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Abstract

We characterize solutions of a class of time-homogeneous optimal control problems
with semilinear running costs and state constraints as maximal viscosity subsolutions
to Hamilton-Jacobi equations, and show that optimal solutions to these problems can
be constructed explicitly. We present applications to large deviations problems arising
in evolutionary game theory.

1. Introduction

This paper considers a class of time-homogeneous optimal control problems. The state
variable in these problems is required to stay in a compact convex subset X ofRn, and the
cost of motion from state x in feasible direction v takes the semilinear form

L(x, v) =

n∑
i=1

Ψi(x)[vi]+

for some Lipschitz continuous function Ψ : X → Rn with Ψ = (Ψ1, . . . ,Ψn). We consider
both a source problem, which specifies a set of allowable initial states, as well as a target
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problem, which specifies a set of allowable terminal states to be reached within an arbitrary
finite time span. Problems of these sorts arise naturally in large deviations analyses of
stochastic processes arising in evolutionary game theory.

Our main results characterize the solutions to these problems as maximal viscosity
subsolutions of suitable Hamilton-Jacobi equations, and we provide a corresponding
verification theorem. We also show that the subsolution condition needs only be checked
at almost every state in X. Thus in applying our results, there is no need to work with
superdifferentials or test functions, as it is sufficient to evaluate the Hamilton-Jacobi
equation at states where the candidate value function is differentiable.

The class of problems we consider has a variety of interesting features. First, the
semilinearity of running costs implies that paths that differ only by a reparameterization
of time have the same cost. Thus in defining a feedback control, the length of the control
vector plays no role; only its direction matters. Second, we are able to obtain explicit
solutions to the problems we consider. As we argue below, semilinearity ensures that
when maximizing the Hamiltonian at a given state, it is enough to consider controls from
a suitable finite set, and that in typical problems, the state space will be divided into
regions on which the optimal control is constant.

From the point of view of PDE theory, the fact that we are able to use Hamilton-Jacobi
equations with state constraints to obtain explicit solutions to control problems—solutions
of finite duration, along which the state constraints are active—is noteworthy. Work on
Hamilton-Jacobi equations often focuses on questions related to well-posedness, and says
little about the nature of optimal paths, and, in the case of state-constrained problems,
about whether state constraints are active. We are unaware of previous examples of
control problems with explicitly computed finite-time optimal paths along which state
constraints bind.

In Sections 2 and 3, we state our main results and apply them in some simple examples.
In these examples, intuitive reasoning suggests the form that the optimal solutions must
take, which perhaps makes it surprising that existing results do not provide a method
for verifying these solutions. Since our objective function does not include discounting,
results of Soner (1986) on state-constrained control problems do not apply. Likewise, the
semilinearity of the Lagrangians and linear growth of the Hamiltonians put the problems
we study outside the class of state-constrained problems considered by Capuzzo-Dolcetta
and Lions (1990). In our simple examples, our results allow us to verify easily that the intu-
itive solutions are indeed optimal. In particular, our verification theorem (Theorem 3.4) is
very useful here, and is not covered in the two aforementioned papers. Section 4 presents
the proofs of the main results.
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We apply our results to large deviations problems arising in stochastic dynamic models
from evolutionary game theory. These models concern behavior in populations of N < ∞

strategically interacting agents, where each agent’s payoffs depend both on his own
actions and on the distribution of choices of other agents. The behavior of the population
is modeled as a Markov chain. Each agent occasionally receives opportunities to switch
actions, and decides whether to switch actions and which action to choose by applying a
simple myopic rule parameterized by a noise level η > 0. These noisy best response rules
place most probability on the currently optimal action, but place positive probabilities
on all actions. The stochastic processes described here are formally defined in Section 5
below.1

Following Sandholm and Staudigl (2016), we study the behavior of these Markov
chains XN,η, which run on discrete grids X N of mesh size 1

N in the probability simplex,
in the small noise double limit. That is, we first characterize behavior as the noise level η
in agents’ decisions is taken to zero, and then describe the behavior of this limit as the
population size N is taken to infinity.

When the noise level is small, so that agents nearly always choose actions that are
currently optimal, the process XN,η quickly moves toward a recurrent class of the zero-noise
process, which often corresponds to a Nash equilibrium of the underlying game. However,
the noise in agents’ decisions ensures that the process will occasionally transit between
Nash equilibria. Results of Freidlin and Wentzell (1984) and Catoni (1999) describe the
growth rate in η of the waiting times until transitions between equilibria in terms of
path-cost minimization problems on the discrete state space X N. These waiting times can
in turn be used to determine the limiting behavior of the stationary distribution of XN,η,
which describes the proportion of time the process spends in each state over very long
time spans. Typically, differences in transition rates ensure that the process spends the
majority of time at a single Nash equilibrium, the so-called stochastically stable state, which
receives the preponderance of mass in the stationary distribution of XN,η as η approaches
zero.2

The discrete path-cost minimization problems mentioned above typically do not admit
analytical solutions. To contend with this, Sandholm and Staudigl (2016) show that if one
follows the limit as η approaches 0 with the limit as N approaches infinity, then the
discrete path-cost minimization problems on the state spaces X N converge to continuous

1The processes studied in evolutionary game theory are quite distinct from mean field games, in which
a population of agents simultaneously solve dynamic optimization problems that each depend on the
population’s aggregate behavior. For background on stochastic dynamics in evolutionary game theory, see
Young (1998) and Sandholm (2010b).

2See Foster and Young (1990), Kandori et al. (1993), and Young (1993, 1998).
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path-cost minimization problems on the probability simplex X, which can in principle
be solved using optimal control methods. However, existing results on Hamilton-Jacobi
equations only permitted the computation of solutions to these problems in cases where
the constraint that the state remains in X is not binding. The main results in this paper
allow us to verify optimal value functions whether or not the state constraints bind, greatly
expanding the class of environments in which large deviations and stochastic stability
properties can be explicitly determined. Section 6 presents examples that illustrate the
application of our main results.

Section 7 presents some concluding remarks, and the appendices contain certain proofs
and computations omitted from the main text.

2. Optimal control problems with semilinear running costs

2.1 Definitions

Let X ⊂ Rn be an m-dimensional polytope. Let TX denote the set of tangent vectors
from states in the relative interior X◦ of X. If X is n-dimensional, then TX = Rn; more
generally, if the affine hull of X is a translation of subspace Y ⊂ Rn, then TX = Y. In
what follows, topological statements are made with respect to the relative topology on X;
for instance, we will refer to X◦ as the interior of X. Likewise, derivatives of functions
f : X → Rm will be understood as maps D f : X → L(TX,Rm) from X to linear functions
from TX to Rm.

Let TX(x) = {t(y − x) : y ∈ X, t ≥ 0} ⊆ TX be the tangent cone of X at x. TX(x) is the
set of feasible controls at state x, though as we note shortly, it will be enough to restrict
attention to controls in a compact subset of TX(x).

We assume that the running cost function L : X×TX→ [0,+∞] takes a semilinear form.
Specifically, we assume that for some Lipschitz continuous function Ψ : X→ Rn

+, we have

(2.1) L(x, v) =


n∑

i=1

Ψi(x) [vi]+ if v ∈ TX(x),

+∞ otherwise.

Thus the constraint that the state remains in X is built into the definition of running costs.
Let ΦT be the set of Lipschitz continuous paths φ : [0,T] → X, and let Φ =

⋃
T≥0 ΦT.

Then the path cost function c : Φ→ R+ is defined by
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(2.2) c(φ) =

∫ T

0
L(φ(t), φ̇(t)) dt when φ ∈ ΦT.

The source problem for the compact set X0 ⊂ X is that of finding the minimal cost of
reaching each state in X from a free initial condition in X0. The value function for the
source problem for X0 is

(SP) V(x) = inf {c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) ∈ X0, φ(T) = x}.

Likewise, the target problem for the compact set Y ⊂ X is that of finding the minimal cost
of reaching a free state in Y from initial condition x. The value function for the target
problem for Y is

(TP) W(x) = inf {c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) = x, φ(T) ∈ Y}.

Remark 2.1. It follows immediately from the semilinearity of the running cost function
(2.1) that the cost of a path does not depend on the speed at which it is traversed: if
φ ∈ ΦT and φ̂ ∈ ΦT̂ differ only by a reparameterization of time, then c(φ) = c(φ̂). Because
of this, the solutions to problems (SP) and (TP) do not change if we restrict the control
variable u to a compact convex set whose conical hull is TX. Viewed through the prism of
feedback controls, semilinearity implies that we need only determine the optimal directions
of motion from each state; the speed of motion in an optimal direction is irrelevant.

We will take advantage of this property by introducing a convenient restriction on the
control variable. Let | · | denote the `1 norm on Rn, so that |u| =

∑n
i=1 |ui|. For r > 0, let

Br = {u ∈ TX : |u| ≤ r} be the closed radius-r ball in Rn. The foregoing discussion shows
that in solving (SP) and (TP), there is no loss in restricting attention to paths φ ∈ Φ with
φ̇(t) ∈ Br for almost all t. This restriction is captured in the reformulation (3.1) of the
running cost function in Section 3.

2.2 Motivating examples

As motivation, we introduce two simple examples of the target problem (TP).

Example 2.2. Consider the path-cost minimization problem in R2 defined by

X = {x ∈ [0, 1]2 : x1 + x2 ≤
3
2 },

Y = {x ∈ [0, 1]2 : x1 + x2 = 3
2 },

–5–



L(x, v) =

( 3
2 − x1 − x2) ([v1]+ + 2[v2]+) if v ∈ TX(x),

+∞ otherwise.

Under running cost function L, costs of motion are proportional to 3
2 − x1 − x2, and so

decrease linearly as the target set Y is approached orthogonally. In addition, the cost of
increasing x2 is always twice as large as the cost of increasing x1.

The solution to this problem is intuitively clear. Since motion is most costly at states
far from the target set, one should increase x1 first with x2 held fixed to take advantage
of the low relative cost of doing so. If the initial condition satisfies x2 ≥

1
2 , then x1 can be

increased until Y is reached. If not, then the state constraint will bind once x1 = 1, so one
should then increase x2 until Y is reached.

The value function W : X → R+ corresponding to this feedback control is easily com-
puted as

W(x) =


∫ 3

2−x2

x1
( 3

2 − t − x2) dt if x2 ≥
1
2 ,∫ 1

x1
(3

2 − t − x2) dt +
∫ 1

2

x2
(1 − 2u) du if x2 < 1

2 ,
(2.3)

=


1
8 (2x1 + 2x2 − 3)2 if x2 ≥

1
2 ,

1
2x2

1 + x2
2 + x1x2 −

3
2x1 − 2x2 + 5

4 if x2 < 1
2 .

Thus the cost of reaching Y from the origin is 5
4 . The derivative of W is

(2.4) DW(x) =

(x1 + x2 −
3
2 , x1 + x2 −

3
2 ) if x2 ≥

1
2 ,

(x1 + x2 −
3
2 , x1 + 2x2 − 2) if x2 < 1

2 .

Inspection of (2.4) reveals that DW is continuous along the line segment {x ∈ X : x2 = 1
2 },

and hence W is continuously differentiable.
While the nature of the solution is transparent, and the value function is pleasingly

smooth, the lack of smoothness of the running costs and the presence of the state constraint
prevent optimality from being verified by textbook methods. _

Example 2.3. Consider the following control problem in R3:

X = {x ∈ [0, 1]3 : x1 + x2 + x3 ≤
5
2 },

Y = {x ∈ [0, 1]3 : x1 + x2 + x3 = 5
2 },
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L(x,u) =

(5
2 − x1 − x2 − x3) ([v1]+ + 2[v2]+ + 3[v3]+) if v ∈ TX(x),

+∞ otherwise.

The optimal feedback control is similar to that in Example 2.2: First increase x1 until Y
is reached or x1 = 1; in the latter event, increase x2 until Y is reached or x2 = 1; and
in this latter event, increase x3 until Y is reached. It is straightforward to compute the
corresponding value function:

W(x) =


∫ 5

2−x2−x3

x1
( 5

2 − t − x2 − x3) dt if x2 + x3 ≥
3
2 ,∫ 1

x1
(5

2 − t − x2 − x3) dt +
∫ 3

2−x3

x2
(3 − 2u − 2x3) du if x2 + x3 < 3

2 , x3 ≥
1
2 ,∫ 1

x1
(5

2 − t − x2 − x3) dt +
∫ 1

x2
(3 − 2u − 2x3) du +

∫ 1
2

x3
( 3

2 − 3v) dv if x2 + x3 < 3
2 , x3 < 1

2 .

One can verify that this function too is continuously differentiable. But as above, op-
timality cannot be verified by textbook methods. The nature of the optimal solution is
somewhat more complicated than in Example 2.2, since choice of the optimal control on
the x1 = 1 boundary of X is nontrivial. _

3. Main results

To take advantage of Remark 2.1, we replace the running cost function (2.1) with one
in which controls outside of Br are infeasible:

(3.1) L(x, v) =


n∑

i=1

Ψi(x) [vi]+ if v ∈ TX(x) ∩ Br,

+∞ otherwise.

For v ∈ Rn, we define the componentwise positive part function [v]+ by ([v+])i = [vi]+,
and we define [v]− analogously. Using this notation, we can write the first case of (3.1)
concisely as

(3.2) L(x, v) = 〈Ψ(x), [v]+〉 if v ∈ TX(x) ∩ Br.

Let H : X × Rm
× TX → R denote the Hamiltonian corresponding to running cost

function (3.1):

H (x,u, v) = 〈u, v〉 − L(x, v)
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= 〈u, v〉 − 〈Ψ(x), [v]+〉

= 〈u −Ψ(x), [v]+〉 − 〈u, [v]−〉 .(3.3)

Let H : X ×Rm
→ R denote the maximized Hamiltonian:

(3.4) H(x,u) = max
v∈TX∩Br

H (x,u, v).

As usual, H(x, ·) is the convex conjugate of L(x, ·).
Let ‖Ψ‖∞ = maxx∈X |Ψ(x)| denote the L∞ norm of Ψ. Then it is easy to verify that H(x, ·)

satisfies the following linear lower bound:

(3.5) H(x,u) ≥
r
n
|u| − r‖Ψ‖∞.

By contrast, Capuzzo-Dolcetta and Lions (1990, p. 678) consider state-constrained Hamilton-
Jacobi equations in which H(x, ·) satisfies a superlinear lower bound.

Remark 3.1. Because L(x, ·) is linear on each orthant of Rn, the maximization problem in
(3.4) only requires us to consider controls from a well-chosen finite set. Let K n be the
collection of closed orthants of Rn, and define

(3.6) E =
⋃

K∈K n

ext(K ∩ TX ∩ Br).

The linearity of L(x, ·) on each orthant implies that for x ∈ X◦, it is enough to perform the
maximization in (3.4) over the set of extreme points E .

For instance, if X has full dimension, so that TX = Rn, we choose r = 1 and obtain

(3.7) E = {e1,−e1, . . . , en,−en, 0}

where ei is the ith standard basis vector. In our applications to evolutionary game theory,
X will be the simplex, so that TX = Rn

0 = {v ∈ Rn :
∑

i zi = 0}. In this case we choose r = 2
and obtain

(3.8) E = {e j − ei : i, j ∈ {1, . . . ,n}} = {e j − ei : i , j} ∪ {0}.

To state the main results, we say that a function V : X → R is maximal with respect to
given properties if for any other function V0 : X → R satisfying the properties, we have
V0 ≤ V on X.

Theorems 3.2 and 3.3 characterize the solutions to the source and target problems in
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terms of subsolutions in the almost everywhere sense. Thus the subsolution inequalities
need not be checked at boundary states, or at states where the candidate function is not
differentiable.

Theorem 3.2. The solution to the source problem (SP) is the maximal Lipschitz continuous
function V : X→ R satisfying

(3.9)

H(x,DV(x)) ≤ 0 for almost all x ∈ X◦;

V(x∗) = 0 for all x∗ ∈ X0.

Theorem 3.3. The solution to the target problem (TP) is the maximal Lipschitz continuous
function W : X→ R satisfying

(3.10)

H(x,−DW(x)) ≤ 0 for almost all x ∈ X◦;

W(y∗) = 0 for all y∗ ∈ Y.

Theorems 3.2 and 3.3 lead directly to verification theorems for the source and target
problems, which replace the requirement of maximality with the requirement of attain-
ability of the values of V and W. We only state the theorem for the target problem; the
statement for the source problem is similar.

Theorem 3.4. Suppose that W : X → R is Lipschitz continuous with W(y∗) = 0 for all y∗ ∈ Y.
In addition, suppose that for each x ∈ XrY, there is a time T > 0 and a path φ ∈ ΦT with φ(0) = x
and φ(T) ∈ Y such that W(x) = c(φ). If W satisfies (3.10), then W is the solution to (TP).

In general environments with Hamilton-Jacobi PDE, it is not known whether for two
given points x and y, there exists an optimal finite-time path φ ∈ ΦT connecting them,
even in cases without state constraints. It is thus appealing that Theorem 3.4 can be used
to constructively establish the existence of optimal finite-time paths, as the examples and
applications illustrate.

Before presenting the proofs of Theorems 3.2–3.4, we return to the minimization prob-
lems from Section 2.2.

Example 3.5. Example 2.2 introduced the problem of reaching target set Y = {x ∈ [0, 1]2 : x1+

x2 = 3
2 } from states in X = {x ∈ [0, 1]2 : x1 +x2 ≤

3
2 }when running costs in feasible directions

are given by

L(x, v) = Ψ1(x) [v1]+ + Ψ2(x) [v2]+

≡ ( 3
2 − x1 − x2)[v1]+ + (3 − 2x1 − 2x2)[v2]+.(3.11)
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The value function W proposed in (2.3) was computed by evaluating the costs of the
proposed optimal paths to the target set—first increase x1, then increase x2 if necessary.
By Theorem 3.4, verifying that this function is the optimal value function only requires us
to check that W satisfies the subsolution condition in (3.10).

To do this, we use (3.3) to write the Hamiltonian at u = −DW(x) as

(3.12) H (x,−DW(x), v) = 〈−DW(x) −Ψ(x), [v]+〉 − 〈−DW(x), [v]−〉 .

By Remark 3.1, it is enough to show that for almost all x ∈ X◦,

(3.13) max
v∈E

H (x,−DW(x), v) ≤ 0, where E = {e1,−e1, e2,−e2, 0}.

So fix x ∈ X◦. Clearly H (x,−DW(x), 0) = 0. Expression (2.4) shows that DW(x̂) < 0
for x̂ ∈ X r Y∗ (in terms of the partial order on R2), which with (3.12) implies that
H (x,−DW(x),−ei) < 0 for i ∈ {1, 2}. To check the remaining values of v in E , we use (2.4),
(3.11), and (3.12) to write

H (x,−DW(x), e1) = −
∂W
∂x1

(x) −Ψ1(x) = 0,

H (x,−DW(x), e2) = −
∂W
∂x2

(x) −Ψ2(x) =

 x1 + x2 −
3
2 if x2 ≥

1
2

x1 − 1 if x2 < 1
2

 ≤ 0.

Thus (3.13) holds at all x ∈ X◦, implying that the function W defined in (2.3) is indeed the
optimal value function.

The maximizers in (3.13) indicate the form of the optimal feedback control. Only
controls v in {e1, 0} achieve the maximum in (3.13) on X◦, implying that the optimal control
at interior states requires motion in direction e1 (at an arbitrary speed). When x1 = 1,
controls in {e1, e2, 0} achieve the maximum in (3.13), but choosing v = e1 would violate the
state constraint, suggesting that motion in direction e2 is optimal on this boundary of X.
This is the optimal feedback control we originally proposed. _

Example 3.6. Similar calculations show that the value function proposed in Example 2.3
is the optimal value function. Likewise, determining the controls in E that maximize the
Hamiltonian and accounting for state constraints identifies the optimal feedback control.

It is noteworthy that condition (3.10) only requires the subsolution condition to be
checked in the interior of X, even though the form of the optimal control on the boundary
of X is nontrivial. Of course, the definition of the value function in X◦ incorporates the
definition of the control on bd(X), so that suboptimal choices of the control vector on the
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boundary would lead to failures of the subsolution condition near the boundary. _

4. Analysis

To prove Theorem 3.2, we first show in Section 4.1 that the solution V to the state-
constrained source problem (SP) is the maximal viscosity solution to the associated
Hamilton-Jacobi equation (4.1)—that is, V is both a viscosity subsolution on X◦ and a
viscosity supersolution on X—and that it is maximal with respect to this pair of proper-
ties. The fact that H is nonnegative implies that the supersolution condition is vacuous,
and we show that V is a subsolution using a direct argument based on the dynamic
programming principle. The coercivity of H(x, ·) implies that subsolutions are Lipschitz
continuous (see equation (4.7)). Taking advantage of this fact and the convexity of H(x, ·),
we use a convolution argument, followed by continuity arguments that link the costs of
interior and general paths, to prove that V is the maximal viscosity solution.

To complete the proof of Theorem 3.2, we use another convolution argument and
the stability of viscosity subsolutions to conclude that the subsolution condition need
only be checked on a full measure subset of X◦, and in particular only at states where
the candidate value function is differentiable (Section 4.2). Theorem 3.3 follows from
Theorem 3.2 and a simple manipulation that relates the source and target problems.
Then Theorem 3.4 follows directly from Theorem 3.3 and the definition (TP) of the target
problem (Section 4.3).

The state-constrained system of interest to us here is

(4.1)


H(x,DV(x)) ≤ 0 in X◦;

H(x,DV(x)) ≥ 0 on X;

V(x∗) = 0 for all x∗ ∈ X0.

Our analysis first considers the viscosity solutions of this system.

Definition 1. Assume that V ∈ C(X) and V(x∗) = 0 for all x∗ ∈ X0.
Firstly, we say that V is a viscosity subsolution of (4.1) if for any test function ϕ ∈ C∞(X)

such that V − ϕ has a maximum at x0 ∈ X◦ r X0, then H(x0,Dϕ(x0)) ≤ 0.
Secondly, we say that V is a viscosity supersolution of (4.1) if for any test function ϕ ∈ C∞(X)

such that V − ϕ has a minimum at x0 ∈ X r X0, then H(x0,Dϕ(x0)) ≥ 0.
Finally, V ∈ C(X) is a viscosity solution of (4.1) if it is both a viscosity subsolution and

supersolution of (4.1).

–11–



When considering optimal control problems with discounting, one obtains monotone
Hamilton-Jacobi equations, in which the left-hand sides of the inequalities in (4.1) are
replaced by H(x,DV(x)) + λV(x) for some λ > 0. Monotone Hamilton-Jacobi equations
with state constraints, first studied by Soner (1986), commonly possess unique viscosity
solutions. In contrast, the system (4.1) admits multiple viscosity solutions; for example,
V ≡ 0 is always a viscosity solution of (4.1). This naturally leads us to consider the notion
of a maximal solution:

Definition 2. Let V ∈ C(X) be a viscosity solution of (4.1). We say that V is a maximal viscosity
solution if for any viscosity solution V̂ of (4.1), V ≥ V̂ on X.

See Capuzzo-Dolcetta and Lions (1990), Mitake (2008), Armstrong and Tran (2015) and
the references therein for the use of maximal solutions in other PDE contexts.

We define the minimum cost of traveling from x0 to x by

C(x0, x) = inf
{
c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) = x0, φ(T) = x

}
.

Then V in (SP) can be written as

V(x) = inf {C(x0, x) : x0 ∈ X0} .

Let Br(x) denote the closed unit ball in X with center x. Then the previous definitions
immediately yield:

Observation 4.1 (The dynamic programming principle).
Let V be defined as in (SP). Fix x ∈ X. For r > 0, the following holds

(4.2) V(x) = min
y∈Br(x)∩X

(
V(y) + C(y, x)

)
.

4.1 Proof that optimal solutions are maximal viscosity solutions of (4.1)

Our first preliminary result characterizes solutions to the source problem (SP) in terms
of system (4.1).

Theorem 4.2. The solution to the source problem (SP) is the unique maximal solution of (4.1).

The proof of Theorem 4.2 is divided into two steps. We first show that V is a viscosity
solution to (4.1). To do this, we use the dynamic programming principle to verify that V
is a viscosity subsolution of (4.1). Since H is always nonnegative, we do not need to check
the viscosity supersolution property.
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Proposition 4.3. The function V defined in (SP) is a viscosity subsolution of (4.1).

Proof. Take ϕ ∈ C∞(X) and assume that V − ϕ has a strict maximum at x ∈ X◦ r X0. By
adding a constant to ϕ, we can assume further that V(x) = ϕ(x) and that V(y) < ϕ(y) for
y , x. As x ∈ X◦, for r > 0 sufficiently small, Br(x) ⊂ X. By (4.2), for y ∈ Br(x),

(4.3) ϕ(x) = V(x) ≤ V(y) + C(y, x) ≤ ϕ(y) + C(y, x).

Now pick an arbitrary displacement vector v ∈ TX(x) ∩ Br. Without loss of generality,
we can assume that r < 1. Set y = x− rv, and define the path φ : [0, r]→ X by φ(t) = y + tv.
Then φ ∈ Φ and

(4.4) C(y, x) ≤
∫ r

0

〈
Ψ(φ(t)), [φ̇(t))]+

〉
dt.

Combining (4.3) and (4.4) yields

(4.5) ϕ(x) − ϕ(y) = ϕ(φ(r)) − ϕ(φ(0)) ≤
∫ r

0

〈
Ψ(φ(t)), [φ̇(t))]+

〉
dt.

Divide both sides by r and let r→ 0 to deduce further that〈
Dϕ(x), v

〉
− 〈Ψ(x), [v]+〉 ≤ 0.

(In defining ‖Dϕ‖∞, we identify Dϕ(x) ∈ L(TX,Rm) with the unique w ∈ TX satisfying
DV(x)z = 〈w, z〉 for all z ∈ TX.) Since the direction v can be chosen freely in TX(x) ∩ Br,
and since L(x, v) = +∞ for other choices of v, we conclude that

(4.6) max
v∈TX∩Br

(〈
Dϕ(x), v

〉
− L(x, v)

)
≤ 0.

Thus H(x,Dϕ(x)) ≤ 0. �

We next check the maximal property.

Proposition 4.4. The function V defined in (SP) is the maximal solution of (4.1).

Proof. Take an arbitrary viscosity solution V̂ of (4.1). In light of the linear lower bound
(3.5) on H(x, ·), we claim that V̂ is Lipschitz continuous with

(4.7) ‖DV̂‖∞ ≤ n‖Ψ‖∞.
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See Appendix A for a proof of this fact. By Rademacher’s theorem, V̂ is differentiable
almost everywhere in X◦. At each point x ∈ X◦ where V̂ is differentiable, we have (see
Crandall et al. (1984); Le et al. (2017))

(4.8) H(x,DV̂(x)) ≤ 0.

Fix x, y ∈ X◦. Let φ : [0,T] → X◦ be a Lipschitz continuous path satisfying φ ∈ Φ,
φ(0) = y, and φ(T) = x. We claim that

(4.9) V̂(x) ≤ V̂(y) +

∫ T

0
L(φ(t), φ̇(t)) dt.

To prove (4.9), we construct smoothed versions of V̂ by convolution with standard
mollifiers (see Le et al. (2017, Proposition 4.10)). Pick r > 0 sufficiently small such that
Br(φ(t)) ⊂ X◦ for all t ∈ [0,T], and define

Xr = {x ∈ X : Br(x) ⊂ X◦} .

Then φ([0,T]) ⊂ Xr
⊂ X◦. Let ρ ∈ C∞c (Rm, [0,∞)) be a standard convolution kernel, that is,

ρ is smooth and nonnegative, (compactly) supported in B1, and satisfies
∫
Rm ρ(x) dx = 1.

For ε ∈ (0, r), define ρε(x) = ε−mρ(ε−1x), so that∫
Rm
ρε(x) dx = 1 and supp(ρε) ⊂ Bε.

Now define the smooth function Vε : Xr
→ R+ by

Vε(x) = ρε ∗ V̂(x) =

∫
Bε(x)

ρε(x − y)V̂(y) dy =

∫
Bε
ρε(y)V̂(x − y) dy.

For x ∈ Xr, use (4.8), Jensen’s inequality, and the Lipschitz continuity of Ψ to argue as
follows:

H(x,DVε(x)) = H
(
x,

∫
Bε
ρε(y)DV̂(x − y) dy

)
≤

∫
Bε
ρε(y)H(x,DV̂(x − y)) dy

≤

∫
Bε
ρε(y)

(
H(x − y,DV̂(x − y)) + K|y|

)
dy
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≤

∫
Bε
ρε(y)H(x − y,DV̂(x − y)) dy + Kε

≤ Kε.

Thus Vε is smooth on Xr and satisfies the following inequality in the classical sense:

(4.10) H(x,DVε(x)) ≤ Kε for x ∈ Xr.

In particular, for almost all t ∈ [0,T],〈
DVε(φ(t)), φ̇(t)

〉
− L(φ(t), φ̇(t)) ≤ H(x,DVε(x)) ≤ Kε.

Integrating over t ∈ [0,T] yields

Vε(x) = Vε(φ(T)) ≤ Vε(φ(0)) +

∫ T

0
L(φ(t), φ̇(t)) dt + KTε.

Then taking ε→ 0 gives us (4.9).
To proceed, take the infimum of (4.9) over all paths φ ∈ Φ to obtain

V̂(x) ≤ V̂(y)+inf
{
c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) = y, φ(T) = x, φ([0,T]) ⊂ X◦

}
.

Although the infimum above is only taken over all paths φ staying in X◦, it is still equal
to the infimum taken over all paths φ staying on X because of the continuity of the path
cost function (2.2). Specifically, for each φ ∈ ΦT with φ(0) = y, φ(T) = x, one can choose a
sequence of paths {φk} ⊂ ΦT such that φk([0,T]) ⊂ X◦ for all k ∈N and

lim
k→∞

(
‖φk − φ‖∞ + ‖φ̇k − φ̇‖1

)
= 0,

where ‖ · ‖1 denotes the L1 norm; then

|c(φk) − c(φ)| =

∣∣∣∣∣∣
∫ T

0

(〈
Ψ(φk(t)), [φ̇k(t)]+

〉
−

〈
Ψ(φ(t), [φ̇(t)]+

〉)
dt

∣∣∣∣∣∣
≤

∫ T

0

(
|Ψ(φk(t)) −Ψ(φ(t))| · |[φ̇(t)]+| + |Ψ(φk(t))| · |[φ̇k(t)]+ − [φ̇(t)]+|

)
dt→ 0

as k→∞. This approximation implies that

(4.11) V̂(x) ≤ V̂(y) + C(y, x).
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Finally, let y tend to X0 and use the continuity of the path cost function again to
conclude that

V̂(x) ≤ inf
{
C(y, x) : y ∈ X0

}
= V(x). �

Remark 4.5. We note that the Lipschitz continuity assumption of Ψ on X can be relaxed
to a continuity assumption of Ψ on X. If Ψ is continuous on X, then H is continuous on
X ×Rm. For ε > 0, let ω denote the modulus of continuity of H on X × Bn‖Ψ‖∞ : that is, for
ε > 0, define

ω(ε) = max
{
|H(x,u) −H(y,u)| : x, y ∈ X, |u| ≤ n‖Ψ‖∞, |x − y| ≤ ε

}
.

It is clear that limε→0+ω(ε) = 0. Then, in the above proof, we replace the step using
Lipschitz continuity by∫

Bε
ρε(y)H(x,DV′(x − y)) dy ≤

∫
Bε
ρε(y)

(
H(x − y,DV′(x − y)) + ω(ε)

)
dy

≤

∫
Bε
ρε(y)H(x − y,DV′(x − y)) dy + ω(ε)

≤ ω(ε).

4.2 Proof of Theorem 3.2

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let V be the solution to the source problem (SP). By Theorem 4.2, V
is the maximal solution to (4.1). By (3.5), V is Lipschitz continuous with ‖DV‖∞ ≤ n‖Ψ‖∞.
In particular, V is differentiable almost everywhere in X◦ and satisfies (3.9).

We therefore just need to show that V is the maximal solution to (3.9). Take an arbitrary
Lipschitz solution V̂ of (3.9). Repeating the proof of Proposition 4.4, for r > 0, ε ∈ (0, r)
and Vε = ρε ∗ V̂, we have that Vε is smooth on Xr and Vε satisfies in the classical sense that

H(x,DVε(x)) ≤ Kε for x ∈ Xr.

As Vε converges uniformly to V̂ in Xr, it follows from the stability of viscosity subsolutions
(Crandall et al. (1984)), that V̂ is a viscosity subsolution to

H(x,DV̂(x)) ≤ 0 on Xr.
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Since X◦ =
⋃

r>0 Xr, V̂ is a viscosity subsolution to (4.1). Thus since V is a maximal solution
to (4.1), we conclude that V ≥ V̂. �

4.3 Proofs of Theorems 3.3 and 3.4

Next, we deduce Theorem 3.3 from Theorem 3.2.

Proof of Theorem 3.3. For any φ ∈ ΦT with T ≥ 0, define φ̃ ∈ ΦT by φ̃(t) = φ(T − t) for all
t ∈ [0,T]. Define

L̃(x, v) =


n∑

i=1

Ψi(x) [vi]− if v ∈ TX ∩ Br,

+∞ otherwise.

Then L̃(x, v) = L(x,−v) if x ∈ X◦, or if x ∈ bd(X) and v ∈ TX(x) ∩ (−TX(x)). Since φ is
Lipschitz continuous it is differentiable almost everywhere, and if t ∈ [0,T] is such that
φ(t) ∈ bd(X) and φ̇(t) exists, then φ̇(t) ∈ TX(x)∩ (−TX(x)). Since this last set is a subspace,
φ̃ also satisfies these properties. Thus if we define

c̃(φ̃) =

∫ T

0
L̃(φ̃(t), ˙̃φ(t)) dt,

then c̃(φ̃) = c(φ). This fact and the definition (TP) of W(x) imply that

W(x) = inf {c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) = x, φ(T) ∈ Y}

= inf {c̃(φ̃) : φ̃ ∈ ΦT for some T ≥ 0, φ̃(0) ∈ Y, φ̃(T) = x} = Ṽ(x),(4.12)

where Ṽ denotes the solution to the source problem (SP) with running cost function L̃ and
source set Y.

To complete the proof, let H̃ be the maximized Hamiltonian corresponding to L̃. By
equation (4.12) and Theorem 3.2, Ṽ is the maximal solution to (3.9) with H̃ and Y replacing
H and X0. But for x ∈ X,

H̃(x,u) = max
v∈TX∩Br

(
〈u, v〉 − L̃(x, v)

)
= max

v∈TX∩Br
(〈−u,−v〉 − 〈Ψ(x), [−v]+〉) = H(x,−u).(4.13)

Comparing (3.9) and (3.10) and using this fact, we conclude that W = Ṽ is the maximal
solution to (3.10). This proves Theorem 3.3. �
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We now use Theorem 3.3 to prove Theorem 3.4.

Proof of Theorem 3.4. Let W satisfy the conditions of the theorem, and let W be the maximal
Lipschitz continuous solution to (3.10), or equivalently (by Theorem 3.3), the solution to
(TP). We show that W = W. Clearly W ≤W, since W and W solve (3.10) and W is maximal.
For the reverse inequality, the conditions of the theorem require that for each x ∈ X r Y,
there is a T > 0 and path φ̂ ∈ ΦT such that φ̂(0) = x, φ̂(T) ∈ Y and W(x) = c(φ̂), implying
that

W(x) = c(φ̂) ≥ inf {c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) = x, φ(T) ∈ Y} = W(x). �

Remark 4.6. As noted above, the viscosity supersolution test for (4.1) is vacuous. By the
proof of Theorem 3.2, being a Lipschitz viscosity subsolution of (4.1) is equivalent to being
a Lipschitz almost everywhere subsolution.

These two points allow us to deduce that any convex combination of viscosity solutions
of (4.1) is itself a viscosity solution of (4.1). In particular, let V be the maximal solution
of (4.1). Since 0 is a trivial solution, λV is also a solution for any λ ∈ [0, 1]. Hence,
(4.1) has infinitely many solutions, which is an interesting phenomenon mathematically,
and the question on finding the unique maximal solution is clearly not easy in general.
The verification result (Theorem 3.4) allows us to handle this difficulty efficiently in our
settings. In other PDE settings, in particular those in which both the Lagrangian and
Hamiltonian are superlinear, direct analogues of Theorem 3.4 may not be useful, as the
existence of optimal finite-time paths may not be guaranteed.

5. Large deviations in evolutionary game theory

We now apply the results developed above to solve control problems arising in large
deviations analyses of dynamic models from evolutionary game theory. We define a class
of Markov chains XN,η = {XN,η

k }
∞

k=0 parameterized by a population size N and a noise level
η > 0, and which run on discrete grids X N of mesh size 1

N in the simplex X. These Markov
chains describe the evolution of aggregate behavior in a population of N strategically
interacting agents. Each agent adjusts his actions over time by following a noisy best
response rule, under which the probabilities of choosing suboptimal actions vanish at
exponential rates in η−1.

In the classes of games we focus on here, the Markov chains typically approach and
then remain near “pure” states corresponding to strict Nash equilibria of the underlying
game, but the ergodicity of these processes ensure that transitions between such states
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must occur. Sandholm and Staudigl (2016) (henceforth SS16) develops large deviations
results that describe the waiting times until and likely paths of transitions between strict
Nash equilibria. The analysis concerns the small noise double limit, meaning that the noise
level η is first taken to zero, and then the population size N to infinity.3 Large deviation
properties of XN,η are described in terms of solutions to optimal control problems with
semilinear running costs and state constraints. Because existing verification theorems do
not allow for state constraints, analyses of examples in this paper were limited to cases
in which the state constraints did not bind.4 The results developed above allow us to
complete the large deviations analysis in considerably more general environments.

5.1 The model

5.1.1 Finite-population games

We consider games in which agents from a population of size N choose actions from the
common finite action set A = {1, . . . ,n}. The population’s aggregate behavior is described
by a population state x, an element of the simplex X = {x ∈ Rn

+ :
∑

i∈A xi = 1}, or more
specifically, the grid X N = X ∩ 1

NZ
n = {x ∈ X : Nx ∈ Zn

}. The standard basis vector ei ∈ X
represents the pure population state at which all agents play action i. States that are not
pure are called mixed population states.

We identify a finite-population game with its payoff function FN : X N
→ Rn, where

FN
i (x) ∈ R is the payoff to action i when the population state is x ∈ X N. Only the values

that the function FN
i takes on the set X N

i = {x ∈ X N : xi > 0} are meaningful, since at the
remaining states in X N action i is unplayed.

In a finite-population game, an agent who switches from action i to action j when
the state is x changes the state to the adjacent state y = x + 1

N (e j − ei). Thus at any given
population state, players playing different actions face slightly different incentives. To
account for this, we introduce the clever payoff function FN

i→· : X N
i → R

n to denote the payoff

opportunities faced by i players at each state x ∈ X N
i . The jth component of the vector

FN
i→·(x) is thus

(5.1) FN
i→ j(x) = FN

j (x + 1
N (e j − ei)).

Using this notation, we define a state x ∈ X N to be a Nash equilibrium of FN if no agent can
3We discuss the reverse order of limits in Section 7.
4More precisely, the relevant control problems were extended to be defined on the affine hull of the

simplex. Solutions to these problems were obtained using verification theorems due to Boltyanskii (1966)
and Piccoli and Sussmann (2000) (see also Schättler and Ledzewicz (2012)), and the optimal controlled
trajectories for source states in the simplex were shown to reach the target set without leaving the simplex.
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obtain a higher payoff by switching actions:

(5.2) i ∈ argmax
j∈S

FN
i→ j(x) whenever xi > 0.

In the examples we focus on here, agents are matched against all opponents to play
a symmetric two-player normal form game A ∈ Rn×n, where Ai j is the payoff that an
agent playing i obtains when matched against an agent playing j. As self-matching is not
allowed, then the average payoffs obtained by agents playing action i is

(5.3) FN
i (x) = 1

N−1 e′iA(Nx − ei) = (Ax)i + 1
N−1 ((Ax)i − Aii).

In our examples, the normal form game A is a coordination game, meaning that

(5.4) Aii > A ji for all distinct i, j ∈ A ,

so that if one’s match partner plays i, one is best off playing i oneself. One can verify that
if FN is the population game obtained by matching in A without self-matching, then the
Nash equilibria of FN are precisely the pure population states.

5.1.2 Noisy best response protocols and unlikelihood functions

In our model of stochastic evolution, agents occasionally receive opportunities to
switch actions. Upon receiving a revision opportunity, an agent selects a action by em-
ploying a noisy best response protocol ση : Rn

→ int(X) with noise level η > 0, a function that
maps vectors of payoffs to probabilities of choosing each action. When a revising agent’s
evaluation of the actions’ payoffs is described by the vector π, then the probability that
this agent proceeds by playing action j is σ j(π).

Under a noisy best response protocol, the probability of playing an action that is
suboptimal at π vanishes at a well-defined rate as η approaches zero. These rates are
captured by the unlikelihood function Υ : Rn

→ Rn
+ associated with the protocols {ση}η∈(0,η̄),

defined by

(5.5) Υ j(π) = − lim
η→0

η log σηj (π),

Since (5.5) is equivalent to

σηj (π) = exp
(
−η−1(Υ j(π) + o(1))

)
.
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Υ j(π) is the rate of decay of the probability that action j is chosen as η approaches zero.
We assume that the unlikelihood function Υ is Lipschitz continuous, and that the actions
with unlikelihood zero at π are the optimal actions at π.

(5.6) Υ j(π) = 0 if and only if j ∈ argmax
k∈S

πk.

Condition (5.6) implies that the probability with which optimal actions are chosen under
ση(π) approaches one as η approaches zero.

We focus on protocols derived from the additive random utility model, in which choices
are made after payoffs are perturbed by i.i.d. random shocks εηk :

(5.7) σηj (π) = P

(
j ∈ argmax

k∈S
(πk + εηk )

)
Example 5.1. Logit choice. If each εηk has a Gumbel distribution with mean zero and variance
η2π2

6 , then (5.7) generates the logit choice protocol with noise level η (Blume (1997)). Choice
probabilities under this protocol can be stated in closed form as

(5.8) σηj (π) =
exp(η−1π j)∑

k∈S exp(η−1πk)
.

(see Anderson et al. (1992)). It is easy to verify that logit choice generates the piecewise
linear unlikelihood function

(5.9) Υ j(π) = max
k∈S

πk − π j.

For later convenience, we express (5.9) in vector form as

(5.10) Υ(π) =
(
max

k∈S
πk

)
1 − π,

where 1 is the column vector of 1s. _

Example 5.2. Probit choice. If each εηk has a normal distribution with mean 0 and variance
η, then (5.7) becomes the probit choice protocol (Myatt and Wallace (2003)). There is no
elementary closed-form expression for this protocol. But by applying Cramér’s theorem
on large deviations of sums of i.i.d. random variables (Dembo and Zeitouni (1998)),
Dokumacı and Sandholm (2011) derive a piecewise quadratic expression for the protocol’s
unlikelihood function. When there are n = 3 actions, this unlikelihood function is
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(5.11) Υ1(π) =



0 if π1 ≥ π2 ∨ π3,
(π1−π2)2

2 if π2 ≥ π1 ≥ π3, or if π2 ≥ π3 ≥ π1 and π1+π2
2 ≥ π3,

(π1−π3)2

2 if π3 ≥ π1 ≥ π2, or if π3 ≥ π2 ≥ π1 and π1+π3
2 ≥ π2,

(π1−π2)2+(π1−π3)2+(π2−π3)2

6 otherwise. _

The differences between the logit and probit unlikelihood functions (5.9) and (5.11) can
be traced to the tail properties of the Gumbel and normal distributions. The thick right
tail of the Gumbel distribution leads logit unlikelihoods to grow linearly, and to depend
only on underperformance relative to the optimal payoff. In contrast, normal noise leads
probit unlikelihoods to grow quadratically, and allows them to depend on the payoffs
of three or more actions—for instance, when the action at issue generates a markedly
lower payoff than at least two other actions. For further discussion, see Dokumacı and
Sandholm (2011) and Arigapudi (2018).

5.1.3 The stochastic evolutionary process

A population game FN and a revision protocol ση define a stochastic evolutionary
process. The process runs in discrete time, with each period taking 1

N units of clock time.
During each period, a single agent is chosen at random from the population to update his
action using the noisy best response protocol ση.

This procedure described above generates a Markov chain XN,η = {XN,η
k }

∞

k=0 on the state
space X N. The transition probabilities PN,η

x,y for the process XN,η are given by

(5.12) PN,η
x,y ≡ P

(
XN,η

k+1 = y
∣∣∣ XN,η

k = x
)

=

xi σ
η
j (F

N
i→·(x)) if y = x + 1

N (e j − ei), j , i∑n
i=1 xi σ

η
i (FN

i→·(x)) if y = x.

If the revision opportunity is assigned to an agent playing action i (probability xi), and
this agent chooses to switch to action j , i (probability σηj (F

N
i→·(x))), then the increment in

the state is 1
N (e j − ei): there is one fewer i player and one more j player.

5.2 Large deviations analysis

When the noise level η is small, typical sample paths of the process XN,η are sample
paths of an exact-best-response process XN,0, under which revising agents either switch
to or continue playing optimal actions. Since A is a coordination game, we expect the
recurrent classes of the exact-best-response process to be the pure population states ei,
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corresponding to the pure Nash equilibria of A.5

To evaluate transitions between Nash equilibria, we study the behavior of the process
XN,η in the small noise double limit. First, we take the noise level η to zero, leaving the
population size N and hence the state space X N fixed. Following Freidlin and Wentzell
(1984) and Catoni (1999), we describe the large deviation properties in this small noise
limit as solutions to discrete optimal control problems on X N. As the population size
is next made large, the state spaces X N become ever-finer grids in the simplex X, and
the discrete optimal control problems are approximated arbitrarily well by continuous
optimal control problems. It is to these latter problems that we apply the results on
Hamilton-Jacobi equations developed above.

5.2.1 The small noise limit

Large deviation properties in the small noise limit are described in terms of solutions
to path cost minimization problems on X N, where the source is a pure population state.
To start the large deviations analysis, we define the cost of a step from state x ∈ X N to state
y ∈ X N to be the exponential rate of decay of the conditional probability observing this
increment as η approaches 0:

(5.13) cN
x,y = − lim

η→0
η log PN,η

x,y .

Using definitions (5.5) and (5.12), we can represent step costs in terms of the game’s payoff

function and the protocol’s unlikelihood function:

(5.14) cN
x,y =


Υ j(FN

i→·(x)) if y = x + 1
N (e j − ei) and j , i,

min
i: xi>0

Υi(FN
i→·(x)) if y = x.

The key case in (5.14) is the first one, which says that the cost of a step in which an i player
switches to action j is the unlikelihood of action j given i’s current payoff opportunities.

Next we consider finite-length paths through the state space X N, which are sequences
φN = {φN

k }
`
k=0 of length ` < ∞ in which successive states are either adjacent in X N or

identical. We let ΦN
` denote the set of length-` paths. Since each period lasts 1

N time units,
the duration of a length-` path in clock time is T = `/N.

The cost of a path φN = {φN
k }
`
k=0 of length ` is the sum of the costs of its steps:

5While we conjecture that these pure states are the only recurrent classes of this process, we do not have
a proof that this is the case. The difficulty lies in the discreteness of the state space X N, as the expected
result holds in the large population limit. See SS16 Sections 3.1 and 4.2 for discussions. In the examples in
Section 6, one can verify that the pure states are the recurrent states of the exact-best-response process.
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(5.15) cN(φN) =

`−1∑
k=0

cN
φN

k ,φ
N
k+1
.

Definitions (5.12) and (5.14) imply that the cost of a path is the rate at which the probability
of following this path decays as the noise level vanishes: for fixed N, we have

P
(
XN,η

k = φN
k , k = 0, . . . , `

∣∣∣ XN,η
0 = φN

0

)
=

`−1∏
k=0

PN,η
φN

k ,φ
N
k+1
≈ exp(−η−1cN(φN)).

where ≈ refers to the order of magnitude in η as η approaches zero.
Finally, we define the transition cost from state ei to state e j and the exit cost from state

ei for population size N:

CN(ei, e j) = min{cN(φN) : φN
∈ ΦN

` for some ` ≥ 0, φN
0 = ei, φ

N
` = e j},(5.16)

CN(ei, e−i) = min
j,i

CN(ei, e j).(5.17)

Freidlin and Wentzell (1984) and Catoni (1999) show that these quantities describe the
large deviations properties of XN,η in the small noise limit (cf. SS16 Sections 3.4 and 6.2).
For instance, suppose the process XN,η is initialized at state ei, and let τN,η denote the time
at which the process first reaches the set {e j : j , i}. Then Proposition 4.2 of Catoni (1999)
implies that

(5.18) lim
η→0

η logEτN,η = CN(ei, e−i).

Thus the exit cost CN(ei, e−i) is the exponential rate of increase of the expected time for the
process travel from ei to another Nash equilibrium as η approaches zero. For its part, the
transition cost CN(ei, e j) is useful for determining the limiting behavior of the stationary
distributions of XN,η, as we explain in Example 6.2 below.

5.2.2 The small noise double limit

In general, the discrete transition cost problem (5.16) and the discrete exit cost problem
(5.17) are computationally demanding. SS16 show that taking the second limit in the
population size allows one to approximate the solutions to these discrete problems with
solutions to continuous, state-constrained optimal control problems.

The first step in doing so is to propose an analogue of the discrete path cost function
(5.15) for continuous paths. Equations (5.14) and (5.15) show that the cost generated by a
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switch to action j from any other action at state x is Υ j(FN
i→·(x)), and that the cost of a path

is the sum of the costs of its steps. This suggests the following definition of the cost of a
continuous path:6

(5.19) c(φ) =

∫ T

0
〈Υ(F(φ(t))), [φ̇(t)]+〉dt, where F(x) = Ax.

We turn now to constraints. To arise as the limit of discrete paths φN whose transitions
are between adjacent states in X N, a continuous path φ should satisfy the state space
restriction φ(t) ∈ X for all t, and the speed restriction |φ̇(t)| ≤ 2 for almost all t. We
incorporate these restrictions explicitly into the following expression for the running costs
that define the path cost function (5.19):

(5.20) L(x, v) =

〈Υ(F(x)), [v]+〉 if v ∈ TX(x) ∩ B2,

+∞ otherwise.

Of course, Remark 2.1 tells us that the speed restriction in (5.20) is inconsequential.
To justify focusing on continuous control problems defined by (5.20), we require an

approximation that relates the minimal costs in the discrete minimization problems (5.16)
and (5.17) with discrete path cost function (5.15) to solutions of continuous minimization
problems with cost function (5.19). With this aim in mind, we define

C(ei, e j) = min{c(φ) : φ ∈ ΦT for some T ≥ 0, φ(0) = ei, φ(T) = e j},(5.21)

C(ei, e−i) = min
j,i

C(ei, e j).(5.22)

Theorem 5.6 of SS16 shows that under mild regularity conditions, the following approxi-
mations hold, where (5.24) is an immediate consequence of (5.23):

lim
N→∞

1
N

CN(ei, e j) = C(ei, e j),(5.23)

lim
N→∞

1
N

CN(ei, e−i) = C(ei, e−i).(5.24)

6Definition (5.19) ignores the the second case of the step cost (5.14), which indicates that staying still is
costly at states where no agent is playing a best response. Because staying still does not help advance the
state toward the target set, ignoring this possibility is without loss. For more on this, and for a heuristic
derivation of (5.19), see SS16 Section 4.3.

–25–



5.2.3 Optimal paths when state constraints do not bind

SS16 compute exit costs (5.22) and transition costs (5.21) for three-action coordination
games (5.4) under the logit choice protocol (5.8). To ensure that the state constraints in
problems (5.22) and (5.21) do not bind, they focus on coordination games satisfying two
conditions. To state these conditions, we let Ai denote the ith row of A, so that the payoff

to action i at state x is Fi(x) = Aix.

there is a unique x∗ ∈ X◦ such that Aix∗ = A jx∗ for all i, j ∈ A ,(5.25)

Ai(ei − ek) > A j(ei − ek) for all i, j, k ∈ A with i < { j, k}.(5.26)

Condition (5.25) says that normal form game A admits an interior Nash equilibrium x∗,
at which all three actions earn equal payoffs. Condition (5.26), the marginal bandwagon
property of Kandori and Rob (1998), says that switches to action i from other actions benefit
action i more than other actions.

Figure 1 illustrates both the assumptions above and the resulting form of the optimal
feedback controls for problems (5.22) and (5.21). The diagrams divide the simplex X into
best response regions,

B i = {x ∈ X : Aix ≥ A jx for all j ∈ A},

in which each action i is optimal. The interior Nash equilibrium x∗ posited in condition
(5.25) is the point where the three regions intersect. Let B i j = B i

∩B j denote the boundary
between the best response regions for actions i and j. Condition (5.26) amounts to the
assumption that these boundaries do not emanate from x∗ at “sharp angles”.7

In coordination games, the direct path from any state in best response region B i to
equilibrium ei has zero cost under (5.19). Thus to solve the exit problem (5.22), it is
enough to determine the least cost path from ei to the complement of B i. Under the
assumptions from SS16, the optimal feedback control for the exit problem takes the form
shown in Figure 1(i): B1 is divided into subregions in which motion is in direction e2 − e1

(i.e., agents switch from action 1 to action 2) or in direction e3−e1, and the optimal exit path
from e1 depends on whether the boundary between the subregions is to the left or right of
e1. Likewise, to solve transition problems with target state ek, it is enough to determine the
least cost path from each state outside of B i to a state in B i. Figure 1(ii) illustrates a typical
optimal feedback control. Notice that in both pictures, the optimal feedback control at

7In Figure 1(ii), B12 is the segment from x∗ to xi j. Condition (5.26) requires that the angle at which B12

proceeds from x∗ be in a 60◦ range, that which restricts xi j to lie between points x̃ik and x̃ jk.
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e1

e2 e3

x12˜

x1ˆ

x23

x12 x31

x13˜

x*B2 B3

(i) exit from e1

e1

e2 e3

x23˜

x23ˆ

x23

x12 x31

x13˜

x*
B3

(ii) transitions to e3

Figure 1: Optimal feedback controls under conditions (5.25) and (5.26).

almost all states is in one of the basic directions e j − ei, as suggested in Remark 3.1; an
exception is the forced motion on segment from state x12 to state x∗ in Figure 1(ii).

For present purposes, what is most important about conditions (5.25) and (5.26) is
that they ensure that the state constraints in problems (5.22) and (5.21) do not bind. SS16
establish this by extending these problems to be defined on aff(X) in a suitable way, solving
the extended problems using results of Boltyanskii (1966) and Piccoli and Sussmann (2000),
and showing that the restrictions of these solutions to X are forward invariant on X. But
in games in which conditions (5.25) and (5.26) fail, or if choice protocols other than logit
(5.8) are used, then state constraints may bind, and this approach cannot succeed.

6. Optimal exit and transition paths with binding state constraints

In this section, we use Theorem 3.4 to solve exit and transition problems without
placing restrictions on the positions of the best response regions. Indeed, along many of
the optimal paths we compute, the constraint to remain in the simplex binds. Here we
confine ourselves to discussing key features of the feedback controls and the solutions to
problems (5.21) and (5.22). The formulas for the optimal value functions and all details
about their verification are presented in Appendices B and C.

Example 6.1. An exit problem. Consider evolution under the logit rule (5.8) in the following
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e1

e3e2

x12

y12 y13

x13

x̂

B3B2

ŷ

Figure 2: The optimal feedback control for the problem of exit from e1 in games of form (6.1).

class of coordination games:

(6.1) A =


a 0 0
0 b −(2a + b)
0 −(2a + c) c

 , with a + c ≥ b > c > 0.

Games of form (6.1) have five Nash equilibria, three at the vertices, and two at boundary
states x12 and x13 (see Figure 2 and equation (B.3)); in particular, they do not admit interior
Nash equilibria. Best response regions B2 and B3 do not intersect, and boundaries B12 and
B13 are vertical lines. It is easy to verify that region B2 is larger than region B3. Evidently,
games in this class satisfy neither condition (5.25) nor condition (5.26) from Section 5.2.3.

We first consider the problem of exit from equilibrium e1. As discussed above, it is
enough to determine the least cost paths from all states in best response region B1 to states
outside this region. Since within this region motion in basic directions that increases the
use of action 1 has zero cost, there are zero-cost paths out of B1 from states below segment
x12 ŷ, from which B2 can be reached at zero cost by proceeding northwest in direction
e1 − e3, as well as from states below segment ŷx13, from which B3 can be reached at zero
cost by proceeding northeast in direction e1 − e2.

The optimal feedback control from the subset of B1 that remains is illustrated in Figure
2. From the interior states in this subset motion proceeds in one of two basic directions.
But unlike in Figure 1(i), the directions followed here increase the use of optimal action 1
rather than decreasing it: basic direction e1 − e3 or e1 − e2 is followed at zero cost until a

–28–



state constraint binds. From that moment forward, motion proceeds along a boundary of
X, in direction e2 − e1 or direction e3 − e1, until B2 or B3 is reached. Thus as in Figure 1(i),
the optimal exit path from e1 proceeds along the boundary of X, but here the boundary
path arises because of a binding state constraint.

In the figure, the optimal exit path proceeds along the boundary from e1 to e2. Let
φ12 : [0, 1] → X be the parameterization of this path with constant speed |φ̇12(t)| = 2; that
is, φ12(t) = (1 − t, t, 0)′. This path stays in best response region B1 until time t = x12

2 = a
a+b ,

when it reaches state x12
∈ B12; after this, the remaining motion to state e2 has zero cost.

Thus using (5.19) and (5.10), we can compute the exit cost from equilibrium e1:

(6.2)
C(e1, e−1) = c(φ12) =

∫ 1

0
〈Υ(Aφ12(t)), [φ̇12(t)]+〉dt =

∫ x12
2

0
〈(1A1

− A)φ12(t)), e2〉dt

=

∫ x12
2

0
(A1
− A2)φ12(t) dt =

∫ a/(a+b)

0
(a(1 − t) − bt) dt =

1
2
·

a2

a + b
.

The reason that the optimal control requires “retreating” followed by motion along a
boundary can be explained as follows. In an extended version of this problem without
state constraints, with the boundaries B12 and B13 of the best response regions extending
vertically beyond the triangle, motion in direction e1 − e3 or e1 − e2 would ultimately reach
a boundary, allowing escape from B1 at zero cost. The constraint that the state remains in
X precludes following such a path. However, by proceeding, say, northwest, in direction
e1 − e3, one reduces the payoff difference between actions 2 and 1, and pays no cost in
order to do so. Thus the optimal paths reduce this payoff difference as much as possible
before at last having agents switch to suboptimal action 2. _

Example 6.2. Transition problems and stochastic stability. Following Foster and Young (1990),
Kandori et al. (1993), and Young (1993), much work on stochastic evolutionary game
dynamics concerns the identification of stochastically stable states. These are the points in
the simplex where the mass in the stationary distribution of the process XN,η becomes
concentrated as the parameters of the process approach their limiting values. Most work
on stochastic stability in games focuses on processes in which the probabilities of sub-
optimal choices are state independent, so that the improbability of a transition between
equilibria is determined by the number of suboptimal choices that the transition requires.
The characterization of costs of transitions in terms of control problems in SS16 allows one
to evaluate stochastic stability in the small noise double limit when mistake probabilities
are payoff dependent, provided that the control problems can be solved. The results in
the present paper allow us to solve these control problems even in environments in which
state constraints bind.
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e1

B1

x12

y12

x13

y13e2 e3

(i) transitions to e1

e1

e2

B2

y12 y*

x12

x13

y13 e3

(ii) transitions to e2

Figure 3: Optimal feedback controls for transition problems in games of form (6.1). The diagram of
optimal transition paths to e3 resembles the mirror image of panel (ii).

We illustrate these ideas using the class of games (6.1) from the previous example. To
begin the stochastic stability analysis, we determine the costs of the least-cost transition
paths between each ordered pair of distinct equilibria. As noted in Section 5.2.3, it is
enough to solve the target problem for each equilibrium ei, or, equivalently, for each best
response region B i.

The optimal feedback controls for the transition problems are presented in Figure 3.
Panel (i) shows that the optimal paths to region B1 from region B2 are in direction e1 − e2,
and that the optimal paths to B1 from B3 are in direction e1 − e3. The state constraints do
not appear to bind in this problem, and indeed the problem could be solved using the
approach from SS16.

Panel (ii) of the figure shows the optimal paths to B2. Here motion is in direction e1− e3

until either B2 or the x3 = 0 boundary is reached; in the latter case, the trajectory proceeds
along the boundary in direction e2 − e1 until B2 is reached. The optimal paths to B3 take
the same form, mutatis mutandis. Evidently, in these problems the state constraints bind.

To determine the stochastically stable state, we name and indicate the costs of the
optimal transition paths. For each ordered pair (i, j) of distinct actions, let φi j denote the
direct boundary path from ei to e j.8 Then the foregoing analysis shows that the transition
costs are as follows:

8Of course, the portion of this path in B j generates zero cost.
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C(e2, e1) = c(φ21), C(e1, e2) = c(φ12), C(e1, e3) = c(φ13),

C(e3, e1) = c(φ31), C(e3, e2) = c(φ31) + c(φ12), C(e2, e3) = c(φ21) + c(φ13).

Next, following Freidlin and Wentzell (1984) and Young (1998), for each equilibrium ei

we determine the minimal cost of a tree with root ei on nodes {e1, e2, e3}, where the cost of
a tree is the sum of the transition costs of its directed edges. Since the optimal transitions
between e2 and e3 follow indirect routes through e1, it is easy to verify that the minimum
cost trees are the unique ones that do not use these transitions. Letting R(ei) denote the
minimum cost of an ei tree, we have

(6.3)

R(e1) = C(e2, e1) + C(e3, e1) =
1
2

(
b2

a + b
+

c2

a + c

)
,

R(e2) = C(e1, e2) + C(e3, e1) =
1
2

(
a2

a + b
+

c2

a + c

)
,

R(e3) = C(e2, e1) + C(e1, e3) =
1
2

(
b2

a + b
+

a2

a + c

)
,

(cf. Lemma B.1 and equation (B.3)). By condition (6.1), R(e3) > R(e2), and R(e1) < R(e2) if
and only if a > b. Thus in games of form (6.1) under the logit rule, display (6.3) and SS16
Theorem 6.3 imply that the equilibrium with the highest payoff is stochastically stable.

An intuition for this result is as follows. Since all transition costs are determined by
paths through e1, the minimum tree costs appearing in display (6.3) are determined by the
two-action pure coordination games with actions 1 and 2 and with actions 1 and 3. Since
A33 = c < b = A22, there is more selection pressure against action 3 in the latter game than
against action 2 in the former, so action 3 cannot be stochastically stable.9 Since action 3
affects both R(e1) and R(e2) through the addition of the edge from e3 to e1, the selection
between e1 and e2 comes down to the selection between them in the pure coordination
game with actions 1 and 2 only, where the equilibrium with the higher payoff is selected.
_

Example 6.3. A transition problem in a potential game. We next consider the problem of
transitions to equilibrium e3 in the following class of games:

(6.4) A =


a 0 0
0 b −d
0 −d c

 with a, b, c, d > 0 and a > d >
√

bc.

9To be more precise, note that the inequality c < b is enough to conclude that R(e2) < R(e3).
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e1
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x13

y12 y13

x12

y13˜

y12˜

Figure 4: Optimal feedback controls for the problem of transitions to state e3
in potential games of form (6.4).

Like those in class (6.1), games in class (6.4) admit five Nash equilibria, three at the vertices,
and two at boundary states x12 and x13 (see Figure 4 and equation (C.1)). The condition
d2 > bc implies that the point x∗ ∈ aff(X) at which all actions earn the same payoff has
x∗1 < 0 (equation (C.2)). But the condition a > d ensures that games of form (6.4) do satisfy
the marginal bandwagon property (5.26). In addition, the symmetry of matrix A—or,
more precisely, the symmetry of A as a bilinear form on TX—defines A as a (symmetric
two-player) potential game.10

Figure 4 presents the optimal feedback control for the transition problem to equilibrium
e3. We observe that the optimal paths from states in triangle e2y13 ỹ13 each have a portion
on segment y12y13, where the nonnegativity constraint for action 1 binds.

The combination of the potential game (6.4) with the logit protocol (5.8) causes the
Markov chain XN,η to have a variety of special properties.11 One such property is illustrated
in the southwest portion of Figure 4. From almost all states in the triangle e2y12 ỹ12 there
are multiple optimal directions of motion: above segment x12y12, all convex combinations
of e2 − e1 and e3 − e1 are optimal directions; below this segment, all convex combinations
of e1 − e2 and e3 − e2 are optimal. If a path ever hits segment x12y12, there is forced motion
along this segment until state y12 is reached.

The equality of cost integrals that is implied by the existence of multiple optimal
controls, along with the symmetry property that defines potential games, suggests that

10See Monderer and Shapley (1996) and Sandholm (2010a, Example 3.4).
11For instance, XN,η is reversible: see Blume (1997) and Sandholm (2010b, Section 11.5).
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the combination of potential games and logit choice generates a running cost function
that satisfies an integrability property. This is indeed the case. At states x in best response
region B i, we can use the logit unlikelihood function (5.10) to express the cost of motion
(5.20) in direction e j − ei, j , i, as

L(x, e j − ei) = 〈Υ(Ax), [e j − ei]+〉 = 〈(1Ai
− A)x, e j〉 = 〈(1Ai

− A)x, e j − ei〉.

Thus the costs of paths φ moving from states φ(t) = x ∈ B i in directions φ̇(t) ∈ conv({e j −

ei : j , i}) behave like line integrals with respect to the vector field

Ψ̂(x) = (1Ai
− A)x.

Since conv({e j− ei : j , i}) ⊂ TX, the relevant integrability condition for vector field Ψ̂ only
concerns displacement directions in the tangent space TX. And because the columns of
1Ai are constant vectors, the restriction of DΨ̂(x) to a bilinear form on TX is

(6.5) DΨ̂(x) = −A as an element of L2(TX,R).

Potential games are defined by the property that the bilinear form (6.5) is symmetric,
giving us the anticipated integrability condition on the vector field Ψ̂.12 _

The previous examples show that retaining the logit choice rule (5.8) but dropping the
payoff assumptions (5.25) and (5.26) from SS16 can cause the state constraints in problems
(5.22) and (5.21) to bind. Applying the results in the present paper, Arigapudi (2018)
studies the exit problem in coordination games satisfying (5.25) and (5.26), but under the
assumption that agents follow the probit choice rule (Example 5.2). He finds that the
piecewise quadratic specification of the probit unlikelihood function (5.11) can lead state
constraints to bind in the exit problem even when restrictions (5.25) and (5.26) on the game
are maintained. Thus changes in any of the assumptions used in SS16 can lead to control
problems in which explicit accounting for state constraints is necessary.

7. Concluding remarks

This paper analyzes optimal control problems with semilinear cost functions and state
constraints, characterizing solutions to source and target problems as maximal viscosity

12See SS16 Section 7.5.1 for a related discussion, and see Appendix C—specifically, equation (C.5) and the
surrounding arguments—to see how integrability is used to verify the optimality of the value function in
triangle e2y12 ỹ12.
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subsolutions to Hamilton-Jacobi equations, and providing a corresponding verification
theorem. These results are used to analyze large deviations problems arising in stochastic
dynamic models of play in large population games, providing explicit descriptions of the
waiting times until exit from and transitions between stable equilibrium states.

Following SS16, the large deviations analysis in this paper takes place in the small
noise double limit, in which the noise level η is first taken to zero, and then the population
size N to infinity. It is at least as interesting to consider the large population double limit,
which by taking the limit in N first emphasizes the role of averaging effects in equilibrium
breakdown and transition. We conjecture that in games with simple payoff structures,
predictions based on the two distinct orders of limits agree.

Sandholm and Staudigl (2018, 2019) study large deviations properties of the process
XN,η in the large N limit for fixed η, characterizing these properties in terms of solutions
to certain convex optimal control problems. In light of these results and those of the
present paper, the key argument needed to prove agreement of the two double limits is a
selection theorem, one showing that the solutions to the state-constrained Hamilton-Jacobi
equations arising for fixed positive η converge to the maximal solutions to the Hamilton-
Jacobi equations arising in the limit. The latter are precisely the equations studied in the
present paper. Such selection results and their consequences will be developed in future
research.

Appendix

A. Derivation of equation (4.7)

We present here the derivation of equation (4.7). Let | · |2 be the `2 norm on Rn. Fix
y ∈ X◦. There exists r > 0 such that U3r(y) ⊂ X◦, where U3r(y) is the open `2 ball with
center y and radius 3r. To derive (4.7), we use the fact that U2r(y) ⊂ X◦ to show that

(A.1) V̂(x) − V̂(y) ≤ K|x − y|2 for all x ∈ Ur(y),

for any fixed K > n‖Ψ‖∞. The corresponding inequality for V̂(y) − V̂(x) then follows by
applying (A.1) and noting that U2r(x) ⊂ X◦ as x ∈ Ur(y).

To establish (A.1), construct a smooth function f : [0, 2r)→ R such that
f (s) = Ks for s ∈ [0, r],
f ′(s) ≥ K for s ∈ (0, 2r),
lims→2r f (s) = +∞.
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Let ϕ(x) = V̂(y) + f (|x − y|2) for all x ∈ U2r(y) be our test function. Geometrically, ϕ has
a cone shape, blows up on the boundary of U2r(y), and is smooth in U2r(y) r {y}. It is
clear that V̂ − ϕ has a maximizer z in U2r(y). Suppose that z , y. Then by the viscosity
subsolution test, we have H(z,Dϕ(z)) ≤ 0 with

Dϕ(z) = f ′(|z − y|2)
z − y
|z − y|2

and |Dϕ(z)| ≥ |Dϕ(z)|2 = f ′(|z − y|2) ≥ K,

which contradicts (3.5). Thus y is the unique maximizer of V̂ −ϕ in U2r(y), which implies
(A.1).

B. Analyses of Examples 6.1 and 6.2

B.1 Generalities

This appendix and the next use the verification theorem, Theorem 3.4, to solve the
exit and transition problems for the examples from Section 6. We start by introducing a
convenient notation for working with symmetric normal form games A ∈ Rn×n. We use
superscripts to refer to rows of A and subscripts to refer to columns. Thus Ai is the ith row
of A, A j is the jth column of A, and Ai

j is the (i, j)th entry. These objects can be obtained
by pre- and post-multiplying A by standard basis vectors:

Ai = e′iA, A j = Ae j, Ai
j = e′iAe j.

In a similar fashion, we use super- and subscripts of the form i − j to denote certain
differences obtained from A.

Ai− j = Ai
− A j = (ei − e j)′A, Ai− j

k−` = Ai
k − Ai

` − A j
k + A j

` = (ei − e j)′A(ek − e`).

If x ∈ B i and x + ε(ek − e j) ∈ B i for some ε > 0, then (5.20) and (5.10) imply that the cost
of motion from x in direction ek − e j with k , j under logit choice is

(B.1) L(x, ek − e j) = 〈Υ(Ax), [ek − e j]+〉 = 〈Aix 1 − Ax, ek〉 = Ai−kx.

Likewise, Lemma B.1 presents two formulas for the costs of paths that move in a basic
direction within a single best response region under logit choice.

Lemma B.1. Let x ∈ B i, and let y = x + d (ek − e j) ∈ B i, where d ≥ 0. Define φ : [0, 1]→ X by
φ(t) = (1 − t)x + ty.

(i) The cost of path φ is c(φ) =
1
2

dAi−k(y + x).

(ii) If in addition y ∈ B ik and Ai−k
j−k , 0, then c(φ) =

1
2

(Ai−kx)2

Ai−k
j−k

.
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Proof. For part (i), use formulas (5.19) and (5.10) and the fact that segment xy lies in B i to
compute as follows:

c(φ) =

∫ 1

0
[φ̇t]′+(1Ai

− A)φt dt =

∫ 1

0
de′k(1Ai

− A)φt dt = dAi−k
∫ 1

0
φt dt =

1
2

dAi−k(y + x).

For part (ii), note that if y ∈ B ik = B i
∩ Bk, then Ai−ky = 0, and since y = x + d(ek − e j) we

have d = Ai−kx/Ai−k
j−k; thus substitution into (i) yields the result. �

Next, we introduce a concise notation for Hamiltonians arising in our analysis. By
Theorem 3.4, verifying that a function W is a solution to a target problem (TP) requires
showing that W satisfies the subsolution condition H(x,−DW(x)) ≤ 0 at almost all x ∈ X◦.
By definitions (3.3) and (3.4) and Remark 3.1, this condition reduces to

max
v∈E

H (x,−DW(x), v) ≤ 0, where E = {e j − ei : i , j} ∪ {0}.

We therefore introduce the notation

HW(x, v) = H (x,−DW(x), v) = −DW(x)v − L(x, v).

In this notation, checking the subsolution condition at state x ∈ X◦ requires showing that

(B.2) HW(x, v) ≤ 0 for v ∈ E .

This inequality will bind when v is an optimal control at x, and of course when v = 0.

B.2 Facts about games of form (6.1)

We proceed with the analysis of exit and transition costs for coordination of games of
the form (6.1) under the logit choice rule (5.8). Figures 2 and 3 show the best response
regions B1, B2, and B3 for this game. The vertices of these regions besides e1, e2, and e3

are

(B.3)
x12 = ( b

a+b ,
a

a+b , 0), x13 = ( c
a+c , 0,

a
a+c ),

y12 = (0, 2a+b
2(a+b) ,

b
2(a+b) ), y13 = (0, c

2(a+c) ,
2a+c

2(a+c) ).

We also note these facts computed from (6.1) for later use:

(B.4)

A1−2 = (a −b 2a + b), A1−3 = (a 2a + c −c), A2−3 = (0 2a + b + c −(2a + b + c)),

A1−2
1−2 = a + b, A1−2

3−1 = a + b, A1−2
3−2 = 2(a + b),

A1−3
1−3 = a + c, A1−3

2−1 = a + c, A1−3
2−3 = 2(a + c),

A2−3
1−3 = 2a + b + c, A2−3

2−1 = 2a + b + c, A2−3
2−3 = 4a + 2b + 2c.
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B.3 Exit from state e1

Here we verify that the optimal value function W to the target problem associated with
the exit problem for state e1 is that induced by the feedback control in Figure 2. At states
in B2

∪ B3, W = 0. To define W at states in B1, let

W2(x) =
1
2

(A1−2z(x))2

A1−2
1−2

, where z(x) = x + x3(e1 − e3), and(B.5)

W3(x) =
1
2

(A1−3y(x))2

A1−3
1−3

, where y(x) = x + x2(e1 − e2).

For x ∈ B1 with x2 ≤ x12
2 , consider a path that first proceeds from x in direction e1 − e3 until

reaching boundary state z(x), and then proceeds southwest along the face of X to state x12.
The first segment of this path has cost 0, and Lemma B.1(ii) implies that second segment
has cost W2(x). Likewise, for x ∈ B1 with x3 ≤ x13

3 , consider a path that first proceeds from
x in direction e1− e2 until reaching boundary state y(x), and then proceeds southeast along
the face of X to state x13. This path has cost W3(x).

The line in aff(X) on which W2(x) = W3(x) is defined by the linear equation

(B.6)
(x1 + x3)a − bx2
√

a + b
=

(x1 + x2)a − cx3
√

a + c
.

To show that this line crosses the x2 = 0 face of X, set x2 = 0 and x3 = 1− x1 and solve (B.6)
for x1 to obtain

x̂1 =
a√

(a + b)(a + c)
+

c
a + c

∈ (0, 1),

where x̂1 < 1 because b > c (by assumption (6.1)). This calculation defines state x̂, which
appears on the e1e3 boundary of X as shown in Figure 2. Equation (B.6) is also satisfied at

ŷ = (1 − x12
2 − x13

3 , x
12
2 , x

13
3 ).

If ŷ1 ≥ 0, then ŷ ∈ X is as shown in Figure 2; otherwise, ŷ is below the e2e3 boundary. Our
analysis covers both cases.

Now define R2 = conv({e1, x12, ŷ, x̂}) ∩ X and R3 = conv({x13, ŷ, x̂}) ∩ X. Then the
candidate value function W : X→ R is defined by

(B.7) W(x) =


W2(x) if x ∈ R2,

W3(x) if x ∈ R3,

0 otherwise.

It is clear from the foregoing that W is Lipschitz continuous, that W(e2) = W(e3) = 0, and
that all values W(x) can be achieved using the paths shown in Figure 2 along with zero-
cost paths. It remains to check the subsolution condition (B.2). To verify this condition in
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int(R2), observe from (B.7) and (B.5) that

W(x) =
1
2

(A1−2z(x))2

A1−2
1−2

(where z(x) = x + x3(e1 − e3))(B.8)

=
1
2

(A1−2x + A1−2
1−3 e′3x)2

A1−2
1−2

.

It follows that

(B.9) DW(x) =
1

A1−2
1−2

A1−2z(x)(A1−2 + A1−2
1−3 e′3),

and hence, by (B.4), that

DW(x)(e1 − e3) =
1

A1−2
1−2

A1−2z(x)(A1−2 + A1−2
1−3 e′3)(e1 − e3) = 0,

DW(x)(e1 − e2) =
1

A1−2
1−2

A1−2z(x)(A1−2 + A1−2
1−3 e′3)(e1 − e2) = A1−2z(x),(B.10)

DW(x)(e3 − e2) =
1

A1−2
1−2

A1−2z(x)(A1−2 + A1−2
1−3 e′3)(e3 − e2) = A1−2z(x).

Using these facts and those from (B.1), (B.3), and (B.4), we verify (B.2) in int(R2) as follows:

HW(x, e1 − e3) = −L(x, e1 − e3) −DW(x)(e1 − e3)
= 0,

HW(x, e3 − e1) = −L(x, e3 − e1) −DW(x)(e3 − e1)

= −A1−3x + 0

≤ 0 (since x ∈ B1);

HW(x, e1 − e2) = −L(x, e1 − e2) −DW(x)(e1 − e2)

= 0 − A1−2z(x)

≤ 0 (since z(x) ∈ B1),

HW(x, e2 − e1) = −L(x, e2 − e1) −DW(x)(e2 − e1)

= −A1−2x + A1−2z(x)

= −A1−2x + A1−2x + x3A1−2
1−3

= −x3(a + b)
≤ 0;

HW(x, e3 − e2) = −L(x, e3 − e2) −DW(x)(e3 − e2)

= −A1−3x − A1−2z(x)

≤ 0 (since x ∈ B1 and z(x) ∈ B1),
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HW(x, e2 − e3) = −L(x, e2 − e3) −DW(x)(e2 − e3)

= −A1−2x + A1−2z(x)
= −x3(a + b)
≤ 0.

This completes the verification of the subsolution condition (B.2) in int(R2). Very sim-
ilar calculations establish the subsolution condition in int(R3). We thus conclude from
Theorem 3.4 that (B.7) is the optimal value function for the exit problem from state e1.

B.4 Transitions to state e1

We next verify that the optimal value function for the transition problem to state e1

corresponds to the feedback control in Figure 3(i). By Lemma B.1(ii), the candidate value
function corresponding to this figure is

(B.11) W(x) =


W2(x) ≡

1
2

(A2−1x)2

A2−1
2−1

if x ∈ B2,

W3(x) ≡
1
2

(A3−1x)2

A3−1
3−1

if x ∈ B3,

0 if x ∈ B1.

It is clear that W is Lipschitz continuous, that W(e1) = 0, and that each value W(x) is
achieved by a suitable choice of path.

It remains to check the subsolution condition (B.2). Here we establish (B.2) in int(B2).
For x in this set we have

DW(x) =
A2−1x
A2−1

2−1

A2−1,

and hence, by (B.4),

DW(x)(e1 − e2) =
A2−1x
A2−1

2−1

A2−1
1−2 = −A2−1x,

DW(x)(e1 − e3) =
A2−1x
A2−1

2−1

A2−1
1−3 = A2−1x,

DW(x)(e3 − e2) =
A2−1x
A2−1

2−1

A2−1
3−2 = −2A2−1x.

Combining these with (B.1), (B.3), and (B.4), along with the standing assumptions a + c ≥
b > c > 0 from (6.1), we verify (B.2) as follows:

HW(x, e1 − e2) = −L(x, e1 − e2) −DW(x)(e1 − e2)
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= −A2−1x + A2−1x
= 0,

HW(x, e2 − e1) = −L(x, e2 − e1) −DW(x)(e2 − e1)

= 0 − A2−1x

≤ 0 (since x ∈ B2 );

HW(x, e1 − e3) = −L(x, e1 − e3) −DW(x)(e1 − e3)

= −A2−1x − A2−1x

≤ 0 (since x ∈ B2 );

HW(x, e3 − e1) = −L(x, e3 − e1) −DW(x)(e3 − e1)

= −A2−3x + A2−1x
= −(ax1 + (2a + c)x2 − cx3)
= −a − (a + c)(x2 − x3) (since x ∈ X)

≤ 0 (since x2 ≥ x3 for x ∈ B2);

HW(x, e3 − e2) = −L(x, e3 − e2) −DW(x)(e3 − e2)

= −A2−3x + 2A2−1x
= −2ax1 − (2a − b + c)x2 − (2a + b − c)x3

≤ −2ax1 − ax2 − 2ax3 (since a + c ≥ b and b > c),
≤ 0

HW(x, e2 − e3) = −L(x, e2 − e3) −DW(x)(e2 − e3)

= 0 − 2A2−1x

≤ 0 (since x ∈ B2 ).

Similar calculations show that the subsolution condition (B.2) holds in int(B3), with the
main novelty being that the assumption that a + c ≥ b is not needed. We thus conclude
from Theorem 3.4 that (B.11) is the optimal value function for the transition problem to
state e1.

B.5 Transitions to state e2

We now the optimal value function for the transition problem to state e2. Figure 3(ii)
illustrates the optimal feedback control for cases in which x12

2 ≥ y13
2 , which we analyze

explicitly here.13

In region R = conv({x12, e1, x13, y13, y∗}), the costs of the paths illustrated in Figure 3(ii)
are given by equation (B.8) in Section B.3. In region B3, the path cost is the sum of the cost
of reaching B23, which we compute using Lemma B.1(ii), and the cost of proceeding from

13If x12
2 < y13

2 , then there is a region northeast of y13 from which paths moving in direction e1 − e3 hit B2

rather than segment x12e1. In this region, the subsolution condition (B.2) follows from the analysis of the
transition problem to state e1.
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there to x12, given by (B.8). Combining these cases yields the candidate value function

W(x) =



1
2

(A1−2z(x))2

A1−2
1−2

if x ∈ R,

1
2

(A3−1x)2

A3−1
3−1

+
1
2

((A1−2z(x))2

A1−2
1−2

if x ∈ B3,

0 otherwise,

(B.12)

where z(x) = x + x3(e1 − e3).

As in the previous analyses, we need only check the subsolution condition (B.2). In fact,
the analysis in Section B.3 does so for states in region R, so we need only verify the
condition for states in int(B3).

To do so, observe that for x in this region, DW(x) is the sum of expression (B.9) and

D
(

1
2

(A3−1x)2

A3−1
3−1

)
=

A3−1x
A3−1

3−1

A3−1.

We can thus take advantage of displays (B.10) and (B.4) to compute the directional deriva-
tives of DW at x:

DW(x)(e1 − e3) =
A3−1x
A3−1

3−1

A3−1
1−3 + 0 = −A3−1x,

DW(x)(e1 − e2) =
A3−1x
A3−1

3−1

A3−1
1−2 + A1−2z(x) = A3−1x + A1−2z(x),

DW(x)(e2 − e3) =
A3−1x
A3−1

3−1

A3−1
2−3 − A1−2z(x) = −2A3−1x − A1−2z(x).

With these expressions in hand, we can evaluate the conditions on the Hamiltonian:

HW(x, e1 − e3) = −L(x, e1 − e3) −DW(x)(e1 − e3)

= −A3−1x + A3−1x
= 0,

HW(x, e3 − e1) = −L(x, e3 − e1) −DW(x)(e3 − e1)

= 0 − A3−1x

≤ 0 (since x ∈ B3 ),

HW(x, e1 − e2) = −L(x, e1 − e2) −DW(x)(e1 − e2)

= −A3−1x − A3−1x − A1−2z(x)

≤ 0 (since x ∈ B3 and z(x) ∈ B1);

HW(x, e2 − e1) = −L(x, e2 − e1) −DW(x)(e2 − e1)

= −A3−2x + A3−1x + A1−2z(x)
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= −A1−2(x − z(x))

= −A1−2
3−1x3

= −(a + b)x3

≤ 0;

HW(x, e2 − e3) = −L(x, e2 − e3) −DW(x)(e2 − e3)

= −A3−2x + 2A3−1x + A1−2z(x)

= −A1−2(x − z(x)) + A3−1x

= −A1−2
3−1x3 + A3−1x

= −(a + b)x3 − ax1 − (2a + c)x2 + cx3

= −ax1 − (2a + c)x2 − (a + b − c)x3

≤ 0 (since b > c),

HW(x, e3 − e2) = −L(x, e3 − e2) −DW(x)(e3 − e2)

= 0 − 2A3−1x − A1−2z(x)

≤ 0 (since x ∈ B3 and z(x) ∈ B1 ).

We conclude from Theorem 3.4 that (B.12) is the optimal value function for the transition
problem to state e2.

C. Analysis of Example 6.3

In this section we verify that the optimal value function for the transition problem to e3

in potential games of the form (6.4) under the logit rule (5.8) corresponds to the feedback
controls illustrated in Figure 4.

We start with some facts about potential games of the form (6.4). Clearly such games are
coordination games (5.4), and it is easy to verify that they satisfy the marginal bandwagon
property (5.26). The labeled points in Figure 4 are

x12 = ( b
a+b ,

a
a+b , 0), x13 = ( c

a+c , 0,
a

a+c ),

y12 = (0, d
b+d ,

b
b+d ), y13 = (0, c

c+d ,
d

c+d ),(C.1)

ỹ12 = ( b
b+d ,

d
b+d , 0), ỹ13 = ( d

c+d ,
c

c+d , 0).

One can verify that B2 = conv({e2, x12, y12
}) and that B3 = conv({e3, x13, y13

}). Finally, the
unique point in aff(X) at which all three actions receive equal payoffs is

(C.2) x∗ =
1

bc − d2 + ab + ac + 2ad
(bc − d2, a(c + d), a(b + d)).

If drawn in Figure 4, x∗ is the point below boundary e2e3 where rays x12y12 and x13y13 meet;
in particular, (C.2) and assumption (6.4) imply that x∗1 < 0.

Define B1
1 = conv({e1, x13, y13, ỹ13

}), B1
2 = conv({ỹ13, ỹ13, y12, ỹ12

}), and B1
3 = conv({ỹ12, y12, x12

}).
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The value function corresponding to the controls in Figure 4 is

W(x) =



1
2

(A1−3x)2

A1−3
1−3

if x ∈ B1
1 ,(

A1−3xx1 −
1
2

A1−3
1−3(x1)2

)
+

1
2

(A1−3y(x))2

A1−3
2−3

if x ∈ B1
2 ,(1

2
x′Ax −

1
2

(y12)′Ay12
)

+
1
2

(A1−3y12)2

A1−3
2−3

if x ∈ B1
3 ∪ B2,

0 if x ∈ B3.

(C.3)

where y(x) = x + x1(e3 − e1).(C.4)

For x ∈ B1
1 , the formula follows from Lemma B.1(ii). For x ∈ B1

2 , the path proceeds from x
in direction e3 − e1 to the boundary segment e2e3, and then along this segment to y13; the
cost of the first piece is obtained from Lemma B.1(i), and the cost of the second piece from
Lemma B.1(ii). The formula when x ∈ B1

3 ∪ B2 will be derived below.
We first verify the subsolution condition (B.2) in int(B1

1 ). The first four inequalities use
the facts that x ∈ B1, that A is a coordination game (5.4), and that A satisfies the marginal
bandwagon property (5.26).

HW(x, e3 − e1) = −L(x, e3 − e1) −DW(x)(e3 − e1) = −A1−3x −
A1−3x
A1−3

1−3

A1−3
3−1 = 0,

HW(x, e1 − e3) = −L(x, e1 − e3) −DW(x)(e1 − e3) = 0 −
A1−3x
A1−3

1−3

A1−3
1−3 = −A1−3x ≤ 0,

HW(x, e3 − e2) = −L(x, e3 − e2) −DW(x)(e3 − e2)

= −A1−3x −
A1−3x
A1−3

1−3

A1−3
3−2

= −A1−3x
A1−3

1−2

A1−3
1−3

≤ 0,

HW(x, e2 − e3) = −L(x, e2 − e3) −DW(x)(e2 − e3) = −A1−2x −
A1−3x
A1−3

1−3

A1−3
2−3 ≤ 0,

HW(x, e1 − e2) = −L(x, e1 − e2) −DW(x)(e1 − e2) = 0 −
A1−3x
A1−3

1−3

A1−3
1−2 ≤ 0,

HW(x, e2 − e1) = −L(x, e2 − e1) −DW(x)(e2 − e1)

= −A1−2x −
A1−3x
A1−3

1−3

A1−3
2−1

= −(ax1 − bx2 + dx3) +

(
ax1 + dx2 − cx3

a + c

)
(a − d)
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=
−a(c + d)(x1 + x3) − (d2

− ab − bc − ad)x2

a + c

=
−a(c + d) + (ab + bc + ca + 2ad − d2)x2

a + c
≤ 0 (since x2 < x∗2 for x ∈ B1

1 ).

Verifying the subsolution condition (B.2) in int(B1
2 ) requires some preliminary calcula-

tions. Use (C.4) to rewrite the second case of (C.3) as

W(x) = A1−3x(e′1x) −
1
2

A1−3
1−3(e′1x)2 +

1
2

(A1−3x − A1−3
1−3 e′1x)2

A1−3
2−3

.

From this we compute the derivative of W as

DW(x) = A1−3xe′1 + x1A1−3
− A1−3

1−3 x1e′1 +
1

A1−3
2−3

A1−3y(x)(A1−3
− A1−3

1−3 e′1).

Thus

DW(x)(e1 − e3) = A1−3x,

DW(x)(e1 − e2) = A1−3x + A1−3
1−2 x1 − A1−3

1−3 x1 +
1

A1−3
2−3

A1−3y(x)(A1−3
1−2 − A1−3

1−3)

= A1−3x + A1−3
1−2 x1 − A1−3

1−3 x1 − A1−3(x − x1(e1 − e3))

= A1−3
1−2 x1,

DW(x)(e3 − e2) = −A1−3
2−3 x1 − A1−3y(x)

= −A1−3
2−3 x1 − (A1−3x − A1−3

1−3 x1)

= A1−3
1−2 x1 − A1−3x.

Using these formulas, we check the subsolution condition (B.2), repeatedly using the facts
that x ∈ B1 and that A satisfies the marginal bandwagon property (5.26).

HW(x, e3 − e1) = −L(x, e3 − e1) −DW(x)(e3 − e1) = −A1−3x + A1−3x = 0,

HW(x, e1 − e3) = −L(x, e1 − e3) −DW(x)(e1 − e3) = 0 − A1−3x ≤ 0,

HW(x, e1 − e2) = −L(x, e1 − e2) −DW(x)(e1 − e2) = 0 − x1A1−3
1−2 ≤ 0,

HW(x, e2 − e1) = −L(x, e2 − e1) −DW(x)(e2 − e1)

= −A1−2x + x1A1−3
1−2

= −(ax1 − bx2 + dx3) + x1(a − d)
= (b + d)x2 − d (since x ∈ X)

≤ 0 (since x2 ≤ y12
2 = d/(b + d) when x ∈ B1

2 ),

HW(x, e3 − e2) = −L(x, e3 − e2) −DW(x)(e3 − e2)

–44–



= −A1−3x − x1A1−3
1−2 + A1−3x

= −x1A1−3
1−2

≤ 0,

HW(x, e2 − e3) = −L(x, e2 − e3) −DW(x)(e2 − e3)

= −A1−2x + x1A1−3
1−2 + A1−3x

= −A1−3x + HW(x, e2 − e1)
≤ 0.

Lastly, we consider region B1
3 ; the analysis of B2 is nearly identical. To derive the

formula for W(x) from the third case of (C.3), note that second term is just the cost of the
boundary path from y12 to y13 (cf. the second case of (C.3)). For the first term, let x ∈ B1

3 ,
and let φ : [0, 1] → X be any path from x to y12 that is always in B1

3 and that satisfies
[φ̇(t)]− = x1e1 for all t ∈ [0, 1]. These are precisely the paths through B1

3 shown in Figure 4.
Since [φ̇(t)]′

−
(1A1

− A) = x1e′1(1A1
− A) = 0′, the cost of any path φ of the form above is

c(φ) =

∫ 1

0
[φ̇t]′+(1Ai

− A)φt dt =

∫ 1

0
(φ̇t)′(1Ai

− A)φt dt = −

∫ 1

0
(φ̇t)′Aφt dt

=
1
2

x′Ax −
1
2

(y12)′Ay12.(C.5)

This agrees with the third case of (C.3). Thus the derivative of W in int(B1
3 ) is

DW(x) = Ax.

Using this fact, we can evaluate the subsolution condition (B.2) in int(B1
3 ):

HW(x, e3 − e1) = −L(x, e3 − e1) −DW(x)(e3 − e1) = −A1−3x − A3−1x = 0,

HW(x, e2 − e1) = −L(x, e2 − e1) −DW(x)(e2 − e1) = −A1−2x − A2−1x = 0,

HW(x, e1 − e3) = −L(x, e1 − e3) −DW(x)(e1 − e3) = 0 − A1−3x ≤ 0,

HW(x, e1 − e2) = −L(x, e1 − e2) −DW(x)(e1 − e2) = 0 − A1−2x ≤ 0,

HW(x, e3 − e2) = −L(x, e3 − e2) −DW(x)(e3 − e2) = −A1−3x − A3−2x = −A1−2x ≤ 0,

HW(x, e2 − e3) = −L(x, e2 − e3) −DW(x)(e2 − e3) = −A1−2x − A2−3x = −A1−3x ≤ 0.

We thus conclude from Theorem 3.4 that (C.3) is the optimal value function for the
transition problem to state e3.
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