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Abstract

We study a general model of stochastic evolution in games,
assuming that players have inexact information about the
game's payoffs or the population state.  We show that when the
population is large, its behavior over finite time spans follows
an almost deterministic trajectory.  While this result provides a
useful description of disequilibrium behavior adjustment, it tells
us little about equilibrium play.
 We establish that the equilibrium behavior of a large
population can be approximated by a diffusion.  We then
propose a new notion of stability called local probabilistic

stability (LPS), which requires that a population which begins
play in equilibrium settle into a fixed stochastic pattern around
the equilibrium.  We use the diffusion approximation to prove a
simple characterization of LPS.  While LPS accords closely with
standard deterministic notions of stability at interior equilibria, it
is significantly less demanding at boundary equilibria.
 JEL Classification Numbers:  C72, C73.
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1.  Introduction

The study of evolution in games rests on three basic principles.  First, players are
myopic, basing decisions about how to play the game on the current population
state.  Second, aggregate behavior exhibits inertia:  the population state changes
gradually over time.  Third, population sizes are large, rendering individual players
anonymous.  These three assumptions hold in most contexts in which evolutionary
models are applied.  They are also mutually reinforcing:  for example, behaving
myopically is most sensible when opponents' behavior adjusts slowly and when
one is sufficiently anonymous that possible repeated game effects can be ignored.

A fourth principle which seems natural to add to this list is that of inexact
information.  In most settings in which evolutionary models are appropriate, it is
reasonable to expect players' knowledge about either the game or their opponents'
behavior to be somewhat hazy.  Indeed, imprecise knowledge seems most consistent
with the other assumptions of the evolutionary model.  If the population size is
large, exact information about the population state may be difficult to obtain; if
players make costly efforts to gather such information, it seems incongruous to then
assume that they act upon it in a shortsighted fashion.

In this paper, we study a general model of stochastic evolution in games with
large, finite populations, examining the evolution of behavior over finite time
spans.  Our main modeling restriction requires that players have inexact
information about their strategic environment.  We begin by showing that the
population's behavior can approximated by a deterministic trajectory.  While this
result gives a precise description of disequilibrium behavior adjustment, it provides
little information about equilibrium play.
 This observation motivates the central results of the paper, which characterize
equilibrium behavior under inexact information.  We first prove that equilibrium
behavior can be described by a diffusion.  We then define new notion of
evolutionary stability called local probabilistic stability (LPS), which requires that a
large population which begins play in equilibrium settle into a fixed stochastic
pattern around the equilibrium.  We use the diffusion approximation to prove a
simple characterization of local probabilistic stability.  Local probabilistic stability of
interior equilibria is closely related to stability under the deterministic dynamics.
However, stability of boundary equilibria is less demanding, and can be
characterized in terms of robustness of the deterministic dynamics to perturbations
which do not leave the boundary.
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Models of evolution in games can be split into two classes according to how the
populations of players are described.  Most research has focused on models with
continuous populations of players.  In such models, evolution is described directly
in terms of a population-level law of motion; studying evolution means
characterizing solutions to certain differential equations.  Analysis of these models
is relatively simple.  However, the continuous populations are intended as
approximations of finite populations, and the restrictions on aggregate behavior
stand in for an explicit specification of individual behavior.  It is therefore natural to
ask how behavior in the continuous population models is related to behavior in the
discrete population models for which they serve as a proxy.

Discrete population models are built up from descriptions of how individual
agents behave.  While such primitives are obviously desirable, proceeding from
them carries a cost:  discrete models of evolution can be considerably more difficult
to analyze than their continuous population counterparts.  Consequently, much of
the work on these models has been restricted to very simple cases, most often the
single population, two strategy case.

We consider evolution in large but finite populations and give approximate
characterizations of behavior in terms of continuous state systems – ordinary
differential equations and diffusions.  We can therefore both specify our model i n
terms of individual behavior and characterize evolution in terms of relatively
simple continuous state processes.  In addition, our results suggest ways of
interpreting the continuous population models used throughout the evolutionary
literature.

In our model, a finite population of players repeatedly plays a game.  Players
occasionally receive opportunities to revise their behavior.  A player who receives
an opportunity decides how to act using a decision procedure, which for each
population state specifies probabilities of switching between strategy pairs.  W e
illustrate through examples that the decision procedure can embody optimizing,
imitative, experimental, or other sorts of choice criteria.

The only restriction we place on the decision procedures is that they reflect an
absence of exact information.  Formally, we require that the probabilities with which
the decision procedure offers its various recommendations change continuously i n
the population state.  When players optimize, continuity can reflect uncertainty
about opponent's behavior, or noise in the underlying payoffs.  When players
imitate, it can also reflect randomness in the choice of whom to mimic.  Regardless
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of its source, the continuity of the decision procedures captures the idea that small
changes in aggregate behavior should not lead to large changes in players' responses.

A population size, a decision procedure and an initial population state define a
Markov behavior process.  While this evolutionary process is stochastic, we are able
to show that when the population size is large, behavior adjusts in a nearly
deterministic fashion.  We associate with each decision procedure a deterministic

law of motion , which is a vector field derived from the expected motion of the
behavior processes.  We establish that over any finite time span, the behavior of a
large enough population is closely approximated by a solution to the differential
equation defined by the deterministic law of motion.

Why should this be so?  When the population size is large, any individual
change in behavior has a small effect on the population state.  Many revision
opportunities pass without the transition probabilities changing significantly.
Intuition based on the law of large numbers therefore suggests that the actual course
of evolution should be largely determined by its expected direction of motion.  Our
result confirms the accuracy of the deterministic description of behavior over finite
time spans.

This deterministic approximation provides a clear description of behavior away
from equilibrium, where by an equilibrium we mean a rest point of the
deterministic law of motion.1  Unfortunately, this result does not enable us to
determine which equilibria we should expect to persist.  Away from rest points, the
idiosyncratic noise from individual players' choices is inconsequential compared to
the population's expected motion, which therefore governs its behavior.  But at rest
points, expected motion is zero; near rest points it is close to zero.  Since solutions to
differential equations are continuous in their initial conditions, it follows that if we
fix the time span of interest in advance, a population that begins play close enough
to any rest point will not stray far from the rest point during the span.  Thus, the
deterministic approximation tells us little about equilibrium behavior.
 That expected motion is almost absent near rest points does not imply that a
population near a rest point is in complete stasis.  Rest points of the deterministic
dynamics are points at which the expected flows of players between strategy are
balanced.  Since information is inexact, the actual flows between strategies are
stochastic, and can occur at strictly positive levels.  Because the deterministic
approximation eliminates all but the expected changes in the use of each strategy, it
                                                
1 The connections between these rest points and the Nash equilibria of the underlying game depends
on the players' decision rule.  For examples, see Sections 2, 3.4, and 7.2.
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renders these latter properties invisible.  To understand equilibrium behavior, we
must keep this behavioral flux in full view.

We accomplish this by defining the local behavior process, which magnifies
deviations from the equilibrium by the square root of the population size.  By
viewing the population on this finer scale, we are able to perform a limit analysis
which leaves the random variations in the population's behavior intact.  We prove
that over any finite time span, the local behavior process of a large population is
closely approximated by a diffusion.
 The magnification used to define the local behavior process is essential for
proving convergence to a diffusion.  However, this convergence result is only of
interest if it provides us with information about the original behavior process,
which describes the proportions of players choosing each strategy.  Fortunately, if we
rescale the limit diffusion in an appropriate way, we obtain a new diffusion which
closely approximates the original behavior process near the equilibrium.  Doing so
enables us to make clear probability statements about this original process, and so
reveals information about equilibrium behavior which is hidden when only the
deterministic approximation is used.2

For this reason, the diffusion approximation provides a useful tool for the
analysis of equilibrium stability.  Since inexact information generally prevents the
population's behavior from ever completely settling down, the right definition of
stability must account for random variation of behavior around the equilibrium
point.  We call an equilibrium locally probabilistically stable (LPS) if a large
population which begins play at the equilibrium settles into a fixed probability
distribution around the equilibrium.

We use the diffusion approximation to establish a simple characterization of
local probabilistic stability.  We find that for generic interior equilibria, local
probabilistic stability is equivalent to local stability under the deterministic
dynamics.3  Were we directly concerned with deterministic stability, we would test
for it by examining the linearization of the dynamics around the equilibrium point;
an equilibrium is stable if this linearized system is a contraction.  To prove our
characterization, we show that the drift coefficient of our diffusion is given by this
same linearized system.  When the equilibrium is in the interior of the state space,
this observation is enough to connect the two forms of stability.

                                                
2  For examples of this approach to describing equilibrium behavior, see Section 2.
3 Of course, while the characterizations of these two notions of stability are nearly identical, the
meanings of stability are quite different.
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It is often desirable to specify decision procedures which reflect not only inexact
information, but also mutation :  occasional arbitrary behavior.  In many contexts,
mutation is prevalent enough that it appears in the limiting deterministic dynamics
as a force pushing away from the boundaries.  In such cases, all equilibria must be
interior, and so the results described above completely characterize LPS.
 However, if arbitrary behavior is quite rare, it may be more natural to suppose
that the limiting dynamics can exhibit boundary equilibria.  We show how
mutations consistent with boundary equilibria can be introduced to our model, and
then offer a characterization of local probabilistic stability for such equilibria.  At
boundary equilibria, LPS can be characterized in terms of the robustness of the
deterministic dynamics to perturbations which remain on the boundary.  That
mutants playing an unused strategy would disrupt the deterministic system has no
bearing on whether the equilibrium is locally probabilistically stable:  a population
playing such an equilibrium can still stay in a fixed distribution around the
equilibrium for a long period of time.  

Why don't movements into the interior of the state space matter?  Consider an
equilibrium at which strategy i is not used.  When the population is at the
equilibrium, the expected change in the number of players choosing strategy i is by
definition zero.  Since no one is using strategy i at the equilibrium, the number
playing i cannot fall.  The equilibrium condition then implies that it also cannot
rise.  These statements remain approximately correct in a neighborhood of the
equilibrium.  We can therefore show that the presence of strategy i always remains
negligible.  Consequently, even if the appearance of enough players choosing
strategy i would cause the population to pull away from the equilibrium, random
variations in behavior do not introduce enough players choosing strategy i to enable
the population to leave.

To our knowledge, this paper is the first to characterize equilibrium behavior i n
an evolutionary model using a diffusion.  However, a number of authors have
proved special cases of our deterministic approximation result.  Boylan (1995) shows
how evolutionary processes based on random matching schemes converge to
deterministic trajectories when the population size grows large.  Binmore,
Samuelson, and Vaughan (1995), Börgers and Sarin (1997), and Schlag (1998)
consider particular models of evolution which converge to the replicator dynamics.
Binmore and Samuelson (1999) prove a deterministic approximation result for
discrete time models of evolution under a somewhat restrictive timing assumption.
We apply an approximation result due to Kurtz (1970) to prove convergence to a
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deterministic trajectory in a quite general model of evolution in games, and
establish that inexact information is a sufficient condition for a deterministic
approximation to be valid.4

Beggs (2002) considers a finite population evolutionary model in which selection
pressures between strategies are weak.  He shows that if the rate at which time passes
is increased as larger populations are considered, a global diffusion approximation
becomes possible.  In contrast, we allow selection pressures to be weak or strong, and
we fix the rate at which time passes independently of the population size.  We show
that when this rate is fixed, the appropriate global description of behavior is
deterministic, but that diffusions can be used to study local behavior near
equilibria.5

 Our definition of local probabilistic stability depends on using a particular order
of limits: the population size is taken to infinity first, followed by the time horizon.6

Because the time horizon is held fixed while the population size limit is taken, LPS
directly concerns behavior over finite time spans.  As Binmore, Samuelson, and
Vaughan (1995) have shown, one typically obtains quite different results if one
considers the reverse order of limits, which focuses attention on infinite horizon
behavior.7  In undertaking a finite horizon analysis, we follow Binmore,
Samuelson, and Vaughan (1995, p. 10-11), who argue that such analyses are more
appropriate than infinite horizon analyses in many economic applications.8

Foster and Young (1990), Fudenberg and Harris (1992), and Cabrales (2000) model
evolution in continuous populations using stochastic differential equations and

                                                
4 Recently, Benaïm and Weibull (2003) have established an exponential bound on the probability of
deviations from the deterministic trajectory.
5 Corradi and Sarin (2000) offer a global diffusion approximation of behavior in a non-game-
theoretic model of imitation which is quite different from the model studied here.  In each period of
their model, the entire population is replaced by newcomers, whose actions are determined through a
process based on independent draws of pairs from the incumbent population.  Similarly to Beggs (2002),
they increase the rate at which these turnovers take place as they consider larger populations.  In
contrast, our model describes occasional strategy revisions by a fixed group of players in a game-
theoretic setting, and the rate of revision is held fixed as larger population sizes are considered.
6  However, our diffusion approximation only requires us to take the population size limit, and can be
established over any finite time interval.
7  In particular, taking the time horizon limit first leads one to consider equilibrium selection results,
as studied by Foster and Young (1990), Kandori, Mailath, and Rob (1993), and Young (1993).
8  In addition, Binmore, Samuelson, and Vaughan (1995) informally derive a global diffusion
approximation with a vanishing noise term for their model of evolution, and they show that this
approximation need not yield accurate descriptions of infinite horizon play.  We formally establish a
local diffusion approximation for our model, but this approximation too is only valid over finite time
spans.  We will return to the question of infinite horizon analysis and address the possibility of
analyses over intermediate time horizons in the final sections of the paper.
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characterize infinite horizon behavior.  These authors assume directly that
evolution is described by a diffusion rather than deriving this property from a more
basic model.  In addition, while in our model diffusions are only used to study
behavior near equilibria, these authors use diffusions as a global description of
behavior.
 This difference arises because unlike us, these authors study evolution in the
presence of aggregate shocks.  For example, in Fudenberg and Harris (1992), payoffs
contain a noise term which follows a Brownian motion.  Hence, the influence of
randomness on payoffs is correlated over time, generating aggregate disturbances i n
the evolutionary process.  In contrast, we assume that conditional on the population
state, payoffs and other random elements of the decision procedures are realized
independently over time.  Since in our model the noise influencing the
evolutionary process is idiosyncratic, it becomes small when we consider how the
proportions of players choosing each strategy evolve over time.  We leave the study
of finite population models with aggregate payoff noise for future research.

Section 2 introduces our results through two examples.  Section 3 contains our
formal model.  Section 4 establishes the deterministic approximation, and Section 5
the diffusion approximation.  Section 6 defines local probabilistic stability and
characterizes stability of interior equilibria.  Section 7 discusses mutations and
characterizes stability of boundary equilibria.  Section 8 provides further
interpretations of local probabilistic stability.  Concluding remarks, including further
comments on related literature, are offered in Section 9.  Proofs are relegated to the
Appendix.
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2.  Examples

In the examples in this section, two populations of N  players are repeatedly
randomly matched to play a normal form game.  Occasionally, players receive
opportunities to change their behavior; each player's revision opportunities arrive
via independent, rate 1 Poisson processes.
 In the first example, players are repeatedly matched to play the game of matching
pennies in Figure 1.  In this example, we assume that when a player receives a
revision opportunity, he learns the current strategy of a single opponent and plays a
best response to that strategy.  Let r represent the proportion of players in the
column population who are playing strategy R, and let u represent the proportion of
players in the row population playing strategy U.

We describe the players' decision procedure by the function d, where d(s, s') is
the probability that a player who receives a revision opportunity and is currently
playing strategy s will switch to strategy s'.  A column player currently choosing
strategy R will switch to strategy L if the opponent he queries plays strategy U; hence,
d(R, L) = u.  Given the payoff matrix in Figure 1 and the verbal description of the
decision procedure, it is easy to see that the function d is given by

d(U, D) = 1 – r d(L, R) = 1 – u;
d(D, U) = r; d(R, L) = u.

Since the probability that a column player is given the next revision opportunity
is   

1
2 , and since each player makes up fraction     

1
N  of his population, the expected

change in the proportion of players choosing strategy R during a single revision
opportunity is

    
1

2N ((1 – r)d(L, R) – r d(R, L)) =     
1

2N ((1 – r)(1 – u) – r u) =     
1

2N (1 – r – u).

Similarly, the expected change in the proportion of players choosing strategy U is

    
1

2N ((1 – u)d(D, U) – u d(U, D)) =     
1

2N ((1 – u)r – u (1 – r)) =     
1

2N (r – u).

Because the players' Poisson processes are independent, revision opportunities i n
the society as a whole arrive at rate 2N.  Thus, the expected increment per time unit
is given by



–9–

-1,1 1,-1

1,-1 -1,1

U

D

RL

Figure 1:  Matching pennies

Figure 2:  Evolution in matching pennies

f(r, u) = 
    

1 − −
−







r u

r u
.

We call f the deterministic law of motion associated with decision procedure d.
In Theorem 4.1, we establish that for sufficiently large population sizes, the

evolution of behavior over any finite time span is described by the deterministic law
of motion.  In this example, behavior over finite time spans is arbitrarily well
approximated by solutions to the differential equation

     ̇x  = f(x),

where x = (r, u).  Some solutions to this equation are graphed in Figure 2.  All
solutions converge to the rest point x* = (  

1
2 ,   

1
2 ), which is also the unique Nash

L .5 R
D

.5

U
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Figure 3:  A coordination game

Figure 4:  Evolution in a coordination game

equilibrium of this game.  Hence, regardless of its initial state, the behavior of a large
population will quickly come to approximate x*.9 Next, we consider the evolution
of play in the coordination game in Figure 3.  This time, we assume that when a
player receives a revision opportunity, he learns the behavior of three players in the
opposing population and plays a best response to this sample.  If sampling is
performed with replacement, the decision procedure is described by

d(U, D) = (1 – r)3 + 3r(1 – r)2; d(L, R) = u3 + 3u2(1 – u);
d(D, U) = r3 + 3r2(1 – r); d(R, L) = (1 – u)3 + 3u(1 – u)2.

                                                
9 It is worth noting that the decision procedure we have specified is not sensitive to the payoffs of
the underlying game.  Indeed, any payoffs with a counter-clockwise best response structure yield the
same choice probabilities.  Hence, behavior converges to x* = (1/2, 1/2) regardless of the Nash
equilibrium of the underlying game.  However, as we increase the size of the samples drawn by the
players, the limit point of the dynamics approaches the Nash equilibrium of the underlying game.
Further discussion of this decision procedure can be found in Section 3.4.1.  For some surprising
consequences of small sample sizes, see Sandholm (2001).

L .5 R
D

.5

U
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The law of motion associated with this decision procedure is therefore

g(r, u) = 
    

− + −
− + −







r u u

u r r

3 2
3 2

2 3

2 3 .

Trajectories from a variety of initial conditions are graphed in Figure 4.  If the initial
condition (r0, u0) satisfies r0 + u0 < 1, the solution trajectory converges to the
equilibrium (D, L); if the initial condition satisfies r0 + u0 > 1, play converges to the
equilibrium (U, R).  Thus, from most initial conditions, stochastic evolution leads
the population to one of the pure equilibria of the game.

What happens in these games if play begins at the mixed equilibrium x* = (  
1
2 ,   

1
2 )?

Since x* is a rest point of both f and g, the solutions of both differential equations
starting from x* are degenerate.  Moreover, if we fix a time T, the continuity of
solutions to differential equations in their initial conditions implies that a
population which begins play close enough to x* will remain close to x* through
time T.

Thus, while the deterministic approximation tells us a great deal about the finite
horizon behavior of populations which begin play out of equilibrium, it tells us
little about populations which begin play in equilibrium.  The deterministic
approximation relies on the fact that when the population size is large, idiosyncratic
sampling noise is averaged away, leaving only the expected motion of the system.
Since rest points of the limiting system are points where expected motion is zero,
the deterministic approximation suggests that very little happens at these points.

Of course, the rest point x* is not a point at which the population's behavior
ceases to evolve; it is simply a point where the expected flows of players between
strategies cancel one another out.  But since each player has very limited
information about the population state, there is actually considerable idiosyncratic
variation in the players' behavior.  Near rest points, where expected motion is
insignificant, this variation is the most prominent feature of play.  To understand
equilibrium behavior under inexact information, we must capture these stochastic
aspects of play.

Let the behavior process {  Xt
N }t≥0 = {(  Rt

N ,   Ut
N )}t≥0 describe the proportions of players

choosing strategies R and U, and consider initial conditions     X
N
0  =     x

N
0  which

converge to x* at rate o(    
1
N

).10  We define the local behavior process at x*, {  Zt
N }t≥0, by

                                                
10 Since the state space for the behavior process     { }X

t

N

t≥0  is a discrete grid, the initial conditions     X
N

0

generally cannot be identical to the limit rest point x*.
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  Zt
N  ≡   N X xt

N −( )* .

The local behavior process magnifies the original behavior process by a factor of

  N , enabling us to perform a finer analysis of behavior near the equilibrium.
Rescaling by   N  is helpful because it allows us to obtain a limiting

characterization of equilibrium play.  In Theorem 5.1, we show that if the
population size is large enough, the local behavior process is closely approximated
by a diffusion.  The drift coefficient of this diffusion is described in terms of the
derivative of the law of motion at the equilibrium x*, which we denote Df(x*).  In
deterministic models, this derivative is used to characterize the behavior of
trajectories starting near an equilibrium; in our stochastic model, we use this
derivative to characterize equilibrium behavior itself.
 In the matching pennies game, the local behavior process is approximated by the
solution to

dZt = Df(x*)Zt dt +   
1
2
I dBt = 

  

− −
−







1 1
1 1

 Zt dt + 
  

1
2

1
2

0
0







dBt

with initial condition Z0 ≡ 0.11  We call the solution to this stochastic differential
equation the local limit process at x*.  The eigenvalues of Df(x*), –1 ±  i, both have
negative real part, so the law of motion of Zt is a contraction perturbed by a white
noise process.  This process usually moves towards the origin, but the noise term
prevents it from ever settling down.  By solving the stochastic differential equation,
we can explicitly describe the local limit process:  it is a zero-mean Gaussian process
whose covariance matrix at time T is12

Cov(ZT) = 
    

1
4

2

1
4

2

1 0
0 1

( )
( )

−
−







−

−

e

e

T

T  → 
  

1
4

1
4

0
0







.

The local limit process is important because of what it tells us about the original
behavior process   Xt

N , which describes the actual proportions of players choosing
each strategy.  In particular, the random variable   XT

N  = x* +     
1
N T

NZ  ≈ x* +     
1
N TZ  must

be approximately normally distributed with mean E(  XT
N ) ≈ x* and covariance

                                                
11 In this section, Bt represents a two-dimensional Brownian motion.
12 We use lowercase time subscripts to refer to entire processes and uppercase time subscripts to refer to
a process at a particular moment in time.
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Cov(  XT
N ) ≈ 

    

1
4

2

1
4

2

1 0
0 1

N
T

N
T

e

e

( )
( )

−
−







−

−  → 
    

1
4

1
4

0
0
N

N







.

Thus, thus, the behavior of a population which begins play at the mixed
equilibrium x* is immediately described by a normal distribution around x*; the
covariance of this distribution converges exponentially quickly to     

1
4N I as time passes.

When a large population which begins at an equilibrium is quickly described by
some fixed distribution about the equilibrium, we call the equilibrium locally

probabilistically stable (LPS).
Formally, a rest point is locally probabilistically stable if there is a zero-mean

random variable Z∞ such that

Z∞ = 
    
lim lim
T N T

NZ
→∞ →∞

,

where the limits are in distribution.  As we noted in the Introduction, taking the
time limit last focuses attention on behavior over a long but finite time span.
When this limit exists, a population which begins play at an equilibrium settles into
a fixed distribution around the equilibrium over this time span.  When described on
the scale of the original behavior process   Xt

N  = x* +     
1
N t

NZ , the standard deviations
of the limit distribution are of order     

1
N

.

   The analysis above shows that in the matching pennies game, x* is LPS.  In
contrast, the local behavior process for the mixed equilibrium of the coordination
game is approximated by the solution to

dZt = Dg(x*)Zt dt +   
1
2
I dBt = 

  

−
−







1
1

3
2

3
2

 Zt dt + 
  

1
2

1
2

0
0







dBt

starting from Z0 ≡ 0.  The eigenvalues of Dg(x*) are   
1
2  and   −

5
2 , so this stochastic

differential equation has one expanding direction (along the 45˚ line) and one
contracting direction (the orthogonal direction).  The local limit process Zt is again a
zero-mean Gaussian process, this time with time T covariance matrix

Cov(ZT) = 
    

1
4

1
20

5 1
4

1
20

5

1
4

1
20

5 1
4

1
20

5

1 1 1 1
1 1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
e e e e

e e e e

T T T T

T T T T

− + − − − −
− − − − + −







− −

− − .
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The population's behavior is again described by normal distributions about the
equilibrium.  But as time passes, the correlation between the components of ZT

rapidly approaches 1, while the variances of the components of ZT grow without
bound.  In other words, the distribution of behavior is stretched along the 45° line as
the population heads towards one of the two pure equilibria.  Consequently, the
original behavior process   Xt

N  does not settle into a fixed distribution about the

equilibrium x*, and so the equilibrium x* is not LPS.
 In these examples, local probabilistic stability agreed with local stability under the
deterministic dynamics.  While this connection holds generically when we consider
interior equilibria, at boundary equilibria the connection is broken:  on the
boundary, deterministic stability is more demanding than local probabilistic stability.
We present a formal statement of this claim and an example in Section 7.  We also
have not addressed what local probabilistic stability tells us about whether the
process   Xt

N  will escape the vicinity of an equilibrium.  We take up this question i n

Section 8.

3.  The Model

3.1  The Underlying Game

 We consider the evolution of behavior in games played by r ≥ 1 populations of
players.  For notational convenience, we assume that members of each population p

can choose among n  strategies.  We let Sp denote the strategy set for population p,
and let S = 

    
SppU  denote the union of the strategy sets of each population.  Let ∆p ⊂

    R
n  represent the simplex, so that elements of ∆p are possible distributions of

strategies in population p.  The set ∆ = 
  

∆pp∏  ⊂     R
rn  contains all possible strategy

distributions in the society as a whole.
We consider the evolution of behavior in large, finite populations.  For

notational convenience, we assume that each population has N  members.  If each
player chooses a pure strategy, the set of possible strategy distributions is given by   ∆N

= {x ∈  ∆: Nxi ∈  Z for all i ∈ S}.
Each player's payoffs are represented by a random variable which depends on the

player's strategy and the population state.  We explicitly include payoff randomness
to model settings in which players' decisions depend directly on payoff
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realizations.13  Formally, for each i ∈  S and x ∈  ∆N, the random variable     π i x( )

represents the payoffs to a player choosing strategy i when the population state is x.
Payoffs are Markov, only depending on the past through the current state, and the
payoffs received by different players during a single period are independent of one
another.14  Finally,     π i x( ) denotes expected payoffs.

3.2  Selection Mechanisms and Decision Procedures

Each evolutionary process can be characterized in terms of two components:  a
selection mechanism , which determines the times at which each player considers
changing strategies, and a decision procedure, which specifies how players respond
to such opportunities.  We consider each in turn.

We find it convenient to model evolution in continuous time using Poisson

selection.  Under Poisson selection, all players' revision opportunities arrive via
independent, rate 1 Poisson processes.  Hence, a unit of time in our model is defined
as the expected interval between a single player's revision opportunities; this unit
does not change when we consider populations of different sizes.  When there are r
populations of size N, revision opportunities for the population as a whole follow a
Poisson process with parameter rN, and each opportunity is equally likely to go to
any player.15

 Decision procedures provide the link between the game's payoffs and the
players' behavior.  Suppose that the population state is x ∈  ∆N and that a player
currently choosing strategy i receives a revision opportunity.  Then dN(i, j, x) is the

                                                
13  For example, if players are randomly matched, it is often desirable to let their decisions depend on
the payoffs they actually receive in their matches rather than their expected payoffs ex ante.
14 The latter assumption does not hold in all potential applications.  For example, if we study players
who are randomly matched, then for any finite population size, the payoffs received by different
members of the same population are not quite independent, as conditioning on the matching of one
player slightly alters the match probabilities of the others.  Moreover, if there is only a single
population and players are not matched against themselves, the payoff distribution will depend on the
population size in a vanishing way.  Fortunately, our model of evolution will permit transition
probabilities which depend in a vanishing way on the population size, so explicitly including these
finite population effects would not alter our results.
15 Versions of our results also hold in a discrete time version of our model.  In this case, we assume that
a new period begins every (1/rN) time units.  For our results to continue to hold, it is enough to assume
that the number of players who receive revision opportunities during each period is constant.  One can
also assume that each period's revision opportunities are allocated via an i.i.d. process; in this case, we
require that the probability pN that any particular player receives an opportunity is such that NpN

converges as N approaches infinity.  In either case, the expected number of revision opportunities tha t
an individual receives during a single time unit is essentially fixed when N is large.
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probability that this player switches to strategy j.  Clearly, for all populations p, all i ∈
Sp, and all x ∈  ∆N, the decision procedure dN: S ×  S ×  ∆N → [0, 1] must satisfy

 dN(i, j, x) = 0 whenever j ∉ Sp;

    
d i j xN

j Sp

( , , )
∈
∑  = 1.

That is, a player can only choose strategies available to members of his population,
and for each strategy and population state, the probabilities of all possible switches
sum to one.
 A population size N , a decision procedure dN and an initial condition     x

N
0  ∈  ∆N

define the behavior process     { }Xt
N

t≥0 .  The behavior process is a pure jump Markov
process taking values in ∆N; the random variable   XT

N  describes the society's aggregate

behavior at time T.  Our goal is to characterize behavior over finite time spans when
the population size is large.

Finite population effects (due, for example, to sampling without replacement)
can cause the decision procedure to depend on the population size.  Fortunately, our
results are not sensitive to such dependencies so long as they vanish sufficiently
quickly.  Formally, we assume that there exists a limit decision procedure d: S ×  S ×
∆ → [0, 1] such that

(A1)
    
lim sup ( , , ) ( , , )
N x

N

N
d i j x d i j x

→∞ ∈
−

∆
 = 0 for all i, j ∈  S.

That is, as the population size grows large, differences in the choice probabilities
vanish uniformly over the set of strategy distributions.  This assumption
accommodates finite population effects.  Moreover, this allowance for slight
variations in the decision procedures implies that rare mutations need not affect
our analysis; we discuss this point further in Section 7.
 We find it reasonable to expect players' choice probabilities not to be unduly
sensitive to the current population state.  Whether because of payoff noise,
imprecise information about opponents' behavior, or other reasons, very close
states should not cause very different reactions by the players.  To capture this idea
formally, we assume

(A2) d(i, j, x) is Lipschitz continuous in x for all i, j ∈  S.
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3.3  Deterministic Laws of Motion

We begin our analysis by deriving the transition probabilities of the behavior
process   Xt

N .  At each revision opportunity, a single player considers switching

strategies.  He either switches from his current strategy i ∈  Sp to some new strategy j
∈  Sp or decides to stay with strategy i.  Hence, if the current population state is x ∈ ∆N

and the population size is N , the only states to which transitions are possible are of
the form x +     

1
N j i( )ι ι− , where ι i and ι j are basis vectors in     R

rn. Since all players are

equally likely to be granted the revision opportunity, the probability of a transition
from state x to state x +     

1
N j i( )ι ι−  is given by

QN(x, x +     
1
N j i( )ι ι− ) = 

    

x
r

d i j xi N ( , , ).

We define IN: ∆N →     R
rn to be the expected increment in   Xt

N  during the next

revision opportunity conditional on the current population state:

 IN(x) = 
    

( ) ( , )y x Q x yN

y

−∑ .

While this definition is quite compact, it will be more useful to express the expected
increments directly in terms of the decision procedures dN.  Consider the expected
change in the number of players choosing strategy i ∈ Sp.  The probability that the
player given the revision opportunity is playing strategy i is   

x
r
i ; the probability that

the player given the revision opportunity switches to strategy i is

    

x

r
d j i xj N

j Sp

( , , )
∈
∑ .

To determine the expected change in the number of players choosing strategy i, we
subtract the former expression from the latter, and then multiply by     

1
N  to account for

each player's weight in his population.  This yields

    I xi
N ( ) = 

    

1
rN

x d j i x xj
N

j S
i

p

( , , )( ) −










∈
∑ .

When the population size is N , revision opportunities arrive in the society at
rate rN.  Hence, the expected increment of   Xt

N  per time unit, denoted   f
N : ∆N →     R

rn ,
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is given by     f xi
N ( )  = rN    I xi

N ( ).  With this motivation, we define the deterministic l aw

of motion associated with decision rules dN, denoted f: ∆ →     R
rn, by

fi(x) = 
    

x d j i x xj
j S

i
p

( , , )
∈
∑









 −  = 

    
x d j i x x d i j xj i

j Sp

( , , ) ( , , )−( )
∈
∑ .

 Assumption (A1) implies that the   f
N  converge uniformly to f, while assumption

(A2) implies that f is Lipschitz continuous.  The latter property implies that the
differential equation

(D)     ̇ ( )x f x=

admits a unique solution from every initial condition x0 ∈ ∆.  We show in Section 4
that the stochastic behavior process   Xt

N  closely mirrors solutions to this

deterministic dynamical system over finite time spans.  Before stating this result, we
offer two examples of decision procedures and their deterministic laws of motion.

3.4  Examples

For simplicity, our examples involve single population of players; both examples
can be generalized to allow for multiple populations.  Furthermore, we speak
directly in terms of the limit decision procedures; the finite population decision
procedures are the same up to a term which vanishes at rate O(    

1
N ).

3.4.1  Sample Best Response

 Suppose that when a player receives a revision opportunity, he samples the
behavior of s members of the population.  He then plays a best response to the
distribution of players in his sample under the assumption that it is representative
of the behavior of the population as a whole.  We call this procedure, which was
introduced in our examples in Section 2, the sample best response procedure.16

Let B: ∆ → ∆ denote the best response correspondence for the expected payoffs π ,
and let Sx denote a multinomial random variable with parameters s and x.  For
simplicity, suppose that all possible realizations of the sample induce a unique best

                                                
16 Related procedures are considered by Young (1993) and Kaniovski and Young (1995).  In these
models, instead of choosing a best response to an incomplete sample of current behavior, players play a
best response to an incomplete recollection of the history of play.
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response.  Then the choice probabilities for the sample best response decision
procedure are given by

ds(i, j, x) = 
  
P B

S
s
x

j




 =





ι .

The law of motion associated with this procedure is therefore

     f xi
s( ) = 

  
x P B

S
s

xj
x

i
j

i




 =











−∑ ι

 = 
  
P B

S
s
x

i




 =





ι  – xi.

Since the distribution of Sx is polynomial in x, so too are ds(i, j, x) and     f xs( ).

In contrast, suppose that the player receiving the revision opportunity is
perfectly informed about the current population state.  We call the resulting
decision procedure the best response decision procedure.  It is defined by

d(i, j, x) = 
    
1{ ( ) }B x j=ι

whenever x ∈  ∆u = {x ∈  ∆:  B(x) is unique}.  This yields the law of motion

f(x) = B(x) – x.

on ∆u.  This last equation defines the best response dynamics (Gilboa and Matsui
(1991)).  Since the best response dynamics are discontinuous in the population state,
they lie outside the scope of our analysis.
 The law of large numbers implies that the sample best response dynamics
converge to the best response dynamics as the sample size approaches infinity
(although convergence is not uniform).  Nevertheless, the two decision procedures
lead to very different behavior near equilibria.  Continuous dynamics move very
slowly near rest points; for this reason our deterministic approximation will
provide little information about behavior near equilibria.  In contrast, the best
response dynamics are discontinuous at equilibria:  very small changes in behavior
can lead to a sharp acceleration in the evolutionary process.  Our assumption of
inexact information will preclude this possibility.
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3.4.2  Proportional Imitation

The sample best response procedure requires players to know the payoff structure
of the game.  Since in many settings it is unreasonable to expect players to have such
knowledge, it is important to consider procedures which do not require it.  Consider
this procedure proposed by Schlag (1998).  A player who receives a revision
opportunity compares his current payoff realization to that of a randomly selected
opponent.  If his payoff is higher than hers, he continues to play the same strategy;
otherwise, he switches to her strategy with a probability proportional to the
difference in their payoffs.  
  This procedure, called proportional imitation, is described by

d(i, j, x) = 
    
x E x xj j iβ π π( ) ( )−( )[ ]+

,

where β > 0 is small enough that the choice probabilities are always between zero
and one.  The law of motion generated by proportional imitation is

fi(x) = 
    

x x E x x x x E x xj i i j i j j i
j

[ ( ( ) ( ))] [ ( ( ) ( ))]β π π β π π− − −( )+ +∑
= 

    
β π πx x E x xi j i j

j

[ ( ) ( )]−∑
= 

    
β π πx x x xi i j j

j

( ( ) ( ))− ∑ .

This law of motion is simply the replicator dynamics defined in terms of the
expected payoffs of the game.17

4.  Deterministic Approximation

  Our first result establishes that the stochastic behavior process   Xt
N  can be

arbitrarily well approximated by solutions to the differential equation (D).  This
approximation is valid over any finite time horizon so long as the population size is
sufficiently large.

                                                
17 The constant β only determines the speed of the evolutionary process.
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Theorem 4.1 (Deterministic Approximation)
 Fix x0 ∈  ∆, and let {xt}t≥0 be the solution to (D) with initial condition x0.  Suppose
that the initial conditions     X

N
0  =     x

N
0  converge to x0.  Then for each T < ∞  and ε > 0,

    
lim sup

[ , ]N t T
t
N

tP X x
→∞ ∈

− <



0

ε  = 1.

Theorem 4.1 follows immediately from an approximation result due to Kurtz
(1970).  The intuition behind the theorem can be explained as follows.  At each
revision opportunity, the increment in   Xt

N  is stochastic.  However, during any time

interval of length δ, the number of revision opportunities we should expect to occur
is δrN, which grows without bound as the population size becomes large.  On the
other hand, the maximum change in any component of the population state during
a single revision opportunity is     

1
N , so the total change in any component of   Xt

N

during the interval is bounded by δr.  Thus, during any sufficiently brief interval,
there are a very large number of revision opportunities, each of which generates
nearly the same expected increment.  Intuition from the law of large numbers
suggests that the change in behavior during this interval should be almost
completely determined by the expected motion of the system.  This expected motion
is captured by the differential equation (D).18

Theorem 4.1 offers a clear description of the finite horizon behavior of a
population which begins play away from equilibrium, where by an equilibrium we
mean a rest point of equation (D).  However, the theorem tells us little about the
behavior of a population which begins play in equilibrium.  The theorem says that
behavior can be closely approximated by solutions to a differential equation.  Such
solutions are continuous in their initial conditions:  over any fixed time horizon T,
a change in the initial conditions smaller than δ = δ(ε, T) will not change behavior at
time T by more than ε.19  Since solutions starting from rest points are degenerate, it
follows that solutions starting close enough to rest points move very little over
finite time spans.

                                                
18  Binmore and Samuelson (1999) prove a deterministic approximation result in a discrete time
framework.  They assume that as larger population sizes N are considered, the number of periods which
occur per time unit grows faster than order N2.  This guarantees that the occurrence of more than one
revision opportunity in a single period becomes extremely unlikely.  The discrete time model we
describe in footnote 12 does not satisfy this restriction; Kurtz's (1970) results show that it is not needed
for a deterministic approximation result to hold.
19 For a formal statement and proof, see, e.g., Robinson (1995, Theorem 5.3.3).
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Corollary 4.2:  Let x* be a rest point of (D), and fix ε > 0 and T < ∞.  If the initial
conditions     X

N
0  =     x

N
0  converge to a point x0 with     x x0 − *  < δ = δ(ε, T), then

    
lim sup *

[ , ]N t T
t
NP X x

→∞ ∈
− <



0

ε  = 1.

Fix some finite time T.  Corollary 4.2 tells us that if a large enough population begins
play close enough to an equilibrium, it is quite unlikely to leave the vicinity of the
equilibrium through time T.20

 Theorem 4.1 shows that idiosyncratic noise tends to be drowned out by expected
motion when the population size is large.  Since at rest points there is no expected
motion, the noise which is insignificant elsewhere takes on central importance.  To
understand equilibrium behavior, we require an analysis which captures this noise
explicitly.

5.  Diffusion Approximation

The deterministic approximation can be viewed as a law of large numbers for the
behavior process.  Unfortunately, Corollary 4.2 shows that this result provides
limited information about equilibrium behavior.  To obtain more information, we
might seek a central limit theorem for the behavior process:  by magnifying the
behavior process by   N  about the equilibrium, we might hope to obtain a limit
result which captures the random variations in the population's behavior.
  We therefore define the local behavior process at x* by

  Zt
N  ≡   N X xt

N −( )* .

Theorem 5.1 shows that when the population size is large, the local behavior
process   Zt

N  is nearly a diffusion.  Therefore, if we express the original behavior
process   Xt

N  in terms of   Zt
N , we can use this diffusion approximation to derive

                                                
20 Of course, if an equilibrium of a differential equation is unstable, even solutions which start
extremely close to the equilibrium will eventually leave the vicinity of the equilibrium.  However, we
are concerned with behavior over some fixed, finite horizon.  Corollary 4.2 says that if we fix the time
span of interest in advance, solutions from points very close to the equilibrium will stay nearby during
the span.  For further discussion, see Section 8.
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descriptions of the population's equilibrium behavior.  In so doing, we obtain
information about equilibrium behavior which is obscured when only the
deterministic approximation is considered.

In order to establish the diffusion approximation, we need a somewhat stronger
assumption concerning the convergence of the decision procedures:  rather than
requiring uniform convergence, we need a rate of convergence faster than     

1
N

.

(A3)
    
sup ( , , ) ( , , )
x

N

N
d i j x d i j x

∈
−

∆
 ∈  o(    

1
N

) for all i, j ∈  S.

Since most finite population effects vanish at rate O(    
1
N ), this stronger assumption is

not unduly restrictive.  We also need the limit decision procedure to be
continuously differentiable in the population state.

(A4) d(i, j, ·) is continuously differentiable for all i, j ∈  S.

To characterize the random aspects of the evolutionary process, we need a
measure of the dispersion of its increments.  For this reason, we define the
incremental covariance of the behavior process, CN: ∆ →     R

rn rn× , by

    C xij
N ( )  = 

    
( )( ) ( , )y x y x Q x yi i j j

N

y

− −∑

It will prove useful to express this function directly in terms of the decision rules.
Note that if i ≠ j, the only way that the number of players choosing both of these
strategies can change in during a single revision opportunity is if the player with the
opportunity switches from one strategy to the other.  On the other hand, any
revision which changes the number of players choosing strategy i contributes
positively to the incremental variance of component i.  Using this logic, one can
show that

    C xij
N ( )  = 

    

− +( ) ≠
+( ) =





 ≠
∑

1

1

2

2

rN i
N

j
N

rN i
N

l
N

l i

x d i j x x d j i x i j

x d i l x x d l i x i j

( , , ) ( , , ) ;

( , , ) ( , , ) .

if 

if 

With this motivation, we define the function a: ∆ →     R
rn rn×  by
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aij(x) = 

    

− +( ) ≠
+( ) =





 ≠
∑

x d i j x x d j i x i j

x d i l x x d l i x i j
i j

i l
l i

( , , ) ( , , ) ;

( , , ) ( , , ) .

if 

if 

When x* is an equilibrium, we call the matrix a(x*) the diffusion coefficient at x*.
The reason for this designation will become clear below.

A normalization will make our results easier to state.  So far, we have expressed
each population's behavior as a point in     R

n , where n  is the number of strategies
available to the population's members.  However, since the population state must
stay in the simplex ∆p, it is only free to move in n  – 1 dimensions.  It is therefore
convenient to change the coordinates we use to refer to population states.  From this
point forward, we view each set ∆p as a subset of       R

n−1 rather than as a subset of     R
n .

We accomplish this by identifying each element (x1, … , xn–1, xn) in     R
n  with its

projection (x1, … , xn–1) in       R
n−1.  Similarly, we consider the state space ∆ = 

  
∆pp∏  a

subset of     R
k , where k = r(n – 1).  Fortunately, all of our earlier definitions can still be

used after minor modifications which account for this change in coordinates.  In
particular, f: ∆ →     R

k  and a: ∆ →     R
k k×  are defined as before if we simply leave off all

arguments and components corresponding to the nth strategy of each population.
Since we want to characterize behavior near equilibria, it will be useful to have a

simple description of expected motion near equilibria.  We therefore define the
derivative of f, Df: ∆ →     R

k k× , which exists for all x ∈  ∆ by assumption (A4).21  We let
D* = Df(x*) denote the derivative of f at the equilibrium x*.

The derivative D* can be used to determine the stability of x* under the
differential equation

(D)     ̇x  = f(x).

Taking a Taylor series of f about x* reveals that

 f(x) ≈ f(x*) + Df(x*)(x – x*) = D*(x – x*)

when x is close to x*.  It can therefore be shown that solutions of (D) near x* are
conjugate to solutions of the linear equation

(L)     ̇y  = D*y

                                                
21 To define the derivative at points x on the boundary of ∆, it is enough to consider how f changes as
we move from x in directions which stay within ∆.
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near y = 0.  Solutions of the linear equation (L) can be expressed compactly as

yt =     e yD t*
0 ,

where     e
D t*  = I +     

( * )
!

D t
kk

k

=

∞∑ 1
 is a matrix exponential.  The linear equation (L) will play

a leading role in the analysis to come.
 Before stating our result, we introduce a few additional definitions.  First, let a* =
a(x*) denote the diffusion coefficient at x*. Since a* is symmetric and positive
semidefinite,22 it has a "square root": we can find a σ* ∈      R

k k×  such that σ*(σ*)' = a* .
Next, let {Bt}t≥0 denote a k-dimensional Brownian motion.  Finally, our notion of
convergence for the local behavior processes is weak convergence in D([0, T],     R

k ),
the space of functions from [0, T] to     R

k  which are right continuous and have left
limits.

Theorem 5.1 (Diffusion Approximation)
Let x* be a rest point of (D), and let the sequence of initial conditions     X

N
0  =     x

N
0

converge to x* at rate o(    
1
N

).  Then for each  T < ∞,   Zt
N  converges weakly in D([0, T],

    R
k ) to Zt, the solution to

(S) dZt = D*Zt dt + σ*dBt

from initial condition Z0 ≡ 0.  This solution is given by

Zt ≡ 
    

e dBD t s
s

t *( ) *−∫ σ
0

.

We call the process Zt the local limit process at x*.

Diffusions (i.e., solutions to stochastic differential equations) in     R
k  are

characterized by two coefficients:  a drift coefficient µ:     R
k  →     R

k , which describes the
expected direction of motion, and a diffusion coefficient   σ 2 :     R

k  →     R
k k× , which

captures the dispersions of and correlations between the components of the process.
Theorem 2 tells us that over finite time spans, the local behavior process   Zt

N  is

closely approximated by the local limit process Zt, a diffusion with linear drift
coefficient µ(z) = D*z and constant diffusion coefficient   σ 2 (z) = a*.  That is, the
distribution over paths through     R

k  induced by   Zt
N  converges to the distribution

                                                
22 We verify this in the Appendix (Lemma A.3).
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over paths induced by the diffusion Zt.  Since the stochastic differential equation
which describes Zt is linear, we can solve it explicitly.  Indeed, the integral
representation of the local limit process Zt immediately reveals that it is a zero-
mean Gaussian process.
 The local limit process is important because of what it tells us about the original
behavior process   Xt

N , which describes the proportions of players choosing each
strategy.  Fix some finite time T.  Since   Xt

N  = x* +     
1
N t

NZ , we can conclude from

Theorem 5.1 that if N  is large enough, the process   Xt
N  is approximately Gaussian

through time T.  In particular, at each moment   ′T  ∈  [0, T],   XT
N

′  is approximately

normally distributed about the equilibrium x*, and has an approximate covariance
of     

1
N TCov Z( ).

To prove Theorem 5.1, we appeal to a convergence theorem due to Stroock and
Varadhan (1979).  They consider sequences of Markov processes whose increments
become vanishingly small.  Roughly speaking, their result says that if the expected
increments and incremental covariances of a sequence of Markov processes
converge to some functions µ(·) and   σ 2 (·), and if the probability of large increments
vanishes, then the Markov processes themselves converge to the diffusion whose
drift and diffusion coefficients are µ(·) and   σ 2 (·).  We use this observation to sketch
the proof of Theorem 5.1; details can be found in the Appendix.
 For simplicity, we assume that all decision rules are identical: dN ≡ d for all N .
We first consider covariances.  The deterministic approximation tells us that as the
population size grows large, all variance in the original behavior processes   Xt

N

vanishes.  To obtain a sequence of processes whose variances do not vanish, we
must rescale the original processes by some exploding term.  The analogy with the
central limit theorem suggests that the correct term is   N .
 A calculation verifies this intuition.  The covariances of the components of   Xt

N

during a single revision opportunity are given by CN.  Multiplying this expression by
the Poisson rate of rN yields the incremental covariance per time unit, rNCN.  To
find the corresponding expression for   Zt

N  ≡   N X xt
N −( )* , we observe that

increments of this process are   N  times larger the corresponding increments of   Xt
N ;

this increases the covariance by a factor of     ( )N 2  = N .  Thus, the incremental
covariance per time unit of   Zt

N  at state z =   N (x – x*) equals

rN2CN(x* +   
z
N

) = a(x* +   
z
N

).

Since a(·) is continuous, this expression converges to a(x*) as N approaches infinity.
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 We next consider expected increments.  The expected change in   Xt
N  during a

single revision opportunity is IN(x) =     
1

rN f x( ), so the expected increment per time unit
is f(x).  Increments of   Zt

N  ≡   N X xt
N −( )*  are   N  times larger the corresponding

increments of   Xt
N , so the expected increment per time unit of   Zt

N  at state z =   N (x –

x*) is

   N f(x* +   
z
N

).

The mean value theorem implies that

  N f(x* +   
z
N

) =   N  (f(x*) + Df (x* + λ   
z
N

)   
z
N

).

for some λ ∈  [0, 1].  Were x* were not a rest point (i.e., were f(x*) ≠ 0), the expected
increment of   Zt

N would explode, and the diffusion approximation would fail.  But

since f(x*) = 0, we find that

  N f(x* +   
z
N

) =   N  Df(x* + λ   
z
N

)   
z
N

 = Df(x* + λ  
z
N

)z.

As N grows large, this expression converges to Df(x*)z = D*z, which is therefore the
drift coefficient of the limit process.

We conclude that over any finite time span,   Zt
N  converges weakly to the

solution of the stochastic differential equation (S).  The solution to this equation is
obtained by introducing the integrating factor     e

D t− *  and applying Ito's formula.

6.  Local Probabilistic Stability

Because players' information is inexact, the flows of players between strategies
are random.  Even at rest points, where expected motion is absent, there is still
considerable stochastic variation in players' behavior. The proper notion of
equilibrium stability must account for this variation explicitly.

Theorem 5.1 shows that by examining the local behavior process, we can obtain a
limiting description of equilibrium behavior which is independent of the
population size.  It is therefore natural to state our definition of stability in terms of
this process.  We call the equilibrium x* locally probabilistically stable (LPS) if there
is a zero-mean random variable Z∞ such that
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lim lim
T N T

NZ
→∞ →∞

 = Z∞,

where the limits are limits in distribution in     R
k .

 Roughly speaking, LPS requires that when N is large, the random variable   ZT
N

has nearly the same distribution as Z∞.  We can restate this requirement in terms of
the original behavior process:  when N is large, the mean and covariance of   XT

N  = x*
+     

1
N T

NZ  are roughly x* and     
1
N Cov Z( )∞ .  Thus, if an equilibrium is LPS, a population

which begins play at that equilibrium settles into a fixed distribution around that
equilibrium.  The standard deviations of this distribution's components of are of
order     

1
N

:  the larger the population, the closer it will stay to the point x*.

That we take the time limit last means that we are considering finite horizon
behavior.  That we take the time limit at all may seem to suggest that Z∞ only
describes behavior after a long time has passed.  Fortunately, we shall see that
whenever an equilibrium is LPS, the limit random variable Z∞ describes behavior
almost immediately.

We also offer a definition of instability of equilibrium.  We say that the
equilibrium x* is locally probabilistically unstable (LPU) if

    
lim lim ( )
T N T

NCov Z
→∞ →∞

 = ∞,

where   A  = 
    
max

,i j
ijA .  If an equilibrium is LPU, then a population which starts at

the equilibrium moves further and further away as time passes.
The diffusion approximation provides the basis for our characterization of local

probabilistic stability.  Since the local behavior process   Zt
N  converges to the local

limit process Zt, it follows that

    
lim lim
T N T

NZ
→∞ →∞

 = 
    
lim
T TZ

→∞
.

Hence, stability can be characterized directly in terms of the local limit process.  Since
this process is a zero-mean Gaussian process, its limit behavior only depends on the
limit behavior of its time T covariance matrix, Cov(ZT).  If this matrix converges,
then the equilibrium is LPS; if some component of Cov(ZT) explodes, the
equilibrium is LPU.

Theorem 6.1 characterizes the local probabilistic stability of interior equilibria.
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Theorem 6.1:  Let x* be a rest point of (D), and suppose that a* has full rank.  Then  i f

all eigenvalues of D* have strictly negative real part, x* is LPS; otherwise, it is LPU.

The condition that the diffusion coefficient a* has full rank is a requirement that
random motions are possible in all directions from x*.  As long as x* is in the
interior of ∆, most decision procedures reflecting inexact information will generate
such random variations.  Of course, in any particular example it is easy to check the
full rank condition directly.23

Theorem 6.1 provides a simple way of checking whether an interior equilibrium
is LPS.  Consider the equilibrium x* = (  

1
2 ,   

1
2 ) of the examples from Section 2.  In each

case, the diffusion coefficient is the full rank matrix a* =   
1
2
I, so we can apply the

theorem.  In the matching pennies game, the eigenvalues of the derivative D* are
–1 ±  i, so x* is LPS.  In the coordination game, the eigenvalues of D* are   

1
2  and   −

5
2 ,

so x* is LPU.
The stochastic differential equation (S) which defines the local limit process is

the linear equation (L) perturbed by random shocks.  If equation (S) is a contraction
(i.e., if all eigenvalues of D* have negative real part), then whenever the process Zt

wanders far from the origin, the deterministic part of equation (S) forces the process
back, guaranteeing stability.  On the other hand, if D* has a positive eigenvalue,
then solutions to the linear equation (L) move away from the origin at an
exponential rate from a most initial conditions; solutions to the stochastic equation
(S) explode from all initial conditions, including the origin.

More formally, whether x* is LPS turns on whether limT→∞Cov(ZT) exists.  Since
Zt is a linear diffusion, it can be shown that

Cov(ZT) = 
    

e a e dtD t D tT * ( *)'*
0∫ .

Recall that     e
D t*  is the matrix solution to equation (L).  If all eigenvalues of D* have

negative real part, all solutions to (L) approach the origin exponentially quickly.
Hence, the norm of     e

D t*  falls at an exponential rate, and limT→∞Cov(ZT) exists.
Indeed, whenever x* is LPS, Cov(ZT) converges to its limit at an exponential rate, so

                                                
23 If a* does not have full rank, then the condition that all eigenvalues of D* be negative is sufficient
but not necessary for x* to be locally probabilistically stable.  Essentially, the necessary condition
requires negative eigenvalues for all eigenvectors corresponding to directions in which the population is
able to move.
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the limit distribution is not only describes behavior after a long time has passed, but
in fact describes behavior almost immediately.
  If some eigenvalue of D* has positive real part, some component of     e

D t*  increases
exponentially; hence, Cov(ZT) diverges, and the equilibrium is LPU.  The
equilibrium is also LPU when the eigenvalue of D* with the largest real part has real
part zero.  In contrast, in the latter case the dynamic stability of x* as an equilibrium
of the deterministic system (D) is indeterminate.  At interior equilibria, this is the
only way that the two predictions can differ.24

 Why does this difference arise?  When analyzing the dynamic stability of an
equilibrium of the deterministic system (D), that D* has an eigenvalue with real part
zero tells us that the linear system (L) is not a good enough approximation to form
the basis for stability analysis.  This is the source of the indeterminacy.  In contrast,
when analyzing local probabilistic stability, eigenvalues with real part zero
correspond to directions in which movements towards or away from the
equilibrium are driven entirely by noise.  For example, when D* = 0, the local limit
process is a Brownian motion:  Zt = σ*Bt.  Since Cov(σ*BT) = a*T, the equilibrium
must be locally probabilistically unstable.

7.  Boundary Equilibria

7.1  Mutations and Boundary Equilibria

 It is often of interest to study decision rules which allow for occasional arbitrary
behavior, commonly called mutation .  Mutation ensures that a strategy which is
currently unused can always be chosen at the next revision opportunity.  It follows
that if rates of mutation are bounded away from zero, mutation will appear in the
law of motion f as a force leading away from the boundary.  This guarantees that all
equilibria will lie in the interior of the state space, and hence that Theorem 6.1 is
enough to characterize LPS.
 On the other hand, in settings where arbitrary behavior is very rare, the right
deterministic approximation may be one which admits boundary equilibria.
Mutations and boundary equilibria can coexist if we treat the mutation rate the same

                                                
24 At first glance, cases in which the real part of some eigenvalue is zero may seem quite rare.  But as
Binmore and Samuelson (1999) note, this must be true of any rest point which lies in a non-trivial
component of rest points; such components are common features of dynamics for extensive form games.
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way we treat the population size:  as a parameter whose allowable values depend on
the precision we demand in our approximations.
 As an example, suppose that players who receive revision opportunities usually
follow the proportional imitation rule from Section 3.4.2, but occasionally select a
strategy at random.  The resulting decision procedure is

d(i, j, x) = (1 – η)
    
x E x xj j iβ π π( ) ( )−( )[ ]+

 + 
  

η
n

.

When there are no mutations (η = 0), then as we saw earlier, the proportional
imitation rule generates the replicator dynamics as its law of motion.  This is still
true if mutations are possible but sufficiently rare:  we can still approximate the
stochastic evolutionary process   Xt

N  by solutions to the replicator dynamics over any

finite time span and with any degree of precision, so long as the population size is
large enough and the mutation rate is small enough.
  To establish this formally, we let the mutation rates   η

N  associated with the
processes   Xt

N  approach zero as N grows large.  The resulting decision procedures   d
N

converge uniformly to the unperturbed proportional imitation rule, and so satisfy
Assumption (A1).  Hence, we may apply Theorem 4.1:  for pairs (N,   η

N ) far enough
along the sequence, the deterministic approximation holds.  The same logic holds
for the diffusion approximation, but to ensure that Assumption (A3) is satisfied we
must impose a tighter restrictions on the set of parameter pairs (N,   η

N ) we may
consider.  These points will be illustrated in an example below.25

7.2  Local Probabilistic Stability of Boundary Equilibria

 Since many commonly studied dynamics admit boundary equilibria, it is
important to be able to check which boundary equilibria are LPS.  We therefore offer
a simple characterization.  Since it is based on the diffusion approximation from
Theorem 5.1, this characterization of LPS is valid in the presence of mutations, so
long as we consider parameter pairs (N,   η

N ) which satisfy assumption (A3).  
The following lemma is basic to understanding boundary behavior.

                                                
25  Our formal technique for allowing arbitrarily small mutation rates is to allow them to vary with
the population size.  In doing so, we are not suggesting that players in larger populations are more
likely to behave arbitrarily than those in smaller ones.  Rather, this is simply a way of specifying the
combinations of population sizes and mutation rates for which our approximation results hold.
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Lemma 7.1:  If x* is a rest point of (D) with xi* = 0, then aij* = aji* = 0 for all j.

 Proof:  Since x* is a rest point,

fi(x*) = 
    

x d j i x xj
j S

i
p

* ( , , *) *
∈
∑









 −  = 0.

We have assumed that xi* = 0; therefore, xj*d(j, i, x*) = 0 for all j.  Since aij* = aji* =

    − +( )x d i j x x d j i xi j* ( , , *) * ( , , *)  when i ≠ j and aii* = 
    

x d i l x x d l i xi l
l i

* ( , , *) * ( , , *)+( )
≠
∑ , the

lemma follows.  ■

 If x* is a rest point at which strategy i is not used, then when the population is at
state x*, the expected increment in the number of players choosing strategy i must be
zero.  But the number choosing this strategy cannot fall, and so cannot rise either.
Hence, near x*, the probability of any change in the use of strategy i must be close to
zero.
 Lemma 7.1 implies that the diffusion coefficient of a boundary equilibrium
cannot have full rank.  Therefore, Theorem 6.1 cannot be applied to test for local
probabilistic stability.  The lemma also helps us establish an important property of
the local limit process.

Proposition 7.2:  If x* is a rest point with xi* = 0, then its local limit process Zt satisfies

(ZT)i ≡ 0 for all T ≥ 0.

Suppose that a large population begins play near a rest point x* at which strategy i is
unused.  Lemma 7.1 tells us that the probability that a player switches to or from
strategy i during the next revision opportunity is very small.  Proposition 7.2
extends this observation over time:  even after a long interval has passed, the
probability that strategy i is adopted by a significant fraction of the population
remains negligible.
 If x* corresponds to a pure strategy profile, Proposition 7.2 implies that very little
variation in the use of any strategy is observed.  Consequently, x* must be locally
probabilistically stable.
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Corollary 7.3:  If x* is rest point which corresponds to a pure strategy profile, the local

limit process is the null process:  ZT ≡ 0 for all T ≥ 0.  Therefore, x* is LPS.

Even if the deterministic dynamics lead away from x*, these dynamics move very
slowly at points very close to x*.  Since there is little random variation in behavior,
the population never wanders far enough from the equilibrium for the
deterministic dynamics to draw the population away.
 Corollary 7.3 implies that Cov(  XT

N ) ≈     
1
N TCov Z( ) = 0.  Thus, the random variations

in behavior observed at interior rest points are absent at rest points on the vertices.
Even when players' information is inexact, their behavior near monomorphic rest
points is almost completely noise free.

More generally, Proposition 7.2 says that when a population begins play near a
boundary equilibrium, strategies outside the support of the equilibrium are never
adopted to any significant extent.  This suggests that a complete characterization of
local probabilistic stability may be possible if we ignore directions of motion
corresponding to unused strategies:  that is, directions heading away from the
boundary.

To prepare for such a result, we recall our convention of only explicitly
representing n  – 1 out of n  strategies in each population, so that population states
are elements of     R

k  =       R
r n( )−1  rather than     R

rn.  To this we add a new convention:  that
each strategy which we omit is in the support of the equilibrium.  Let     ̂S ⊂ S be the
set of strategies which are represented explicitly, and let     Ŝu  ⊂     ̂S be the set of
strategies which are unused at x*:      Ŝu  = {i ∈      ̂S:  xi* = 0}.  Denote the cardinality of     ̂S –

    Ŝu  by κ.  By our convention, all unused strategies in S are represented explicitly in     ̂S,
and are hence in     Ŝu .

We include the unused strategies at first so that we can be certain to ignore them
in our analysis.  We let r* ∈    R

κ κ×  be the reduced diffusion coefficient, which is
obtained by eliminating all rows and columns of a* corresponding to unused
strategies.  By Lemma 7.1, these rows and columns consist entirely of zeros.
Similarly, let R* ∈    R

κ κ×  be the reduced derivative of f at x*:  this is the derivative
matrix D* = Df(x*) with the rows and columns for all i ∈      Ŝu  deleted.

 Our new stability result generalizes Theorem 6.1, showing that the diffusion
coefficient a* and derivative D* in the statement of that theorem can be replaced by
their reduced counterparts.
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Theorem 7.4:  Let x* be a rest point, and suppose that r* has full rank.  Then  if all

eigenvalues of R* have strictly negative real part, x* is LPS; otherwise, it is LPU.

Theorem 7.4 provides a simple, general method for determining local
probabilistic stability.  We illustrate this through an example.  Consider a single
population of players who are repeatedly randomly matched to play the symmetric
game in Figure 5.  In this game, strategy U is dominant; if this strategy is eliminated,
a Hawk-Dove game remains.  When a player receives a revision opportunity, he
usually follows a simple imitative decision procedure, but occasionally chooses a
strategy at random.  With probability (1 –   η

N ), the player compares the payoff he
received in his previous match to the payoff a randomly chosen opponent received
in her previous match.  If the opponent received a higher payoff, the player switches
to her strategy; otherwise, he stays with his original strategy.  With the remaining
probability of   η

N , the player chooses a strategy arbitrarily.

Let x = (u, m, d) represent the population state.  The decision procedure above is
described by26

  d
N (U, M) =     

η N

3 ,   d
N (U, D) =     

η N

3 ;

   d
N (M, U) = (1 –   η

N )(u + m)u +     
η N

3 ,   d
N (M, D) = (1 –   η

N ) (u + m)dm +     
η N

3 ;

   d
N (D, U) = (1 –   η

N ) (u + d)u +     
η N

3 ,   d
N (D, M) = (1 –   η

N ) (u + d)md +     
η N

3 .

                                                
26 For simplicity, we assume that players can be randomly matched against themselves.  Assuming
that this does not occur would not alter our results.

Figure 5:  A  symmetric game
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 In the absence of mutations, this decision procedure is equivalent to the
proportional imitation rule with β = 1.  Therefore, if {  η

N } is a vanishing sequence,
the law of motion induced by the decision procedures   d

N  is the replicator dynamics:

f(x) = 

    

u x

m d x

d m x

( ( ))
( ( ))

( ( ))

1 −
−
−















Π
Π
Π

.

(Here,     Π ( )x  = u  + 2md  represents the average payoffs in the population when the
current state is x.)
 Theorem 4.1 links these dynamics to the evolutionary process with mutations.  If
we fix any time span T and degree of precision ε, then for any parameter pair (N,   η

N )
far enough along the sequence, the corresponding process   Xt

N  stays within ε of the

solution to the replicator dynamics through time T with probability at least 1 – ε.
 Some solution trajectories of the replicator dynamics are sketched in Figure 6.
The unique symmetric Nash equilibrium (u, m, d) = (1, 0, 0) is an equilibrium under

Figure 6:  Evolution in a symmetric game

these dynamics, and solutions from all interior initial conditions lead here.  The
states (0,   

1
2 ,   

1
2 ), (0, 1, 0), and (0, 0, 1) are also equilibria. Now suppose we choose the

  η
N  to vanish at rate o(    

1
N

), thereby focusing on parameter pairs (N,   η
N ) in which

mutation rates are relatively small.  If we do this, Assumption (A3) is satisfied, so
we can use the diffusion approximation to determine which equilibria are LPS.

U

M D
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Leaving off the redundant component representing strategy D, we let   Xt
N  = (  Ut

N ,

  Mt
N ) represent the proportions of players choosing strategies U and M, and consider

the local behavior process   Zt
N  ≡   N X xt

N −( )*  for the equilibrium x* = (0,   
1
2 ,   

1
2 ).

Applying Theorem 5.1, we find that this process is approximated by the local limit
process Zt, which is the solution to

 dZt = 
  

1
2

1
2

1
2

0
− −







 Zt dt + 
  

0 0
0 1

8







dBt

starting from Z0 = 0.  The derivative matrix D* has eigenvalues –  
1
2  and   

1
2 , suggesting

that x* might not be stable.  However, since strategy U is unused, we remove the
row and column of D* corresponding to this strategy, obtaining the reduced
derivative R* = –  

1
2 .  Since R* is negative, x* is LPS.

 Solving the stochastic differential equation, we find that the local limit process Zt

is a zero-mean Gaussian process whose covariance matrix at time T is

 Cov(ZT) = 
    

0 0
0 11

8 ( )−




−e T  → 

  

0 0
0 1

8







.

The strategy U component of this process is degenerate at zero, while the strategy M
component converges in distribution to a normal distribution with mean zero and
variance   

1
8 .

   We can use this description of the local limit process to make explicit statements
about behavior in finite populations under positive mutation rates.  Fix a time T ≥
0, a constant ε > 0 and a disk A  ⊂     R

2 .  Then for all parameter pairs (N,   η
N ) far

enough along the sequence,     P Z A P Z AT
N

T( ) ( )∈ − ∈  < ε.27  Therefore, even in the

presence of mutations, the local behavior process   Zt
N  and the original behavior

process   Xt
N  are described by fixed distributions about the equilibrium.

If the population instead begins near any of the pure equilibria, Corollary 7.3 tells
us that the local behavior process is approximated by the null process:  Zt ≡ 0.  Thus,
despite what Figure 6 seems to suggest, all four rest points are LPS.28

                                                
27 This follows from Theorem 5.1 and the Portmanteau Theorem (Durrett (1996, Theorem 8.1.1)).  The
result holds for any set A ⊂  R2 such that the set {m ∈  R: (0, m) ∈  δA} has Lebesgue measure zero.
Analogous probability statements can also be made for the original behavior process   Xt

N .
28  It is important to remember that local probabilistic stability is used to analyze game/decision
procedure pairs.  Decision procedures based on imitation, like the one considered in this example, often
generate boundary rest points which are not near Nash equilibria; our analysis suggests that such rest
points may be more stable than expected.  If our intended application led us to consider a different
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8.  Interpreting Local Probabilistic Stability

To this point, we have provided a definition of local probabilistic stability i n
terms of the local behavior process   Zt

N , as well as a characterization of this concept

in terms of the derivative matrix of the deterministic law of motion (D).  We now
consider the following question:  what does this notion of stability tell us about
whether the original behavior process   Xt

N  will leave the vicinity of an equilibrium?

We first address this question intuitively and then discuss one possible
formalization.
 To begin, recall the deterministic approximation results from Section 4.
Theorem 4.1 tells us that if we fix the time horizon T in advance, then when the
population size N is large enough, the behavior process   Xt

N  will remain close to an
appropriate solution to (D) through time T.  When the initial condition     X

N
0  is an

equilibrium x*, Corollary 4.2 shows that   Xt
N  does not move away from x* over this

time horizon, regardless of the stability of x* under (D).
Now suppose the process   Xt

N  begins at an equilibrium x* which is unstable
under (D).  If   Xt

N  were able to take a "first step" away from x*, leaving the small

neighborhood of x* where expected motion is extremely slow, then stronger
deterministic forces would take over, enabling   Xt

N  to leave the vicinity of x*.  Since

x* is a rest point of (D), this first step from x* must occur through the combined
action of random fluctuations and of the weak deterministic forces existing very
close to x*.  It is precisely this combination of forces which is captured by the local
behavior process   Zt

N  and by local probabilistic stability.

To put this differently (though still somewhat loosely), the deterministic
approximation (D) captures stability of equilibrium once   Xt

N  is outside a small
neighborhood of x*, while the local behavior process   Zt

N  captures stability within

this small neighborhood.  The only possible discrepancy between these analyses
occurs when an equilibrium is unstable in the former sense but stable in the latter.
In this case, we would expect the process   Xt

N  to move away from x* if a "first step"

away from the equilibrium took place, but we do not expect this first step to occur.
To formalize these ideas, one would need to show that local probabilistic stability

was relevant to answering the following question:  when the population size N  and

                                                                                                                                                            
decision procedure, this would likely yield different deterministic dynamics, and hence different LPS
rest points.
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the time horizon T are large, will   XT
N  lie outside the vicinity of x*?  If we perform

this analysis by fixing T and taking N  to infinity (a "finite horizon" analysis),
Corollary 4.2 tells us that escape will never occur.  On the other hand, if we fix N

and take T to infinity (an "infinite horizon" analysis), escape is guaranteed to occur:
indeed,   Xt

N  will visit all states in some recurrent class   R
N N⊂ ∆  infinitely often.29

These two approaches can be viewed as polar attempts to characterize   XT
N  when

both N  and T are large.  Neither provides a discriminating local stability analysis
when the process   Xt

N  is initially very close to equilibrium.  To probe the middle
ground, one can look at the behavior of   XT

N  while taking N  and T to infinity

simultaneously.  More precisely, one can choose a sequence of pairs (N, T); for each
such pair, one can examine the behavior of the population size N  process through
time T.  A local stability analysis would address whether   XT

N  is outside the vicinity

of x* for pairs (N, T) far enough along the chosen sequence.30  The informal
arguments above suggest the possibility of four growth rate regimes:  as the growth
rate of N relative to T is reduced (i.e., as one moves from the finite horizon analysis
towards the infinite horizon analysis), one might pass through regimes (i) where
escape occurs for no equilibria; (ii) where escape only occurs for locally
probabilistically unstable equilibria; (iii) where escape occurs for these equilibria as
well as for locally probabilistically stable equilibria which are deterministically
unstable; (iv) where escape occurs for all equilibria.  The analysis of cases with
simultaneous limits is an interesting topic for future research.

9.  Conclusion

We study stochastic evolution under inexact information, focusing special
attention on equilibrium play.  We establish that finite horizon behavior away from
equilibria can be described by a differential equation, and that finite horizon
behavior near equilibria can be described by a diffusion.  We define a new notion of
evolutionary stability which explicitly accounts for the random variations i n
behavior created by inexact information, and use the diffusion approximation to
establish a simple characterization of stability.  While at interior equilibria, local

                                                
29  It is well known that this recurrence property makes it possible to prove equilibrium selection
results in stochastic evolutionary models – see the following section for further discussion.
30  Sandholm and Pauzner (1998) perform an analysis in which N and T simultaneously diverge in the
context of the Kandori, Mailath, and Rob (1993) model.  However, in their analysis (unlike in the
analysis proposed here), only a single stochastic process is analyzed, and the population size in this
process grows as time elapses.
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probabilistic stability accords closely with standard deterministic notions of stability,
it is significantly less demanding at equilibria which lie on the boundary.

It is useful to contrast the model studied here with models of stochastic fictitious
play (Fudenberg and Kreps (1993), Kaniovski and Young (1995), Benaïm and Hirsch
(1999), Hofbauer and Sandholm (2002)).  These models consider small groups of
players who repeatedly play a normal form game.  Players choose best responses to
their recollections of the history of play.  Suppose that payoffs are noisy, or that
players' recollections of the history of play are incomplete.  Then in certain classes of
games, both the time average of past play and the players' choice probabilities
converge with probability one over the infinite horizon; limit values approximate
Nash equilibria of the underlying game.

In stochastic fictitious play models, the state variable represents the time average
of past play.  Consequently, the increments in the state variable become vanishingly
small as time passes, making infinite horizon convergence results possible.  Since i n
our model the state variable represents current behavior, increments are of fixed
size.  For this reason, the behavior process in our model need not converge over the
infinite horizon.  Instead, the possible limiting time averages of play can be
described by stationary distributions, one for each recurrent class of the behavior
process.

Most work on stochastic evolution in games has focused on infinite horizon
behavior, with results stated in terms of stationary distributions.  For example,
Foster and Young (1990), Kandori, Mailath, and Rob (1993), and Young (1993) study
stochastically stable equilibria, which are equilibria which receive all weight in the
stationary distribution as the rate of mutation vanishes.  These models offer unique
predictions of infinite horizon behavior, even in games which exhibit multiple
strict equilibria.  
 In the current context, Benaïm and Weibull (2003) have recently shown that
when the population size is large, nearly all mass in any stationary distribution
must lie near the minimal center of attraction of the deterministic law of motion.
They also use techniques from large deviation theory to show that under certain
general conditions, the limiting stationary distribution is unique and places all mass
on a single component of this set.  Applying this approach to obtain equilibrium
selection results is an important topic for future research.
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Appendix

We begin by stating the convergence results of Kurtz (1970) and Stroock and
Varadhan (1979) used to prove Theorems 4.1 and 5.1; along the way we prove
Theorem 4.1.  Since both convergence results also have discrete time formulations,
Theorems 4.1 and 5.1 can also be proved for discrete time versions of our model; see
footnote 10.
 For each N ∈  N, let     { }Yt

N
t≥0 be a pure jump Markov process which takes values i n

some countable set VN ⊂     R
m .  Each process has a Poisson rate λN which is

independent of the current state.  Let QN(y, y') be the probability that when a jump
occurs from state y it lands at state y'; we allow QN(y, y) to be strictly positive.  For
each y ∈  VN, define

    b yN ( ) = 
    

( ) ( , )′ − ′
′∈
∑ y y Q y yN N

y V N

λ ;

    d yN
ε ( ) = 

    
λ

ε

N N

y y y

Q y y( , )
:

′
′− >
∑

 We first present a version of a result on the convergence of pure jump Markov
processes to deterministic flows due to Kurtz (1970, Theorem 2.11)

Theorem A.1:  Suppose that each VN is a subset of some bounded set V  ⊂     R
m , a n d

that there is a Lipschitz continuous function b: V  →     R
m  and a constant k  ∈  R such

that

(1.1)
    
lim sup ( ) ( )
N y V

N

N

b y b y
→∞ ∈

−  = 0;

(1.2)
    
lim sup ( )
N y V

N

N
k

N
d y

→∞ ∈
 = 0.

Let the initial conditions     Y
N

0  =     y
N
0  converge to y0 ∈  S.  Then for all T < ∞  and ε > 0,

 
    
lim sup

[ , ]N t T
t
N

tP Y y
→∞ ∈

− <



0

ε  = 1,

where {yt}t≥0 is the solution to     ̇y  = b(y) from initial condition y0.

Condition (1.1) requires that the expected increments per time unit converge
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uniformly to some limit function.  Condition (1.2) demands that the probability of
jumps bigger than order     

1
N  vanishes as N  approaches infinity.  Under these

conditions, the finite horizon behavior of the pure jump Markov processes can be
arbitrarily well approximated by the solution to a differential equation.

Proof of Theorem 4.1:
 We apply Theorem A.1 to the process   Xt

N .  In this case, bN(x) ≡   f
N (x) and b(x) ≡

f(x), so condition (1.1) follows from Assumption (A1).  The Lipschitz continuity of b
follows from Assumption (A2).  Finally, condition (1.2) follows immediately from
the fact that at most one player changes strategies during each revision
opportunity.  ■

 We now present a result on the convergence of Markov processes to diffusions
due to Stroock and Varadhan (1979).  Our presentation follows Durrett (1996).  In
particular, the following result follows from Theorems 8.7.1, 5.2.2, 5.4.1, and 5.4.5
and Lemma 8.8.2 of Durrett (1996).  For all i and j we define

    c yij
N ( ) = 

    
( )( ) ( , )′ − ′ − ′

′∈
∑ y y y y Q y yi i j j

N N

y V N

λ ;

    φ
N y( ) = 

    
′ − ′

′∈
∑ y y Q y yN N

y V N

4 λ ( , ).

Theorem A.2: Suppose there exist Lipschitz continuous functions b:     R
m  →     R

m , c:     R
m

→     R
m m× , and σ:     R

m  →     R
m m×  such that c ≡ σσ' and such that for all R < ∞ ,

(2.1)
    
lim sup ( ) ( )
N y R

Nb y b y
→∞ <

−  = 0;

(2.2)
    
lim sup ( ) ( )
N y R

Nc y c y
→∞ <

−  = 0;

(2.3)
    
lim sup ( )
N y R

N y
→∞ <

φ  = 0;

where the suprema are taken only over y ∈  VN.  Then if the initial conditions     Y
N

0  =

    y
N
0  approach y0 ∈      R

m , then for each  T < ∞,   Yt
N  converges weakly in D([0, T],     R

m ) t o

Yt, the solution to

dYt = b(Yt)dt + σ(Yt)dBt
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from initial condition Y 0 = y0.

 Conditions (2.1) and (2.2) require that the infinitesimal means and covariances of
the pure jump Markov processes converge uniformly to some Lipschitz continuous
functions.  The fourth moment condition (2.3) bounds the probability of "large"
jumps.  If these conditions hold, then for large N, the finite horizon behavior of the
pure jump Markov processes can be approximated arbitrarily well by a diffusion.

Proof of Theorem 5.1:
We apply Theorem A.2 to the local behavior process   Zt

N  ≡   N X xt
N −( )* ,

establishing that the functions bN(z) and cN(z) converge to b(z) = D*z and a(z) = a* ,
respectively.  To start, observe that since (    x

N
0  – x*) ∈  o(    

1
N

), the initial conditions     Z
N
0

=     z
N
0  =   N (    x

N
0  – x*) converge to the origin.  To establish the result, we need to show

that conditions (2.1), (2.2), and (2.3) hold.  Since at most one player can change
strategies at any switching opportunity, condition (2.3) is easily verified.  To establish
condition (2.1), recall that the function bN(x) associated with the process   Xt

N  is just

  f
N (x).  Thus, since   Zt

N  ≡   N X xt
N −( )* , we find that

bN(z) = 
    

N f xN z
N

* +( ).

Since f(x*) = 0, the mean value theorem tells us that for all N  and all z ∈      R
k  there

exists a λ(z) ∈  [0, 1] such that

    
f x z

N
* +( )  = 

    
Df x z z

N
z
N

* ( )+( )λ .

Fix an R < ∞.  Since assumption (A2) implies that   f
N : ∆ →     R

k  converges to f at rate
o(    

1
N

), we find that

    
lim sup ( ) *
N z R

Nb z D z
→∞ <

−

 = 
    
lim sup * ( *)
N z R

N z
N

N f x Df x z
→∞ <

+( ) −

≤ 
    
lim sup * * * ( *)
N z R

N z
N

z
N

z
N

N f x f x N f x Df x z
→∞ <

+( ) − +( )( ) + +( ) −





= 
    
lim sup * * * ( ) ( *)
N z R

N z
N

z
N

z
N

N f x f x Df x z z Df x z
→∞ <

+( ) − +( )( ) + +( ) −



λ
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= 0.

This establishes condition (2.1).
To verify condition (2.2), observe that the function cN(x) associated with the

process   Xt
N  is rNCN(x), where the function CN(·) is defined in the text.  Thus, the

function cN(z) corresponding to   Zt
N  ≡   N X xt

N −( )*  is given by

cN(z) = 
    
rN C xN z

N
2 * +( ).

 Define aN: ∆ →     R
k k×  by aN(x) = rN2C(x), so that cN(z) = aN(x* +   

z
N

).  By assumption

(A3), the functions aN converge uniformly to the function a defined in the text.
Furthermore, a is continuous by assumption (A4), and a(x*) = a* by definition.
Hence,

    
lim sup ( ) *
N z R

Nc z a
→∞ <

−

≤ 
    
lim sup * * * ( *)
N z R

N z
N

z
N

z
N

a x a x a x a x
→∞ <

+( ) − +( ) + +( ) −( )
= 0.

This establishes condition (2.2).
It is clear from its definition that the matrix a* ∈     R

k k×  is symmetric; moreover,

Lemma A.3:  a* ∈     R
k k×  is positive semidefinite.

Proof:  It is enough to establish this for the representation of a* ∈     R
rn rn×  in the

original coordinates.  Let mij = mji = xi* d(i, j, x*) + xj* d(j, i, x*).  Then for z ∈     R
rn,

z 'a*z  = 
    

z z ai j ij
ji

*∑∑  = 
    

z mi ij
j ii

2

≠
∑∑  –

  
z z mi j ij

j ii ≠
∑∑  = 

    
( )z z z mi i j ij

j ii

2 −
≠

∑∑
= 

    
( )z z z z mi j i j ij

j ii

2 2

1

2+ −
>>

∑∑  = 
    

( )z z mi j ij
j ii

−
>>

∑∑ 2

1

 ≥ 0.  ❏

 By Lemma A.3, there exists a matrix σ* ∈      R
k k×  such that σ*(σ*)' = a*.  Therefore,

Theorem A.2 implies that   Zt
N  converges weakly to the solution to

(S) dZt = D*Zt dt + σ*dBt
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with initial condition Z0 ≡ 0.  ■

Proof of Theorem 6.1:
By Theorem 5.1, the process   Zt

N  converge weakly to the process Zt in D([0, T],     R
k )

for all T < ∞.  Hence, the random variable   ZT
N  converges in distribution to ZT for

each T < ∞.  To determine the stability of x* it is enough to consider whether ZT

converges in distribution as T approaches infinity.
 Since Zt is a mean zero Gaussian process, each random variable ZT is
multivariate normal with mean zero.  Thus, if the covariance matrix Cov(ZT)
converges as T approaches infinity, x* is stable; if some diagonal component of
Cov(ZT) heads to infinity, then x* is unstable.  Equation (5.6.14)' of Karatzas and
Shreve (1991) tells us that

Cov(ZT) = 
    
e e a e dt eD T D t D tT D T* – * –( *)' ( *)'*

0∫ .

Bringing all terms under the integral sign and performing the substitution t = T – s

yields

Cov(ZT) = 
    

e a e dtD t D tT * ( *)'*
0∫ .

 Since a* is symmetric, positive semidefinite, and has full rank, it is positive
definite, so there exists a full rank matrix A  ∈      R

k k×  and a diagonal matrix Λ ∈      R
k k×

with strictly positive diagonal entries such that a* = AΛA '. Thus, letting Mt =     e AD t* ,
we see that

Cov(ZT) = 
    

M M dtt tT
Λ( )'

0∫

We can therefore compute each element of Cov(ZT) as follows:

(Cov(ZT))jk = 
    

M M dtjl
t

lm km
t

ml

T
Λ∑∑∫0

= 
    

M M dtjl
t

kl
t

lll

T
Λ∑∫0

.

 Since     e
D t*  is the matrix solution to the linear system (L), it follows from
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Proposition 4.3.4 and Theorem 4.3.5 of Robinson (1995) that each component of     e
D t*

is a linear combination of terms of the form     t e tk tα βcos  and of the form     t e tk tα βsin ,
where α  + iβ is an eigenvalue of D* with multiplicity greater than k.  Conversely, if
α  + iβ is an eigenvalue of D*, terms of both forms above with k  = 0 must appear i n
some component of     e

D t* .  Since A has full rank, these statements are also true of the
matrix   M

t .
If α  < 0 for all eigenvalues α  + iβ of D*, then it is clear from the foregoing that

the absolute value of each integrand   M Mjl
t

kl
t

lll
Λ∑  decreases exponentially in t.

Hence, each integrand is integrable, so limT→∞ Cov(ZT) exists and x* is stable.
 On the other hand, suppose that there is an eigenvalue α  + iβ of D* with α  ≥ 0.
Then by the discussion above, there must be a pair (j, k) such that   Mjk

t  contains a

term of the form     c e ttα βcos  with c ≠ 0.  Therefore, the integrand of the jth variance

term, (Cov(ZT))jj, is

     ( )Mjl
t

lll

2 Λ∑  ≥     c e tt
kk

2 2 2α β(cos ) Λ .

Since α  ≥ 0, this expression is not integrable.  Thus, (Cov(ZT))jj diverges, and x* is
unstable.  This completes the proof of the theorem.  ■

Proof of Proposition 7.2:
Recall that     ̂S is the set of the k  strategies which are represented

explicitly as coordinates in Rk, which includes all strategies which are unused at x*.
The set of unused strategies is denoted     Ŝu :  that is,     Ŝu  = {i ∈      ̂S: xi* = 0}.  We proceed

with three lemmas.

Lemma A.4:  If i ∈      Ŝu , σij* = 0.

 Proof:  Lemma 7.1 tells us that aii* = 0.  Since aii* = 
    

( *)σ ijj

2∑  by definition, the

result follows. ❏

Lemma A.5:  If i ∈      Ŝu  and j ∈      ̂S –     Ŝu , then Dij* = 
  

∂
∂

f
x

i

j
(x*) = 0.

 Proof:  Suppose that 
  

∂
∂

f
x

i

j
(x*) ≠ 0.  Then since fi(x*) = 0, and since xj* ∈  (0, 1) by our

naming convention, there is a real number k such that x* + kι j ∈  ∆ and fi(x* + kι j) <
0.  But since (x* + kι j)i = 0, this contradicts that ∆ is forward invariant under the flow
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defined by f.  ❏

Lemma A.6: If i ∈      Ŝu  and j ∈      ̂S –     Ŝu , then     ( )*eD t
ij  = 0 for all t ≥ 0.

Proof:  Follows from Lemma A.5 and the fact that     e
D t*  = I +     

( * )
!

D t
kk

k

=

∞∑ 1
.  ❏

Fix i ∈     Ŝu .  Lemmas A.4 and A.6 imply that     ( ) **eD t
ik kjσ  = 0 for all j, k  ∈      ̂S.  Thus,

    ( *)*eD t
ijσ  =     ( ) **eD t

ik kjk
σ∑  = 0 for all j ∈      ̂S.  That is, the ith row of     e

D t* *σ  is the zero

vector for all t ≥ 0.  Since Zt ≡ 
    

e dBD t s
s

t *( ) *−∫ σ
0

, we conclude that for all t ≥ 0,

(Zt)i = 
    

( *) ( )*( )e d BD t s
ij s j

t

j

−∫∑ σ
0

 = 0.  ■

Proof of Theorem 7.4:
We begin with two definitions.  We say that A  ∈      R

k k×  is     Ŝu -null if Aij = Aji = 0
whenever i ∈      Ŝu ; we say that A  reduces to     ̃A  ∈    R

κ κ×  if     ̃A  is obtained from A  by
eliminating all rows and columns corresponding to i in     Ŝu .

 Since r* is symmetric, positive semidefinite, and has full rank, it is positive
definite.  Let ρ* be a square root of r*:  ρ*(ρ*)' = r*.  Lemma 7.1 says that a* is     Ŝu -null,
and it reduces to r* by definition; we can therefore choose σ* to be the     Ŝu -null matrix

which reduces to ρ*.  Moreover, Lemma A.5 and the definition of the exponential
matrix imply that     e

D t*  reduces to     e
R t*  for all t ≥ 0.  Therefore, Lemma A.6 implies

that     e
D t* σ* is     Ŝu -null and reduces to     e

R t* ρ*.

The covariance matrix of the random variable ZT is

 Cov(ZT) = 
    

e a e dtD t D tT * ( *)'*
0∫  = 

    
( *)( *)'* *e e dtD t D tT

σ σ
0∫ .

Thus, since     e
D t* σ* is     Ŝu -null and reduces to     e

R t* ρ*, Cov(ZT) is     Ŝu -null and reduces to

     Σ̃T  = 
    

e r e dtR t R tT * ( *)'*
0∫  = 

    
( *)( *)'* *e e dtR t R tT

ρ ρ
0∫ .

Therefore, since r* is symmetric and positive definite, the proof is completed by
applying the proof of Theorem 6.1 to     Σ̃T .  ■
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