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Abstract

We consider a discrete choice model in which the payoffs to each of an agent’s
n actions are subjected to the average of m i.i.d. shocks, and use tools from large
deviations theory to characterize the rate of decay of the probability of choosing a
given suboptimal action as m approaches infinity. Our model includes the multinomial
probit model of Myatt and Wallace (2003) as a special case. We show that their formula
describing the rates of decay of choice probabilities is incorrect, provide the correct
formula, and use our large deviations analysis to provide intuition for the difference
between the two.

1. Introduction

In a paper in this journal, Myatt and Wallace (2003) consider a model of stochastic
evolution based on the multinomial probit model. Agents in their model optimize after
their payoffs are subjected to i.i.d. normal shocks, and their analysis focuses on the agents’
long run behavior as the variance of the shocks is taken to zero. Compared to other
models of choice used in stochastic evolutionary game theory, the multinomial probit
model introduces a novel feature: the rate of decay in the probability of choosing a
suboptimal strategy is neither independent of payoffs, as in the mutation models of
Kandori et al. (1993) and Young (1993), nor dependent only on the gap between its payoff

and the optimal strategy’s payoff, as in the logit model of Blume (1993), but can depend on
the gaps between its payoff and those of all better performing strategies.1 The foundation
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of the analysis in Myatt and Wallace (2003) (henceforth MW) is their Proposition 1, which
characterizes the rates of decay of multinomial probit choice probabilities as the shock
variance approaches zero. Their characterization is based on a direct evaluation of the
limit of the relevant multiple integral.

In this note, we introduce a model of choice in which the payoffs to each of an agent’s
n actions are subject to the average of m i.i.d. shocks. One can interpret this average as
representing the net effect of many small payoff disturbances. Our model comes equipped
with a natural parameterization of the small noise limit: as the number of shocks grows
large, the probability of a suboptimal choice approaches zero. Using techniques from
large deviations theory, we derive basic monotonicity and convexity properties of the
rates of decay of choice probabilities, and we obtain a simple characterization of the rates
themselves.

Since the average of independent normal random variables is itself normally dis-
tributed, MW’s model of choice can be obtained as a special case of ours. Our analysis
reveals that MW’s formula for the rate of decay of multinomial probit choice probabilities
is incorrect. We derive the correct formula for the rate of decay, and we offer an intuitive
explanation for the difference between the formulas using the language of large deviations
theory.

2. Analysis

2.1 Large Deviations and Cramér’s Theorem

Let {Zl
}
∞

l=1 be an i.i.d. sequence of random vectors taking values in Rn. Each random
vector Zl is continuous with convex support, with a moment generating function that
exists in a neighborhood of the origin.

Let Z̄m = 1
m

∑m
l=1 Zl denote the mth sample mean of the sequence {Zl

}
∞

l=1. The weak law
of large numbers tells us that Z̄m converges in probability to its mean vector µ ≡ EZl

∈ Rn.
We now explain how methods from large deviations theory can be used to describe the
rate of decay of the probability that Z̄m lies in a given set U ⊂ Rn not containing µ.

The Cramér transform of Zl, denoted R : Rn
→ [0,∞], is defined by

R(z) = sup
λ∈Rn

(λ′z −Λ(λ)) , where Λ(λ) = logE exp(λ′Zl).

Put differently, R is the convex conjugate of the logarithmic moment generating function
of Zl. It can be shown that R is a convex, lower semicontinuous, nonnegative function that
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satisfies R(µ) = 0. Moreover, R is finite, strictly convex, and continuously differentiable
on the interior of the support of Zl, and is infinite outside the support of Zl.2

For simplicity, we henceforth assume that the components of the random vector Zl =

(Zl
1, . . . ,Z

l
n) are independent. It is easy to verify that in this case, the Cramér transform of

Zl is R(z) =
∑n

k=1 rk(zk), where rk : R → [0,∞] is the Cramér transform of component Zl
k,

and so satisfies rk(µk) = 0.

Example 2.1. Suppose that Zl has a multivariate normal distribution with mean vector 0
and covariance matrix σ2I. Then a direct calculation shows that the Cramér transform
of component Zl

k is rk(zk) = (zk)2

2σ2 , implying that the Cramér transform of Zl itself is R(z) =∑n
k=1

(zk)2

2σ2 . _

Example 2.2. Suppose that the components of Zl are independent, each with an exponential(λ)
distribution. Then rk(zk) = λzk−1− logλzk when zk > 0 and rk(zk) = ∞ otherwise, implying
that R(z) =

∑n
k=1

(
λzk − 1 − logλzk

)
when z ∈ Rn

++ and that R(z) = ∞ otherwise. _

Cramér’s Theorem states that

(1) − lim
m→∞

1
m logP(Z̄m

∈ U) = inf
z∈U

R(z)

whenever U ⊆ Rd is a continuity set of R, meaning that infz∈int(U) R(z) = infz∈cl(U) R(z).
Roughly speaking, equation (1) says that the probability that Z̄m takes a value in U is
of order exp(−m R(z∗)) (that is, that the exponential rate of decay of P(Z̄m

∈ U) is R(z∗)),
where z∗ minimizes the rate function R on the set U. If after a large number of trials
the realization of Z̄m is in U, it is overwhelmingly likely that this realization is one that
achieves as small a value of R as possible given this constraint; thus, the rate of decay is
determined by this smallest value.

2.2 Discrete Choice and Unlikelihood Functions

Consider an agent who must choose among a set of n actions. The payoff to action i is
the sum of the fixed base payoff πi and the random shock Z̄m

i , which is itself the average
of the m random variables {Zl

i}
m
l=1. The agent chooses the action that is optimal ex post.

2These properties of the Cramér transform and Cramér’s Theorem can be found in Section 2.2 of Dembo
and Zeitouni (1998). In particular, the finiteness, strict convexity, and smoothness of R on the interior of its
domain follow from the assumptions that Zl has convex support and that its moment generating function
exists—see Exercises 2.2.24 and 2.2.39 in Dembo and Zeitouni (1998).
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The probabilities with which the agent chooses each action are described by the choice
probability function Cm : Rn

→ Rn
+, defined by

Cm
i (π) = P

 n⋂
j=1

{
πi + Z̄m

i ≥ π j + Z̄m
j

} = P
(
Di(π + Z̄m) ≥ 0

)
.

In the last expression, Di
∈ Rn×n is the matrix 1e′i − I, where ei is the ith standard basis

vector and 1 the vector of ones, so that (Diπ) j = πi − π j.
Define the unlikelihood function Υ : Rn

→ Rn
+ by

(2) Υi(π) = − lim
m→∞

1
m log Cm

i (π).

In rough terms, equation (2) says that Cm
i (π) is of order exp(−mΥi(π)). Thus, Υi(π) is the

exponential rate of decay of the choice probability Cm
i (π) as m grows large.

By Cramér’s Theorem, the unlikelihood Υi(π) can be computed as

(3) Υi(π) = min
n∑

k=1

rk(zk) subject to Di(π + z) ≥ 0.

Proposition 2.3 uses (3) to derive some basic qualitative properties of the unlikelihood
function, and Proposition 2.4 provides a tractable characterization.

Proposition 2.3. (i) Υi(π) = 0 if and only if πi + µi ≥ π j + µ j for all j , i.
(ii) Υi(π) is nonincreasing in πi and is nondecreasing in π j for j , i.
(iii) Υi(π) is convex in π.

Proof. Parts (i) and (ii) are immediate. Since the objective function in program (3) is
convex, and since the function defining the program’s constraints is linear in the vector
(z, π) ∈ R2n, part (iii) follows from Mangasarian and Rosen (1964, Lemma 1). �

Proposition 2.4. Suppose that C1
i (π) > 0. Then the unlikelihood function Υ satisfies

(4) Υi(π) =

n∑
k=1

rk(z∗k ),

where

(5) z∗j = ζ j(z∗i ) ≡ (z∗i + πi − π j) ∧ µ j for j , i,
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and where z∗i is the unique solution to

(6) r′i(z
∗
i ) +

∑
j,i

r′j
(
ζ j(z∗i )

)
= 0,

Proof. In the Appendix.

In Proposition 2.4, the vector z∗ represents the realization of the average shock vector
Z̄m that is “least unlikely” among those that make action i optimal. To explain the form
that z∗ takes, it is convenient to focus on the case in which each component Zl

k of the
shock vector Zl has mean µk = 0.3 In this case, the proposition implies that if action i was
not optimal ex ante, then the shock z∗i must be positive, the shocks to worse-performing
actions must be zero, and the shock to each better-performing action j may be either
zero or negative, according to whether or not z∗i is large enough to compensate for the
base payoff deficit π j − πi. If it is not, the negative payoff shock z∗j ensures that i and j
have the same ex post payoff. Finally, the positive shock value z∗i is chosen so that the
marginal reduction in unlikelihood that would result from lowering z∗i is exactly offset
by the marginal increases in unlikelihood that would result from lowering the negative
values of z∗j by the same amount.

2.3 The Multinomial Probit Model

Because the average of m independent normal random variables is itself normally
distributed, our discrete choice model includes MW’s multinomial probit model as a
special case. Indeed, because the Cramér transform for a N(0, σ2) random variable is the
quadratic function rk(zk) = (zk)2

2σ2 , the vector z∗ from Proposition 2.4 takes a particularly
simple form: since r′k(zk) = zk

σ2 , the first-order condition (6) requires the components of the
shock vector z∗ to have arithmetic mean zero.

This fact and the considerations described after Proposition 2.4 lead to a simple char-
acterization of the unlikelihood function of the multinomial probit model. To present it
most concisely we introduce a new definition: for any set K ⊆ S of cardinality nK, we let

π̄K =
1

nK

∑
k∈K

πk

denote the average payoff of the actions in K.

3This is without loss of generality, since one can always eliminate a nonzero mean µk by replacing
component Zl

k with it with its demeaned version Zl
k − µk and replacing the base payoff πk with πk + µk.
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Proposition 2.5. Suppose that each random vector Zl
∼ N(0, σ2I) is multivariate normal with

i.i.d. components, so that the random vector Z̄m
∼ N(0, σ

2

m I) is multivariate normal with i.i.d. com-
ponents as well. Then the unlikelihood function Υ is given by

Υi(π) =

n∑
k=1

(z∗k )2

2σ2 , where(7)

z∗j =

π̄
J∪{i}
− π j if j ∈ J ∪ {i},

0 otherwise,
(8)

with the set J ⊂ S − {i} being uniquely determined by the requirement that

(9) j ∈ J if and only if π j > π̄
J∪{i}.

Thus J is the set of actions with z∗j < 0.

Proof. In the Appendix.

MW analyze the rates of decay of choice probabilities in the multinomial probit model
by directly evaluating the limit of the relevant multiple integral. Their Proposition 1 states
that these rates take the form described in equations (7) and (8) above, but with the set
J∪{i} being replaced by the set of all actions whose base payoffs are at least πi. In contrast,
Proposition 2.5 requires J to contain only those actions whose payoffs are sufficiently
larger than πi to make a positive contribution to the average payoff of actions in J ∪ {i}.
Among other things, this ensures that equation (8) does not assign any action other than
i a positive payoff shock.4

We illustrate these points through a simple example.

Example 2.6. Let n = 3, suppose that payoff shocks are i.i.d. standard normal, and consider
a base payoff vector of π = (π1, π2, π3) = (0, b, c) with b > 0. If c ≤ 0, so that only action 2’s
base payoff is higher than action 1’s, then both MW’s Proposition 1 and our Proposition
2.5 specify the unlikelihood of choosing action 1 as Υ1(π) = b2

4 , obtained from shock vector
z∗ = ( b

2 ,−
b
2 , 0). Our large deviations analysis shows that the least unlikely way to satisfy

the inequality Z̄m
1 − Z̄m

2 ≥ b is to have the shocks to actions 1 and 2 “share the burden
equally”.

Now suppose instead that c > 0, so that actions 2 and 3 both have higher base payoffs
than action 1. In this case, MW’s Proposition 1 suggests that the unlikelihood of choosing

4The error in MW’s analysis seems to occur on p. 297. It is claimed that the integral in equation (A.2)
vanishes because its integrand vanishes, but the requirements of the dominated convergence theorem are
not verified.
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action 1 is Υ1(π) = 1
3 (b2
− bc + c2), obtained from shock vector z = ( b+c

3 ,
c−2b

3 , b−2c
3 ). But if

c < b
2 , then the base payoff deficit of action 1 relative to action 3, π1 − π3 = −c, is already

fully addressed by the positive shock to action 1, z1 = b+c
3 > c. Indeed, the shock to action

3 specified above, z3 = b−2c
3 , is positive, which can only be counterproductive.

In fact, when c < b
2 , Proposition 2.5 tells us that the optimal choice of z is still z∗ =

( b
2 ,−

b
2 , 0), for an unlikelihood of Υ1(π) = b2

4 . More generally, Proposition 2.5 shows that
when b and c are positive,

z∗ =


( b

2 ,−
b
2 , 0) if c < b

2 ,

( b+c
3 ,

c−2b
3 , b−2c

3 ) if c ∈ [ b
2 , 2b],

( c
2 , 0,−

c
2 ) if c > 2b,

and Υ1(π) =


b2

4 if c < b
2 ,

b2
−bc+c2

3 if c ∈ [ b
2 , 2b],

c2

4 if c > 2b. _

2.4 Exponentially Distributed Payoff Shocks

We have seen that when payoff shocks are normally distributed, the components of the
shock vector z∗ have arithmetic mean equal to µk = 0, so that the positive payoff shock to
strategy i is equal in absolute value to the sum of the negative payoff shocks to strategies
with sufficiently higher base payoffs. For instance, when n = 2 and π j > πi, the z∗ used to
determine Υi(π) is given by z∗i =

π j−πi

2 = −z∗j .
If instead the payoff shocks follow an exponential(λ) distribution, then the fact that this

distribution has no left tail suggests that the shock vector z∗ should take a less symmetric
form. Indeed, since the relevant Cramér transform is rk(zk) = λzk − 1− logλzk, realizations
of Z̄m

i that are significantly above the mean shock λ−1 (which thus have ri(zi) ≈ λzi − 1)
are far less uncommon than realizations of Z̄m

j that are below λ−1 to a similar extent (and
which thus have r j(z j) ≈ −logλz j); of course, negative realizations of Z̄m

j are impossible.
Proposition 2.7 shows that the correct asymmetric treatment of above- and below-

average shocks can be expressed in a surprisingly simple form: with exponential payoff

shocks, the harmonic mean of the components of z∗,5

H (z∗) =
n∑n

k=1
1
z∗k

,

must be equated to mean payoff shock µk = λ−1.

Proposition 2.7. Suppose that components of the random vector Zl are independent, each with

5For interpretation, recall that if z1, z2, . . . , zn are viewed as the average speeds at which a fixed distance
is traversed during n distinct journeys, then H (z) represents the overall average speed over the n journeys.
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an exponential(λ) distribution. Then the unlikelihood function Υ is given by

Υi(π) =

n∑
k=1

(
λz∗k − 1 − logλz∗k

)
,

where

z∗j = ζ j(z∗i ) ≡ (z∗i + πi − π j) ∧ λ−1 for j , i,

and where z∗i is uniquely defined by the requirement that

(10) H (z∗i , . . . , ζ j(z∗i ), . . .) = λ−1.

Proof. Since rk(zk) = λzk − 1 − logλzk by Example 2.2, r′k(zk) = λ − 1
zk

. Thus, equations
(5) and (6) imply that z∗ satisfies nλ =

∑n
k=1

1
z∗k

. Rearranging this equation and applying
Proposition 2.4 proves the result. �

Propositions 2.5 and 2.7 reveal that the unlikelihood functions for the probit and expo-
nential noise models differ in two important respects. The discussion above emphasizes
the symmetry and asymmetry of the shock vectors z∗. It is at least as important that in the
probit case, the Cramér transform R(z) is quadratic in z, while in the exponential case, R(z)
grows linearly in the positive components of z. This difference reflects the fact that the
right tail of the exponential distribution is fatter than the tails of the normal distribution.
It implies that the probabilities of suboptimal choices tend to decay much more slowly
in the size of the sample when payoff shocks are exponentially distributed rather than
normally distributed.

A. Appendix

Proof of Proposition 2.4.
We begin with a lemma.

Lemma A.1. The optimal solution to program (3), z∗ ∈ Rn, is the unique vector satisfying

n∑
k=1

r′k(z
∗
k ) = 0,(11)

πi + z∗i − (π j + z∗j ) ≥ 0 for all j , i,(12)

z∗j − µ j ≤ 0 for all j , i, and(13)
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(
z∗j − µ j

) (
πi + z∗i − (π j + z∗j )

)
= 0 for all j , i.(14)

The proof of Proposition 2.4 follows easily from this lemma. Conditions (12) and (13)
are equivalent to the requirement that z∗j ≤ (z∗i + πi − π j) ∧ µ j for j , i, and introducing
condition (14) is equivalent to requiring the inequality to always bind, yielding condition
(5). Given condition (5), equation (11) is equivalent to equation (6).

Proof of Lemma A.1. Since C1
i (π) > 0, program (3) admits a feasible solution on the

interior of the support of Zl. Since the Cramér transform of Zl is differentiable in this
region, we can solve program (3) using the Kuhn-Tucker method.

The Lagrangian for program (3) is

L(z, ν) =

n∑
k=1

rk(zk) −
∑
j,i

ν j

(
πi + zi − (π j + z j)

)
.

Since the objective function is convex, z∗ is the minimizer if and only it satisfies the
constraints (12) and there exist Lagrange multipliers ν∗ such that z∗ and ν∗ together satisfy

r′i(z
∗
i ) =

∑
j,i

ν∗j ,(15)

r′j(z
∗
j ) = −ν∗j for all j , i,(16)

ν∗j ≥ 0 for all j , i, and(17)

ν∗j
(
πi + z∗i − (π j + z∗j )

)
= 0 for all j , i.(18)

Conditions (15) and (16) together imply condition (11). Since each r j is strictly convex on
its domain and is minimized at µ j, r′j satisfies sgn(r′j(z j)) = sgn(z j − µ j). Thus, conditions
(16) and (17) imply condition (13), and conditions (16) and (18) imply condition (14). �

Proof of Proposition 2.5.
We apply Proposition 2.4, using the Cramér transform for N(0, σ2) random variables,

rk(zk) = (zk)2

2σ2 , introduced in Example 2.1. Evidently, equation (4) becomes equation (7), and
since r′k(zk) = zk

σ2 , equation (6) becomes

z∗i +
∑
j,i

(
(z∗i + πi − π j) ∧ 0

)
= 0.

If we define J∗ = { j ∈ S : π j > πi +z∗i } and denote this set’s cardinality by n∗, we can rewrite
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the previous equation as

(n∗ + 1) z∗i =
∑
j∈J∗

(π j − πi),

and hence as

z∗i =
1

n∗ + 1

∑
j∈J∗∪{i}

(π j − πi) = π̄J∗∪{i}
− πi.

Thus J∗ = { j ∈ S : π j > π̄J∗∪{i}
}, so J∗ = J by condition (9). Equation (5) thus becomes

z∗j = (z∗i + πi − π j) ∧ 0 = (π̄J∪{i}
− π j) ∧ 0,

which is equation (8). This completes the proof of the proposition. �

References

Blume, L. E. (1993). The statistical mechanics of strategic interaction. Games and Economic
Behavior, 5:387–424.

Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications. Springer,
New York, second edition.

Kandori, M., Mailath, G. J., and Rob, R. (1993). Learning, mutation, and long run equilibria
in games. Econometrica, 61:29–56.

Mangasarian, O. L. and Rosen, J. B. (1964). Inequalities for stochastic nonlinear program-
ming problems. Operations Research, 12:143–154.

Myatt, D. P. and Wallace, C. C. (2003). A multinomial probit model of stochastic evolution.
Journal of Economic Theory, 113:286–301.

Ui, T. (1998). Robustness of stochastic stability. Unpublished manuscript, Bank of Japan.

Young, H. P. (1993). The evolution of conventions. Econometrica, 61:57–84.

–10–


