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Abstract

In models of evolution and learning in games, a variety of proofs of convergence
rely on the assumption that the players’ choice functions are integrable. This assump-
tion does not have an obvious game-theoretic interpretation. We address this question
by introducing probability models defined in terms of piecewise smooth closed curves
through Rn; these curves describe cycles in the performances of the available actions.
We establish that a choice function is integrable if and only if in the probability model
induced by each such curve, the rate at which players switch to a randomly drawn
action is uncorrelated with a certain binary signal. The binary signal specifies whether
the performance of the randomly drawn action is improving or worsening, and can
also be interpreted as a signal about the performances of actions other than the one
randomly drawn.

1. Introduction

Models of evolution and learning in games commonly specify a player’s choice proba-
bilities as a function of the performances of the n available actions, which are represented
by a point in Rn. For instance, consider the problem of finding consistent strategies for
repeated play of a normal form game. During each period, each player chooses an action;
he then receives a payoff that depends on his own action and the actions of the others. The
performance of action i as of period t is measured by the player’s regret for (not having
chosen) this action, which is defined as the difference between two terms: the average
payoff he would have obtained had he chosen i in periods 1 through t, and the average
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payoff he actually obtained during those periods. A repeated game strategy is consistent
(or satisfies no regret) if it ensures that for any sequence of payoff realizations, the player’s
regrets for each of his actions become nonpositive as t approaches infinity. If each player
follows a no-regret strategy, then the time average of play must converge to the set of
coarse correlated equilibria: this concept is the generalization of correlated equilibrium ob-
tained when players’ decisions about whether to follow the proposed correlated strategy
are made at the ex ante stage.

Hannan (1957) and Blackwell (1956) were the first to construct consistent repeated
game strategies, and a variety of consistent and ε-consistent strategies have been found
since that time.1 These strategies typically are expressed in terms of a choice function
that maps the current regrets to the mixed action to be played next period. One property
used to ensure that this map generates a consistent repeated game strategy is that it be
integrable: in other words, that it be expressible as the gradient of a scalar-valued function
called a potential function. Fudenberg and Levine (1998) use integrable choice functions
to construct ε-consistent repeated game strategies. Hart and Mas-Colell (2001) propose
a general class of consistent repeated game strategies; the conditions on choice functions
they use to ensure consistency are continuity, monotonicity, and integrability.

Integrability is also central to the analysis of another basic process of heuristic learning
in games: stochastic fictitious play. In the classic fictitious play process of Brown (1949,
1951), each player plays optimally given the performances of the n actions, here mea-
sured by the payoffs these actions obtain against the time average of his opponents’ past
choices. In order to ensure that convergence of these time averages implies convergence
of actual play, Fudenberg and Kreps (1993) introduced stochastic fictitious play, in which
the players’ optimizations are performed after the payoffs to each of his pure actions are
subject to random perturbations. Hofbauer and Sandholm (2002) prove that stochastic
fictitious play converges to approximate Nash equilibrium in zero-sum games, potential
games (Monderer and Shapley (1996)), and games with an interior evolutionarily stable
strategy (Maynard Smith and Price (1973)). Their analysis relies heavily on the fact that
the map from base payoffs to choice probabilities generated by the perturbed optimization
problem is integrable.

Integrability has played a similar role in recent work in evolutionary game theory.
Hofbauer and Sandholm (2009) consider the evolution of aggregate behavior in a class of
population games called contractive games (or stable games), a class which includes zero-sum
games, games with an interior ESS, and concave potential games (Sandholm (2001)) as
special cases. They define population dynamics in terms of choice functions called revision

1For overviews of the heuristic learning literature, see Young (2004) and Hart (2005).
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protocols, which describe the rates at which agents switch between actions. Hofbauer and
Sandholm (2009) consider a variety of protocols in which the switching rates to each action
are a function of the performances of the n actions. Here performance is measured using
excess payoffs, which are the differences between each action’s payoff and the the average
payoff in the population. To guarantee convergence to Nash equilibrium, they require
their revision protocols to satisfy both a form of monotonicity and integrability.

Monotonicity conditions, which require better performing actions to be assigned
higher probabilities, at least in some average sense, are natural requirements to impose
in models of learning and evolution of games. In contrast, the rationale for imposing
integrability is not as clear. Integrability is useful from a technical point of view, because
the potential function of an integrable choice function can be used to construct a Lyapunov
function—a scalar-valued function whose value decreases over time under the learning
process, at least in expectation. However, despite the usefulness of integrability for prov-
ing convergence results, the game-theoretic interpretation of the integrability of choice
functions is obscure.

The aim of this paper is to provide such interpretations. We set the stage in Section
2, where we consider the case of excess payoff dynamics in contractive games in greater
detail. What is known in this environment suggests that integrability should be viewed
as a restriction on how the switching rate to each action depends on the performances of
other actions.

We substantiate this idea by providing a probabilistic characterization of integrability.
In Section 3, we introduce a class of probability models, each of which is defined in terms
of a closed curve through Rn. Points on the curve represent the performances of the n
actions, and the curve itself describes a possible path for the n strategies’ performances if
players’ behavior were to enter a cycle. The probability model specifies a random draw
of a performance vector from this curve and a random draw of an action, where the
probabilities that define these draws are generated from a parameterization of the curve
that traverses it at constant `1 speed.

In Section 4, we establish that a choice function is integrable if in the probability model
induced by every piecewise smooth closed curve, the switching rate to the randomly
drawn action is uncorrelated with a certain binary signal. This signal specifies whether
the performance of the randomly drawn action is improving or worsening as the curve
is traversed. Thus, roughly speaking, the integrability of a choice function is equivalent
to the requirement that along all performance cycles, the switching rate to the drawn
action does not depend systematically on whether this action is becoming more or less
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appealing.2

To obtain another interpretation of integrability, we establish that this same binary
signal can be understood as a bit of information concerning the performances of actions
other than the one randomly drawn. Thus, integrability allows the rate of switching to
the randomly drawn action to depend on the performances of other actions, but requires
that this dependence not be too systematic in nature along performance cycles. To pro-
vide context for this interpretation of integrability, we characterize the separable choice
functions using a stronger independence requirement for the same class of probability
models induced by closed curves.

2. Motivation: Excess Payoff Dynamics in Contractive Games

To motivate the analysis to follow, we review the role of integrability of revision
protocols in establishing convergence results for contractive games.3

To begin, we define population games played by a unit mass of agents. In such
a game, each agent chooses a pure action from the set S = {1, . . . ,n}. The aggregate
behavior of these agents is described by a population state; this is an element of the simplex
X = {x ∈ Rn

+ :
∑

j∈S x j = 1}, with x j representing the proportion of agents choosing action
j. We identify a population game with a Lipschitz continuous payoff function F : X → Rn.
The scalar Fi(x) represents the payoff to action i when the population state is x.

We let F̄(x) =
∑

j∈S x jF j(x) denote the average payoff obtained in the population at state
x, and let F̂i(x) = Fi(x) − F̄(x) denote the excess payoff to action i relative to the population
average. Finally, we call state x a Nash equilibrium of F if xi > 0 implies that Fi(x) ≥ F j(x)
for all j ∈ S, so that no agent can improve his payoff by unilaterally switching actions.

An evolutionary dynamic for population game F is a differential equation ẋ = VF(x) on
the simplex. This differential equation describes the aggregate consequences of individual
agents’ adjusting their action choices over time by means of simple myopic choice rules.4

Sandholm (2005), building on work by Brown and von Neumann (1950), Weibull (1996),
and Hofbauer (2000), introduces the class of excess payoff dynamics. These dynamics are

2This requirement on switching rates is not unreasonable in the models described above, in which agents
are assumed to act in a completely myopic way. It would be much less reasonable in alternative models
in which agents make simple forecasts about the likely directions of change in the performances of their
actions before deciding which action to play. The use of such forecasts can generate dynamics with excellent
convergence properties—see Shamma and Arslan (2005) and Arslan and Shamma (2006).

3For background on population games and evolutionary dynamics, see Sandholm (2010).
4For formal analyses linking the stochastic decisions of individual agents to a deterministic description

of aggregate behavior via a differential equation, see Benaı̈m and Weibull (2003) and Roth and Sandholm
(2013).
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defined in terms of a Lipschitz continuous function ρ : Rn
→ Rn

+, called a revision protocol,
that maps vectors of excess payoffs π to vectors of switching rates ρ(π). Specifically, ρi(π)
is the rate at which a revising agent switches to action i, and this rate does not depend on
the action the agent was playing when the revision opportunity arose.

The revision protocol is assumed to satisfy a payoff monotonicity condition called
acuteness:

(1) π · ρ(π) > 0 whenever π < Rn
−
.

Intuitively, acuteness requires that away from Nash equilibrium, actions with high payoffs
are switched to more often than actions with low payoffs, at least in an average sense.5

Suppose that during recurrent play of game F, all agents update their choices using
revision protocol ρ, switching from their current action to action j at rate ρ j(F̂(x)). The
resulting dynamics of aggregate behavior are described by the excess payoff dynamic

(2) ẋi = ρi(F̂(x)) − xi

∑
j∈S

ρ j(F̂(x)).

The original dynamic of form (2), the Brown-von Neumann-Nash dynamic (Brown and
von Neumann (1950)), is derived from the separable, semilinear protocol ρ j(π) = [π j]+,
yielding the differential equation

(3) ẋi = [F̂i(x)]+ − xi

∑
j∈S

[F̂ j(x)]+.

An appealing property of the BNN dynamic is that its rest points, the points where
VF(x) = 0, are precisely the Nash equilibria of the underlying game F, a property called
Nash stationarity. This property provides an interpretation of Nash equilibrium as a
description of the aggregate behavior of agents who update their action choices using
a simple myopic rules. In fact, the specific functional form of the BNN dynamic is
unimportant for this result: Sandholm (2005) shows that every excess payoff dynamic
satisfies Nash stationarity. This paper also shows that out of equilibrium, excess payoff

dynamics satisfy a monotonicity condition called positive correlation:

(4) F(x) · VF(x) > 0 whenever VF(x) , 0.
5The restriction of the excess payoff vector π to the complement of Rn

−
in condition (1) reflects two

facts. First, the excess payoff vector cannot lie in int(Rn
−

), since this would mean that all actions generate a
lower than average payoff. Second, the excess payoff vector F̂(x) lies on bd(Rn

−
) if and only if x is a Nash

equilibrium of F: see Proposition 3.4 of Sandholm (2005).
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This condition is enough to ensure that in potential games, that is, games satisfying F ≡ ∇ f
for some potential function f : X → R, excess payoff dynamics ascend the potential
function and converge to Nash equilibrium from all initial conditions.6

Hofbauer and Sandholm (2009) (see also Hofbauer (2000)) consider the case in which
F is a contractive game (or stable game): that is, a game that satisfies

(y − x) · (F(y) − F(x)) ≤ 0 for all x, y ∈ X.

They prove that in contractive games, excess payoff dynamics (2) converge to Nash equi-
librium from all initial conditions whenever the revision protocol ρ satisfies not only
acuteness (1), but also integrability

(5) there exists a C1 function γ : Rn
→ R such that ∇γ(π) = ρ(π) for all π ∈ Rn.

To do so, they show that when F is a contractive game, the function Γ : X → R+, defined
by Γ(x) = γ(F̂(x)), is a strict Lyapunov function for the dynamic (2): its value decreases
along solution trajectories of (2), strictly so unless x is a Nash equilibrium of F.

The role of intergrability in the proof of convergence is clear: the function γ, called
the revision potential, is used to construct the Lyapunov function Γ, the existence of which
implies global convergence. However, the game-theoretic interpretation of this condition
is not obvious.

We can get some sense of the meaning of integrability by considering a stronger
requirement, separability:

ρi(π) is independent of π−i for all π ∈ Rn and i ∈ S.

Clearly, any separable revision protocol is integrable: if we write ρi(π) = φi(πi), then the
function

γ(π) =
∑
j∈S

∫ π j

0
φ j(p j) dp j.

is a potential function for ρ. Moreover, separability, which is satisfied by the protocol for
the BNN dynamic (3), has a clear game-theoretic interpretation: the rate of switching to
action j depends only on the excess payoff to action j.

For further insight into the meaning of integrability, we consider an example in which
convergence fails to occur. The setting for the example is the population game

6See Sandholm (2001, 2009).
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F(x) = Ax =


0 −2 3
3 0 −2
−2 3 0



xR

xP

xS

 ,
called good Rock-Paper-Scissors. It is easy to verify that this game is contractive. To specify
the revision protocol, fix ε > 0, and let gε : R → R be a continuous decreasing function
that equals 1 on (−∞, 0], equals ε2 on [ε,∞), and is linear on [0, ε]; then define the revision
protocol ρ by

(6)


ρR(π)
ρP(π)
ρS(π)

 =


[πR]+gε(πS)
[πP]+gε(πR)
[πS]+gε(πP)

 .
Under this protocol, the weight placed on an action is proportional to positive part of the
action’s excess payoff, as in the protocol for the BNN dynamic; however, this weight is
only of order ε2 if the action it beats in good RPS has an excess payoff greater than ε.

It is easy to verify that protocol (6) satisfies acuteness (1), which implies that the
corresponding excess payoff dynamic satisfies Nash stationarity and positive correlation.
Nevertheless, Hofbauer and Sandholm (2009) show that when ε ≤ 1

10 , many solution
trajectories of the resulting excess payoff dynamic (2) approach a limit cycle in good RPS.

The source of the cycling in this example is that under protocol (6), the rates at which
agents switch to each action depend systematically on the payoffs of the next action in the
best response cycle. This suggests that integrability of the revision protocol, which would
guarantee convergence to Nash equilibrium in good RPS, is a restriction on the way that
the switch rates to each action depend on the performances of other actions. Our aim in
what follows is to substantiate this intuition.

3. The Model

With this background in hand, we now develop our interpretations of integrability.
We do so using a general model that encompasses the various environments described in
the introduction.

3.1 Integrability and closed curves

As above, we take S = {1, . . . ,n} to be a set of actions. We define a choice function to
be a continuous function ρ : Rn

→ Rn. The input to a choice function is a vector π ∈ Rn
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describing the performances of the n actions (e.g., a vector of excess payoffs), and the
output ρ(π) ∈ Rn describes the switching rates to the n actions.7

Choice function ρ is integrable if there exists a C1 function γ : Rn
→ R satisfying

∇γ(π) = ρ(π) for all π ∈ Rn. While integrability is commonly used to prove convergence
results for game dynamics, its game-theoretic meaning is unclear. In what follows, we
provide game-theoretic interpretations of integrability by introducing probability models
defined in terms of closed curves through the space Rn of performance vectors. These
curves represent paths that the actions’ performances might follow if the population’s
behavior were to enter a cycle.

The set C ⊂ Rn is a piecewise smooth closed curve if it is the image of a piecewise C1

function q : [0, 1] → C with q(0) = q(1). This q is called a parameterization of C. Endowing
Rn with the `1 norm, ‖π‖ =

∑n
i=1 |πi|, the length of curve C is

L =

∫ 1

0

∥∥∥q̇(t)
∥∥∥ dt.

Because C is piecewise smooth, L is finite. We henceforth assume that q is a natural
parameterization of C:

∥∥∥q̇(t)
∥∥∥ = L at all points t at which q is differentiable, so that q traverses

C at a constant rate with respect to the `1 norm.
It is well-known that ρ is integrable if and only if for every piecewise smooth closed

curve C, the line integral of ρ over C,∮
C
ρ(π) · dπ ≡

∫ 1

0
ρ(q(t)) · q̇(t) dt,

evaluates to 0. This characterization is the basis for our probabilistic interpretation of
integrability.

3.2 Probability models from closed curves

We now introduce a probability model in which we define a random draw of a per-
formance vector π from the closed curve C and an action i from S = {1, . . . ,n}. The vector
π from the curve is drawn uniformly at random with respect to the natural parameter-
ization. Conditional on the draw of this vector, the action i is drawn with probability
proportional to its contribution to the tangent vector to C at π, so that actions whose

7Here and in what follows, we call π a “performance vector” to emphasize that it is an element of Rn,
but despite this terminology, π should be viewed as a point in space rather than a velocity through space.
Also, the interpretation of ρ(π) ∈ Rn suggests that its components should be nonnegative, but this property
is not needed in our analysis.

–8–



performances are changing more quickly are assigned higher probabilities. As we explain
below, this ensures that the overall probability with which action i is drawn is equal to
action i’s contribution to the length of the curve.8

The definitions of all of the random variables introduced below depend on the choice
of the curve C. While we suppress this dependence in our notation, it is important to keep
this dependence in mind to understand the characterization theorems.

To define the probability model formally, we introduce the probability triple (Ω,F ,P),
where Ω = [0, 1] × (0, 1], F is the Borel σ-algebra, and P is Lebesgue measure. If we let
(t,u) denote a typical element of Ω, then with some abuse of notation, we can regard the
parameterization q as a random vector—that is, as a function from Ω to Rn—with the
understanding that q(t,u) ≡ q(t) only depends on the first component of (t,u). Thus q
represents our random draw of a performance vector.

The random draw of an action is represented by the random variable I : Ω → S. If
t ∈ [0, 1] is a point at which q is differentiable, we define I(t,u) by

I(t,u) = i when u ∈

1
L

i−1∑
j=1

∣∣∣q̇ j(t)
∣∣∣ , 1

L

i∑
j=1

∣∣∣q̇ j(t)
∣∣∣ .

If not, I(t,u) is defined in an arbitrary way. Notice that the probability with which action
i is drawn is proportional to the total variation in πi along curve C, which is action i’s
contribution to the length of the curve:

P(I = i) = P


(t,u) : u ∈

1
L

i−1∑
j=1

∣∣∣q̇ j(t)
∣∣∣ , 1

L

i∑
j=1

∣∣∣q̇ j(t)
∣∣∣

 =

1
L

∫ 1

0

∣∣∣q̇i(t)
∣∣∣ dt.

We call action i ∈ S trivial (for a given choice of C) if qi is constant, so that the value of πi is
fixed on C. An action is trivial if and only if q̇i is identically zero; thus, the realization of I
is nontrivial with probability one.

3.3 Performance levels, signals, and choice rates

Recall that the elements of S = {1, . . . ,n} are actions, each vector π ∈ C ⊂ Rn is a
possible evaluation of the actions’ performances, and the vector ρ(π) ∈ Rn describes the
rates at which agents switch to each action in S given the vector of performances. We

8Our results depend on our defining our probability model using the parameterization of C that moves
at a constant `1 rate. In particular, if C is a closed curve of performance vectors induced by a closed trajectory
through the set of population states, it can be endowed with this trajectory’s parameterization, but we do
not use this parameterization to define our probability model.
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therefore call the random vector q the performance vector draw and the random variable I
the action draw.

We then introduce the random variables

Q = Q(t,u) = qI(t,u)(t), and

Z = Z(t,u) = sgn(q̇I(t,u)(t)).

Here sgn(·) is the signum function: sgn(x) is 1 if x is positive, −1 if x is negative, and 0
if x is 0. As with I(t,u), Z(t,u) is defined in an arbitrary way when t is not a point of
differentiability of q.

The random variable Q, the performance level, is defined to be the performance of the
drawn action under the drawn performance vector.

The random variable Z is called the signal. Evidently, Z specifies whether the perfor-
mance of the drawn action is improving or worsening as one proceeds from the drawn
performance vector along curve C, moving in the direction specified by the parameteriza-
tion q. We argue below that Z can also be viewed as a binary signal about the performances
of actions other than the drawn action under the drawn performance vector.

Finally, given a choice function ρ, we define the random variable

R = R(t,u) = ρI(t,u)(q(t)).

The random variable R, the choice rate, is the rate at which agents switch to the drawn
action under the drawn performance vector.

4. Analysis and Characterizations

To begin the analysis, we establish that the signal Z has the properties mentioned
above. Lemma 1 shows that it is binary.

Lemma 1. P(Z ∈ {−1, 1}) = 1.

Proof. Let t ∈ [0, 1] be a point at which q is differentiable. If q̇i(t) = 0, then by
construction, I(t,u) , i for all u ∈ (0, 1]. It follows that q̇I(t,u)(t) , 0 for all u ∈ (0, 1]. But
since Z(t,u) = 0 if and only if q̇I(t,u)(t) = 0, and since q is differentiable at all but finitely
many t ∈ [0, 1], we conclude that P(Z = 0) = 0. �

Proposition 1 justifies our interpretation of Z as a signal about the performances of
actions other than the drawn action. It does so by showing that Z is independent of
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the performance of the drawn action, both conditional on the identity of that action and
unconditionally.

Proposition 1. For every piecewise smooth closed curve C, the performance level Q and the signal
Z are independent conditional on the action draw I, and are also (unconditionally) independent.

The proof of Proposition 1 requires the following auxiliary result.

Lemma 2. The signal Z and the action draw I are independent. In particular, P(Z = 1 | I = i) =

P(Z = −1 | I = i) = 1
2 for all nontrivial i ∈ S.

Proof. Let i ∈ S be nontrivial. In light of Lemma 1, it is enough to show that E(Z | I =

i) = 0, or equivalently, that EZ1{I=i} = 0. But

EZ1{I=i} = E sgn(q̇i)1{I=i}

=

∫ 1

0

∫ 1

0
sgn(q̇i(t))1{I(t,u)=i} du dt

=

∫ 1

0
sgn(q̇i(t)) ×

1
L

∣∣∣q̇i(t)
∣∣∣ dt

=
1
L

∫ 1

0
q̇i(t) dt

=
1
L

(
qi(1) − qi(0)

)
= 0,

where the final equality holds because q(1) = q(0). �

Proof of Proposition 1. Because Z and I are independent by Lemma 2, the second claim
is an easy implication of the first.9 To prove the first claim, it is enough to show that for
all c ∈ R, all z ∈ {−1, 1} (by Lemma 1), and all nontrivial i,

P(Q ≤ c,Z = z | I = i) = P(Q ≤ c | I = i)P(Z = z | I = i).

Since P(Z = 1 | I = i) = P(Z = −1 | I = i) = 1
2 by Lemma 2, it is sufficient to show that

P(Q ≤ c,Z = 1 | I = i) = P(Q ≤ c,Z = −1 | I = i),
9Without the independence of Z and I, this implication would not hold. The situation is analogous to a

basic one in Bayesian statistics. There, two observations that are independent conditional on an unknown
(i.e., random) parameter are not unconditionally independent, because the value of the first observation
provides information about the parameter, which in turn provides information about the second observation.
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or equivalently, that EZ1{Q≤c,I=i} = 0.
To do so, we compute as follows:

EZ1{Q≤c,I=i} =

∫ 1

0

∫ 1

0
sgn(q̇i(t)) 1{qi(t)≤c}1{I(t,u)=i} du dt

=

∫ 1

0
sgn(q̇i(t))1{qi(t)≤c} ×

1
L

∣∣∣q̇i(t)
∣∣∣ dt

=
1
L

∫ 1

0
q̇i(t)1{qi(t)≤c} dt.

To evaluate the integral in the last expression, define p : [0, 1] → R by p(t) = min{qi(t), c}.
Then Danskin’s envelope theorem (see Theorem A.4 of Hofbauer and Sandholm (2009))
implies that ṗ(t) = q̇i(t)1{qi(t)≤c} for almost every t ∈ [0, 1]. Thus since q(1) = q(0), we have
that

EZ1{Q≤c,I=i} =
1
L

∫ 1

0
ṗ(t) dt =

1
L

(
p(1) − p(0)

)
= 0,

establishing the proposition. �

To provide context for our interpretation of integrability, Proposition 2 characterizes
the separable choice functions in terms of probability models generated from piecewise
smooth closed curves. It shows that ρ is separable if and only if for every such curve, con-
ditional on any realization of the drawn action, the choice rate of this action is independent
of the binary signal about the performances of the other actions. Furthermore, it shows
that separability implies that the choice rate and the binary signal are unconditionally
independent.

Proposition 2. Choice function ρ is separable if and only if for every piecewise smooth closed curve
C, the choice rate R and the signal Z are independent conditional on the action draw I. If these
statements are true, then for each such curve C, R and Z are also (unconditionally) independent.

Proof. As in the proof of Proposition 1, the second statement follows from the first and
Lemma 2. Moreover, since separability means that ρi(π) is measurable with respect to πi,
the “only if” direction of the first statement follows directly from Proposition 1.

To prove the “if” direction, we establish the contrapositive. Suppose that ρ is not
separable: for some action i, there exist πi, π−i, and π̃−i such that ρi(πi, π−i) , ρi(πi, π̃−i).
Without loss of generality, we can suppose that ρi(πi, π−i) > r > ρi(πi, π̃−i). Since ρ is
continuous, these inequalities remain true if we replace πi with any π̃i ∈ [πi, πi + h], where
h > 0 is sufficiently small.
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Now let C be the rectangle with vertices a = (πi, π−i), b = (πi + h, π−i), c = (πi + h, π̃−i),
and d = (πi, π̃−i), and suppose that q traverses these points in this order. Then, up to a set
of measure zero,

{(t,u) : I(t,u) = i} =
{
(t,u) : q(t) ∈ ab

}
∪

{
(t,u) : q(t) ∈ cd

}
,

and the two events in the union have equal positive measure. On the first event, ρi(q) > r
and sgn(q̇i) = 1, and on the second, ρi(q) < r and sgn(q̇i) = −1. Thus ρi(q) and sgn(q̇i) are
not independent conditional on I = i. �

The construction in this proof connects the two interpretations of the binary signal Z
in the simplest possible setting. Conditional on an action draw of I = i, the value of the
binary signal is Z ≡ sgn(q̇i) = 1 if and only if the performances of the strategies other than
i are Q−i = π−i, and Z ≡ sgn(q̇i) = −1 if and only if Q−i = π̃−i. Furthermore, the value of Z
is independent of Qi conditional on I = i, as required by Proposition 1.

The final result, Proposition 3, shows that a choice function is integrable if and only
if for every piecewise smooth closed curve, the choice rate R and the binary signal Z are
uncorrelated. Taking the primitive view of Z as the direction of change of the drawn
action’s performance, Proposition 3 allows us to interpret integrability as a requirement
that along performance cycles, actions’ choice rates not depend systematically on whether
their performances are improving or worsening.

Alternatively, viewing Z as a signal about the performances of actions other than the
drawn action, Proposition 3 verifies our intuitive view of integrability as a restriction on
the dependence between the rate at which agents switch to an action and the quality of
other actions. While separability requires choice rates and signals about other actions’
performances to be independent, integrability allows for dependence, but demands that
this dependence not be too systematic in nature.

Proposition 3. Choice function ρ is integrable if and only if for every piecewise smooth closed
curve C, the choice rate R and the signal Z are uncorrelated.

Proof. Lemma 2 implies that P(Z = 1) = P(Z = −1) = 1
2 , and so that EZ = 0. Therefore,

R and Z are uncorrelated if and only if ERZ = 0. But

ERZ = EρI(q) sgn(q̇I)

=

∫ 1

0

∫ 1

0
ρI(t,u)(q(t)) sgn(q̇I(t,u)(t)) du dt

=

∫ 1

0

 n∑
i=1

ρi(q(t)) sgn(q̇i(t)) ×
1
L

∣∣∣q̇i(t)
∣∣∣ dt

–13–



=
1
L

∫ 1

0

 n∑
i=1

ρi(q(t)) q̇i(t)

 dt

=
1
L

∫ 1

0
ρ(q(t)) · q̇(t) dt

=
1
L

∮
C
ρ(π) · dπ.

The final expression equals 0 for every piecewise smooth closed curve C if and only if ρ is
integrable, completing the proof of the proposition. �
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