the function Gψ does not depend on the number of agents x0 who choose
the outside option, we ignore this component of x, thereby viewing x as a point i n

    R
Aπ .  We define the vector v ∈     R

Aπ  and the function C: R →     R
Aπ  as follows:

va,τ = 
    

w aa if 
otherwise;

( , ) ( );τ ρ ψ∈

0

Ca,τ(u) = 
    

c u aa( ) ( , ) ( );if 
otherwise.

τ ρ ψ∈

0

Using this notation, we can express the gradient and the Hessian of Gψ as

    ∇G xψ ( ) =     C u x( ( ))ψ  + 
    

x c u xa a
a

,
( , ) ( )

( ( ))τ ψ
τ ρ ψ

′










∈
∑  v  and

    ∇
2G xψ ( ) =     ′C u x( ( ))ψ   v

T  + v    ′C u x T( ( ))ψ  + 
    

x c u xa a
a

,
( , ) ( )

( ( ))τ ψ
τ ρ ψ

′′










∈
∑  v  v

T ,

where the superscript T denotes transposition.
To establish the proposition, it is enough to show that this Hessian matrix is

positive semidefinite.  Since the bandwidth vector w  is strictly positive, v  ≥ 0, and
since each cost function ca is increasing,     ′C u( )ψ  ≥ 0.  Moreover, if     ′C u( )ψ  is not the

zero vector, then it and the vector v must have a common positive component, and
so     ′C u x( ( ))ψ  · v > 0.

The following observation will help us complete the proof.

Observation:  Let y, z ∈     R
m .  If y · z ≠ 0, then the matrix y  z

T  is diagonalizable.  T h e

eigenvalue 0 has multiplicity m  – 1 and eigenspace   z⊥ , while  y · z is the remaining

eigenvalue, corresponding to the eigenvector y .

We consider each term of     ∇
2G xψ ( ) separately.  If     ′C u( )ψ  is the zero vector, then

    ′C u( )ψ   v
T  is the zero matrix.  If it is not, then the observation implies that the matrix

    ′C u( )ψ   v
T  is diagonalizable, and that its only nonzero eigenvalue is     ′C u( )ψ  · v  > 0.

Either way,     ′C u( )ψ   v
T  is positive semidefinite.  The second term of     ∇

2G xψ ( ) is

positive semidefinite as well, since it is just the transpose of the first.  Finally, since
each cost function ca is convex, the summation that begins the last term of     ∇

2G xψ ( ) is
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positive, while the observation implies that the matrix v   v
T  is positive semidefinite.

Hence,     ∇
2G xψ ( ) is positive semidefinite, so Gψ is convex and   F  is concave.  This

completes the proof of the proposition.  

The Proof of Proposition 7.1

To begin, we extend our definition of separable games from Section 2 to allow
continuous type distributions µ; further analysis of these games is presented i n
Appendix A.3.  It will be convenient to describe behavior by specifying the
distribution of actions within each subpopulation, where a subpopulation consists
of all agents of a single type.  We call the resulting map σ in the set Σ = {σ: Θ → X} a
Bayesian strategy; the vector σ(θ) ∈ X is the distribution of actions chosen by agents
of type θ.  We consider Bayesian strategies equivalent if they agree on a full µ

measure set.  The action distribution induced by σ is denoted Eµσ = 
    

σ θ µ θ( ) ( )d
Θ∫  ∈ X ,

and payoffs for the separable game (F, µ) are defined by Uθ,i(σ) = Fi(Eµσ) + θi.  A
Bayesian strategy σ is a Nash equilibrium  of (F, µ) if for µ almost all θ ∈ Θ, σi(θ) > 0
implies that i ∈ argmaxj∈S Fj(Eµσ) + θj.  
 Since the measure µ admits a density, Nash equilibria are almost surely strict.  In
particular, if we fix σ and define the disjoint sets Θi(σ) = {θ ∈ Θ:  Fj(Eµσ) + θj > Fj(Eµσ)
+ θj for all j ≠ i}, then (i) agents with types in Θi(σ) have a strict best response of i
under σ, and hence σi(θ) = 1 for all θ ∈ Θi(σ), and (ii)       µ σ( ( ))U i iΘ  = 1, so condition (i)

captures the behavior of almost all types under σ.27

 Now suppose that the common payoff game F is a potential game with potential
function f.  Given the results from the discrete case, one might expect to obtain a
potential function for (F, µ) by summing the potential function and an expression
capturing total idiosyncratic payoffs.  To carry out this idea, we let ι: Θ → Θ denote
the identity function on Θ, and consider the following infinite dimensional
optimization problem:

(P)
  
max

σ
 f(Eµσ) +   E i ii µσ ι∑         subject to σi ≥ 0 for all i ∈ S;

   σ ii∑ = 1.

In Appendix A.3 (Corollary A.8), we show that all solutions to (P) are Nash
equilibria of (F, µ), and hence are almost surely strict.

                                                
27  This is equality true because the set of θ such that F(Eµσ) + θ has two or more equal components has
Lebesgue measure zero, and hence µ measure zero.
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 Fix a type profile τ ∈   Θ
A  with induced distribution µτ , and let s ∈ φ*(τ) be an

efficient action profile under τ.  Let     σ
τs ,  ∈ Σ be the Bayesian strategy induced by s and

τ.28  Since s is efficient given τ, a marshalling of definitions shows that     σ
τs ,  solves

  
max

σ
 
    
F E( )

µ τ σ  + 
  

E i ii µ τ σ ι∑    subject to σi ≥ 0 for all i ∈ S;

   σ ii∑ = 1.

Consequently,     σ
τs ,  is a Nash equilibrium of (  ∇F , µτ ) = (F – P*, µτ ), which implies

that     σ
τs ,  is almost surely strict.  Since µ almost every type has a strict preference, so

does m  almost every agent:  if we define the disjoint sets Ai = {α ∈ A:  τ(α) ∈
Θi(    σ

τs , )}, then       m Ai i( )U  = 1, and s(α) = i for m almost all α ∈ Ai.
29

 Formally, our mechanism implements a selection φ**:   Θ
A  →   S

A  from the
correspondence φ*:   Θ

A  ⇒   S
A .  To ensure that the mechanism satisfies the

anonymity conditions (A1) and (A2), we require the selection to be invariant with
respect to permutations of the agents' names: that is,   σ

φ τ τ**( ),  =   σ
φ τ τ**( ),′ ′  whenever µτ

= µτ ′ .
 We now define the mechanism (    ̂S, T).  Actually, the transfer function T is
defined in the statement of the theorem, so we need only define the assignment
function     ̂S.  We do so as follows:  given any announcement profile   ̂τ  such that   µ

τ̂

admits a density,     ̂S specifies the assignment     ̂s  = φ**(  ̂τ ).  Otherwise,     ̂S specifies the
constant assignment     ̂s (α) = 1 for all α ∈ A.
   We must verify that the mechanism has the properties stated in the theorem.  It
is clear from the definition of the transfer function that obedience is dominant at all
Stage 2 decision nodes.  It is also clear that if agents are truthful and obey their
assignments, their behavior is efficient.  
 We next show that the mechanism is anonymous.  Let (  ̂τ ,     ̂s  =     ̂ ( ˆ)S τ , s, t = T(  ̂τ , s))
and (  ̂ ′τ ,     ̂ ′s  =     ̂ ( ˆ )S ′τ ,   ′s ,   ′t  = T(  ̂ ′τ ,   ′s )) be two play sequences with the same
announcement distribution   µ

τ̂  =   µ
τ̂ ′ .  It is clear that conditions (A1) and (A2) hold

when   µ
τ̂  does not admit a density.  When   µ

τ̂  does admit a density,     ̂s  = φ**(  ̂τ ) and     ̂ ′s
= φ**(  ̂ ′τ ), so our restriction on φ** requires that     σ

τˆ , ˆs  =     σ
τˆ , ˆ′ ′s .  The argument four

paragraphs above shows that     σ
τˆ , ˆs  is a Nash equilibrium of (  ∇F ,   µ

τ̂ ) and specifies a

                                                
28  Let G be the  sigma algebra on A generated by τ, and define the measure mi on G by mi(B) = m(B ∩ {s
= i}).  Then we can define σs,τ: Θ → X  formally by letting σ i

s,τ(τ(·)): A → R equal the Radon-Nikodym
derivative dmi/dm, since σi

s,τ satisfies mi(B) = Em1Bσi
s,τ(τ(·)) for all B ∈ G.

29  To verify the second claim, note that since σ i
s,τ(τ(·)) = 1 on Ai ∈ G, it follows that m(Ai) =

Em    1Ai
 = Em    1Ai

σi
s,τ(τ(·)) = mi(Ai) = m(Ai ∩ {s = i}).
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unique action for   µ
τ̂  almost every type announcement (    σ

τ
i
ŝ , ˆ (θ) = 1 whenever θ =

Θi(    σ
τˆ , ˆs )).  It therefore uniquely determines the action assignments under     ̂s  and     ̂ ′s

for m almost every agent (    ̂s (α) = i on {α:   ̂τ (α) ∈ Θi(    σ
τˆ , ˆs )}, and     ̂ ′s (α) = i on { ′α :   ̂ ( )′ ′τ α

∈ Θi(    σ
τˆ , ˆs )}).  Thus, for m  × m  almost all pairs (α, ′α ),   ̂τ (α) =   ̂ ( )′ ′τ α  (∈ Θi(    σ

τˆ , ˆs ))
implies that     ̂s (α) =     ̂ ( )′ ′s α  (= i).  This is condition (A1), and this argument along with
the definition of the transfers imply condition (A2).
 To complete the proof, we need only show that given obedience in Stage 2, truth
telling is weakly dominant in Stage 1.  Suppose that agents besides α make
announcements according to the profile   ̂τ .  If   µ

τ̂  does not admit a density, then all
agents are assigned to action 1 regardless of agent α 's announcement, so all
announcements are optimal for α.  If   µ

τ̂  admits a density, then σ =   σ
φ τ τ**( ˆ), ˆ  is a Nash

equilibrium of (F – P*,   µ
τ̂ ) with action distribution x =     x

φ τ**( ˆ)  = 
    
E

µ τ σˆ .  In particular,

for m  almost every agent α, we know that if agent α is of type τ(α) and σi(τ(α)) = 1,
then

 Fi(x) – Pi*(x) + τi(α) ≥ Fj(x) – Pj*(x) + τj(α)  for all j ∈ S.

If agent α announces his true type τ(α), then he is assigned to action i, which the
previous inequality reveals to be his optimal action given that others are obedient.
(In contrast, if he announces some other type ′θ , he is assigned to an action j that is
optimal for agents of type ′θ , but that may not be optimal for him.)  Hence, if
assignments are obeyed in Stage 2, it is optimal for α to truthfully reveal his type i n
Stage 1 regardless of his opponents' announcements.  This completes the proof of
the theorem.  

A.3  Separable Games with Continuous Type Distributions

 This section establishes the missing claim from the proof of Theorem 7.1:  that a
Bayesian strategy that solves program (P) is a Nash equilibrium of (F, µ).  We begin
our analysis by reviewing some concepts from functional analysis.  Let B and   ′B  be
two Banach spaces, and let l(B,   ′B ) denote the set of bounded linear operators from B

to   ′B .  If Λ ∈ l(B,   ′B ), we let     〈 〉Λ, b̂  denote the value of Λ at     ̂b ∈ B.  Given a function
Φ: B →   ′B , we call DΦ(b) the (Fréchet) derivative of Φ at b if

 
    
Φ Φ Φ( ˆ) ( ) ( ), ˆb b b D b b

B
+ −( ) − 〈 〉

′
∈ 

    
o b

B

ˆ( )  when 
    

b̂
B
 is sufficiently small.
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 Let µ be an absolutely continuous probability distribution on Θ =     R
n , where n  =

#S.  If φ is a function from     R
n  to     R

k , we define its     L
2  norm by

 φ  = 
    

E fii

k

µ ( )2

1=∑ ,

and we let     Lk
2  = {φ:     R

n  →     R
k  :  φ  < ∞ }.  The Riesz Representation Theorem says that

if Λ ∈ l(    Lk
2 , R), then there exists a φ ∈     Lk

2  such that   〈 〉Λ,φ̂  =     E i ii

k

µφ φ̂
=∑ 1

 for all   φ̂  ∈     Lk
2 .

 Let F be a common payoff game with potential function f.  We study the
separable game (F, µ), whose payoff functions Uθ,i(σ) = Fi(Eµσ) + θi are defined for
each Bayesian strategy σ: Θ  → X, where Θ =     R

n  and X ⊂     R
n  is the simplex.  (For

further discussion of the definition of this game, see the proof of Theorem 7.1.)  
 Let ι denote the identity function on     R

n , and consider the program

(P)
  
max

σ
 f(Eµσ) +     E i ii

n

µσ ι
=∑ 1

     subject to σi ≥ 0 for all i ∈ S;

         σ ii

n

=∑ 1
= 1.

If we define φ:     Ln
2  → R by φ(σ) = f(Eµσ) +     E i ii

n

µσ ι
=∑ 1

, define ψ:     Ln
2  →     Ln+1

2  by ψ(σ) = (σ1, …

, σn,     σ ii

n

=∑ 1
), and let C = {π ∈     Ln+1

2 :  πi ≥ 0 for i = 1, … , n  and πn+1 = 0}, we can rewrite

program (P) as

 
  
max

σ
 φ(σ)  subject to ψ(σ) ∈ C.

 The Lagrangian for this program can be expressed as

(L) Dφ(σ) + Λ oDψ(σ) = 0,

where the linear operator Λ ∈ l(    Ln+1
2 , R) captures the shadow values associated with

the constraints.  It is easily verified that

     〈 〉Dφ σ σ( ), ˆ  = 
    

E
f
x

E
i

i i ii

n

µ µ

∂
∂

σ σ ι σ( ) ˆ ˆ+








=∑ 1

 and that

     〈 〉Dψ σ σ( ), ˆ  = (  ̂σ1 , … ,     ̂σ n ,     σ̂ ii

n

=∑ 1
) = ψ(  ̂σ )

for all   ̂σ  ∈     Ln
2 .  If we let (λ1, … , λn, –ρ) ∈     Ln+1

2  be the Riesz representation of Λ, then

       〈 〉Λ oDψ σ σ( ), ˆ  =     E i ii

n

µ λ ρ σ( ) ˆ−
=∑ 1

.
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Therefore, if we define    
v
1:     R

n  →     R
n  by    

v
1(θ) = (1, … , 1), we can express the Riesz

representation of the Lagrangian (L), along with the appropriate complementary
slackness conditions, as

(  KT ′1 )
      

∂
∂

σ ιµ

f
x

E
i

i i( )
v
1 +  = ρ – λi;

(  KT ′2 ) λiσi = 0;
(  KT ′3 ) λi ≥ 0.

for i = 1, … , n.
 We can now state the auxilliary results we need to prove Theorem 7.1.

Proposition A.6:  Bayesian strategy σ ∈     Ln
2  is a Nash equilibrium of (F, µ) if and only

if (σ, λ, ρ) satisfies (  KT ′1 ), (  KT ′2 ), and (  KT ′3 ) for some (λ, ρ) ∈      Ln+1
2 .

Proposition A.7:  If σ ∈     Ln
2  solves (P), then it satisfies (  KT ′1 ), (  KT ′2 ), and (  KT ′3 ).

Corollary A.8:  If σ ∈     Ln
2  solves (P), then it is a Nash equilibrium of (F, µ).

Proofs:  The proof of Proposition A.6 is similar to that of Proposition 4.1, and
Corollary A.8 follows immediately from the two propositions.  We therefore need
only prove Proposition A.7.
 Let Σ = {σ ∈     Ln

2 :  ψ(σ) ∈ C} be the set of Bayesian strategies.  We say that   ̂σ  ∈     Ln
2

points into Σ at σ, denoted   ̂σ  ∈ P(Σ, σ) if there exist a sequence {σk} ⊂ Σ and a
sequence {ak} ⊂ R+ such that ak(σk – σ) →   ̂σ .  If we let Zi(σ) = {θ ∈     R

n :  σi(θ) = 0}, then it
is easily verified that

P(Σ, σ) = {  ̂σ  ∈     Ln
2 :      ̂σ k  ≥ 0 on Zi(σ) and     σ̂ ii

n

=∑ 1
 = 0},

and that this set is closed and convex.
 Now let

     P
−( , )Σ σ  = {Λ ∈ l(    Ln

2 , R):    〈 〉Λ,σ̂  ≤ 0 for all   ̂σ  ∈ P(Σ, σ)}.

Theorem 1 of Guignard (1969) tells us that if σ solves program (P), then

 Dφ(σ) ∈     P
−( , )Σ σ .
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Intuitively, this condition says that if σ solves (P), then the Riesz representation of
Dφ(σ), ( … , 

      
∂
∂ µσ ιf

x i ii
E( )

v
1 +  , …), must form a weakly obtuse angle with every   ̂σ  that

points into Σ at σ.
 If we represent Λ ∈ l(    Ln

2 , R) by π ∈     Ln
2 , we can compute that

     P
−( , )Σ σ = {Λ:      E i ii

n

µπ σ̂
=∑ 1

 ≤ 0 for all   ̂σ  ∈ P(Σ, σ)}

= {Λ:  πi = maxj πj on     R
n  – Zi(σ) for all i}

 = {Λ:  π = (ρ – λi, … , ρ – λn), with λiσi = 0 and λi ≥ 0 for all i}.

Thus, Dφ(σ) ∈     P
−( , )Σ σ  if and only if (  KT ′1 ), (  KT ′2 ), and (  KT ′3 ) hold for some (λ, ρ)

∈     Ln+1
2 .  We therefore conclude that if σ solves (P), it satisfies the Kuhn-Tucker

conditions.  
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