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Abstract

We survey three classes of models from evolutionary game
theory which make history independent predictions:  stochastic
stability, stochastic stability with local interaction, and cheap talk.
We argue that of the three, only local interaction models yield
credible history independent predictions.

Keywords:  evolutionary game theory, equilibrium selection,
history dependence, conventions.
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1.  Introduction

Game theory is the mathematical study of interactive decision making.  At first,
research in game theory focused exclusively on choices made by agents with both
knowledge and reasoning ability adequate to completely and unfailingly analyze any
strategic encounter.  While this eductive approach has proved extremely fruitful, it
is nevertheless subject to the criticism that it demands more knowledge and ability
of its players than is typically reasonable to assume.

The pioneering work of Maynard Smith and Price (1973) and Maynard Smith
(1974) showed that game theory can be applied profitably in biological contexts, in
which the agents are animals whose behaviors are determined by their genetic
endowments.  Rather than conscious decision, natural selection drives the
population towards equilibrium behavior.

Evolutionary game theory uses the structures originally developed for biological
models to study the evolution of behavior in both the biological and social sciences.
In the social sciences, the evolutionary approach studies the behavior of large
human populations.  Each individual's success depends on the interplay between
his behavior and that of his society.  In contrast to the eductive approach, in the
evolutionary approach players are assumed to change their behavior myopically.
Actions which are currently well rewarded are played with greater frequency in the
population.  Despite the agents' lack of foresight, equilibrium behavior in
evolutionary models satisfies many of the strongest rationality conditions defined
in the eductive literature.1  Hence, despite the simple approach to decisions that
members of the population follow, their aggregate behavior is as if the agents
satisfied stringent rationality postulates.

While early evolutionary game theory models attempted to capture the process
of evolution within a static framework, beginning with the work of Taylor and
Jonker (1978) attention has turned to explicitly dynamic models of evolution.  Most
of these models utilize deterministic dynamics:  for every possible distribution of
behaviors, the results of the myopic adjustment process are uniquely specified.
Consequently, knowledge of the initial play of the population is enough to
determine the complete path of its behavior.  This is particularly useful when more
than one stable social outcome exists.  While a static analysis often provides no clear

1 See Weibull (1995) for a thorough survey of these results.
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basis for prediction among multiple stable outcomes, dynamic analysis can provide
a unique prediction provided that one knows the relevant historical data.

One might expect that historical influences necessarily play a leading role in
determining which conventions emerge, and hence that the prediction of which
conventions arise in a particular population must entail a study of the population's
past.  However, game theorists have recently focused attention on formal
frameworks in which only the mathematical structure of the interactions
determines which conventions are established.  This research program has proposed
models of interaction in which the ultimate social outcome depends only on the
payoff structure of individual exchanges.  The main motivation for this program is
to simplify the prediction of social behavior:  in settings in which the models apply,
rather than depending on history, prediction can be based solely on the payoffs of
the underlying game.

We survey recent work on history independent prediction in evolutionary game
theory.  Underlying each of the models we consider is a simple coordination game.
In this game, players choose between two strategies, Up and Down.  Taking his
opponent's strategy as given, a player prefers mimicking his opponent to choosing a
different strategy.  For this reason, coordination by both players on the same strategy
constitutes equilibrium play:  if both players choose Up or both choose Down,
neither desires to deviate.

A large population of players is repeatedly randomly matched to play the
coordination game.  If players myopically choose best responses to the play of their
fellows, all players eventually coordinate on the same strategy.  Whether
coordination occurs on Up or Down depends on the population's initial behavior.
Each arrangement is a social convention:  players prefer to emulate the action played
by a wide majority of their fellows, whatever that action happens to be.

We consider three models which add to the structure described above in order to
generate history independent predictions.  In the basic stochastic stability model,
players infrequently experiment with suboptimal actions.  The model of stochastic

stability with local interaction is similar, but incorporates a neighborhood structure:
players live in fixed locations, and are only matched with opponents who live close
by.  Finally, the communication or cheap talk model assumes that players are able to
signal each other before playing the coordination game.

Each of these models incorporates randomness:  in the stochastic stability
models, it is introduced through occasional experimentation, while in the
communication model, it takes the form of drift between combinations of signals
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and actions yielding the same outcome.  The inclusion of a stochastic element in all
three models is not accidental.  Under most reasonable specifications of
deterministic dynamics, either convention is stable.  Once a convention is
established, no player can improve his payoffs through an individual effort, and
hence no strategy changes occur.  Adding a stochastic element to the dynamic
adjustment process disrupts the stability of the conventions, making unique
prediction possible.

All three models guarantee that one of the conventions will eventually
predominate regardless of the population's initial behavior.  Which convention is
selected depends only on the payoff structure of the underlying coordination game.
In the communication model, the efficient convention is chosen.  In both stochastic
stability models, coordination is on the risk dominant convention, which uses the
strategy that players prefer when they are completely uncertain about how
opponents will act.  In all cases, a result describing the limiting behavior of the
model provides a formal justification for the history independent prediction.

Each evolutionary model is an attempt to capture the critical details of a class of
human interactions in order to draw conclusions about how they will proceed.  If
one does not view the model as simply a technical device used to generate unique
predictions, one must interpret the results of the model in light of the situations
from which it abstracts.  For a model's history independent predictions to be
credible, the amount of time required before the model's results become meaningful
must be measurable on a human rather than an astronomical scale.  In particular, if
play begins at the convention which the model does not predict, the population
must switch to the predicted convention within a reasonable time span if the
conclusions of the model are to be believed.

In both the basic stochastic stability model and the communication model, the
amount of time before such a switch occurs grows exponentially in the size of the
population.  Consequently, for populations of even moderate size, the relevant
prediction in applications is the first convention played.  In contrast, in the local
interaction model, the delay before a shift to the predicted risk dominant
convention is small and essentially independent of the population size.  Moreover,
once established, coordination on the risk dominant convention is for all practical
purposes impossible to break.  Hence, when local interaction is an appropriate
modeling assumption, unique prediction of outcomes based on the risk structure of
payoffs is possible.
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The paper proceeds as follows.  Sections 2 and 3 introduce coordination games
and deterministic evolutionary dynamics.  Sections 4, 5, and 6 present examples of
the three classes of models described above and provide interpretations of the
models' formal results.  Section 7 concludes.

2.  Coordination Games

Underlying all of the models we consider is a class of two player, one-shot games.
In these games each player chooses one of two strategies, Up and Down.  The payoffs
a player receives depend on both his action and that of his opponent, as specified in
Figure 1.

Player
chooses

Opponent
chooses

Up

Down

Up Down

a b

c d

Figure 1:  A Game

We call any 2 x 2 matrix of payoffs a game.2  The interpretation is always that given
in Figure 1.  For concreteness, we give three examples of games which we revisit
throughout the paper:

A = 
  

2 0
0 1









 ,    B = 

  

5 0
4 2









 ,  C = 

  

3 0
4 1









.

Games A  and B, which satisfy the inequalities a > c and d > b, are coordination

games.  They are so named because it is in the players' best interests to coordinate
their actions.  If John knows that Mary intends to play, say, Up, he maximizes his
payoffs by also playing Up.  The choice of the same strategy by each player constitutes
a (Nash) equilibrium of the game:  given the choice of the opponent, no player has
an incentive to switch.3

2 More precisely, it is a two player symmetric normal form game.
3 There is a third Nash equilibrium in these games in which the players base their choices on the
result of randomizing devices; see footnote 6.
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The (Pareto) efficient payoff in a coordination game can always be achieved at an
equilibrium.  In games A and B efficiency is achieved when both players choose Up.
Efficiency seems a natural history independent prediction; indeed, some of the
models we discuss make this prediction.

Following Harsanyi and Selten (1988), we can also classify the equilibria
according to their riskiness.  Suppose that John has no idea how Mary intends to
play the game, and in his ignorance assumes that she is equally likely to play either
strategy.  The strategy that John would then prefer to play is called the risk dominant

strategy, and the corresponding equilibrium the risk dominant equilibrium.  The
other strategy and equilibrium are called risk dominated.  We demonstrate below
that in game A , the Up equilibrium is risk dominant, while in B  it is the Down
equilibrium.  Hence, in game B, the efficient equilibrium and the risk dominant
equilibrium fail to coincide; indeed, the latter minimizes the sum of the players'
payoffs. Nevertheless, the risk dominance criterion forms the basis for the history
independent prediction in two of the models we consider below.

Game C is the celebrated prisoner's dilemma.4  In this game, each player is better
off playing Down regardless of the behavior of her opponent; it is therefore not a
coordination game.  The only equilibrium has both players choose Down, despite
the fact that efficiency is achieved when both players choose Up.  In the prisoner's
dilemma, individuals' incentives prevent the achievement of social efficiency.

Evolutionary game theory studies the behavior of a large population of agents
who play a game repeatedly and anonymously.  The basic model assumes that pairs
of members of the population are chosen at random to play a game which is fixed in
advance.  Players select one of the available strategies, occasionally updating their
selection if it performs inadequately.

We can describe the behavior of the population with a number x between zero
and one, representing to the proportion of players current selecting Up.  We call x as
the state of the population.  The expected payoffs from a random match when the
state is x are

πU(x) = ax + b(1 – x)

for a player who chooses Up, and

πD(x) = cx + d(1 – x)

4 For an entertaining (and the original) account of this game, see Luce and Raiffa (1957).
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for one who chooses Down.5  Players prefer actions which maximize their expected
payoffs.

A state is a population  equilibrium if no player can improve his payoffs by
switching strategies at that state.  In coordination games, both All Up (x = 1) and All
Down (x = 0) are equilibria.  If all players in the population are choosing, say, Up,
then no player has an incentive to switch to Down, since he will be worse off in
matches with his Up playing opponents.  Formally, we check that state 1 is an
equilibrium by observing that the expected payoff to Up at state 1, πU(1) = a, exceeds
the payoff to down, πD(1) = c.  Hence, no player would benefit by switching from his
current choice of Up to Down.

The All Up and All Down equilibria can be viewed as conventions.  A player
prefers to play Up so long as most of his opponents play Up; the same is true of
Down.  Each convention is a self-reinforcing pattern of social conduct.  Absent other
information about the population's behavior, each constitutes a reasonable
prediction about play.

Every coordination game possesses a third population equilibrium, namely

x* =     
d−b

(a−c)+(d−b) .

At this state, a fraction of x* of the players play Up, while the remainder play Down.
At state x*, payoffs to the two strategies are equal: πU(x*) = πD(x*) =     

ad−bc
(a−c)+(d−b) .  Thus, no

player can benefit from switching strategies.  As we shall see, this equilibrium is
inherently unstable and hence unlikely to arise.  Nevertheless, it will play an
important role in the analyses which follow.6

5 These definitions assume an infinite population; for large but finite populations they are close
approximations.
6 The population equilibrium x* corresponds to a mixed strategy Nash equilibrium of the one-shot
game.  In this equilibrium, players use randomizing devices to determine which strategy to play.  Each
player flips a coin which comes up heads with probability x* and plays Up if she sees a head.  Since
πU(x*) = πD(x*), each player's randomization makes her opponent precisely indifferent between
playing Up and Down.  This indifference  justifies the opponent's willingness to randomize between the
two strategies.  For more on the interpretation of mixed strategy equilibrium in one-shot games, see
Osborne and Rubinstein (1994, Chapter 3).
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3.  Deterministic Dynamics

Equilibrium play is a sensible prediction because it is self-reinforcing.  Once an
equilibrium is reached, no player has reason to deviate.  A fundamental difficulty in
game theory is the problem of multiple equilibria:  when a game possesses more
than one equilibrium, which is the appropriate prediction?  Evolutionary game
theory addresses this issue through dynamic analysis.  Knowledge of the adjustment
process and initial behavior together yield the basis for a unique prediction about
future play.

Evolutionary dynamics are based on myopic adjustment.  They are an
application of the principle that when the population is not in equilibrium, players
switch to those strategies which currently perform well.  They do so myopically,
simply choosing those which perform better given the current state.  By basing
evolutionary dynamics on myopic adjustment, we make only weak demands on the
abilities of the players.  We need only assume that they know the payoff structure of
the game and the current population state and are able to compute their expected
payoffs.  In fact, under certain assumptions myopic dynamics can be derived from a
process of imitation:  players simply copy the behavior of opponents whose payoffs
are higher than their own.  Either way, the demands on players are far less than
under the eductive paradigm.

The simplest dynamics to write down are deterministic with a discrete time
parameter.  They are defined by a function which maps each state xt to the state xt+1

which arises after a round of adjustment occurs.  In two strategy coordination
games, any dynamics based on myopic optimization have essentially the same
character.  Myopic adjustment implies that the representation of the better
performing strategy increases over time.  That is, x increases when πU(x) > πD(x) (and
x ≠ 1), x decreases when πD(x) > πU(x) and (and x ≠ 0), and x stays fixed when πU(x) =
πD(x).  In games A, B, and C, this property suffices to describe evolution.  The phase

diagrams of the evolutionary dynamics in these games are presented in Figure 2.
Recall that in game C, the prisoner's dilemma, players prefer to choose Down

regardless of the behavior of their opponents.  Therefore, evolution always increases
the representation of Down, and the All Down equilibrium eventually is reached
regardless of the initial state.  Hence, in the prisoner's dilemma, a simple dynamic
analysis generates a history independent prediction:  we should eventually expect all
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players to choose Down.  Of course, since this game has only one equilibrium, this
prediction is not particularly surprising.7

In contrast, coordination games have three equilibria.  The dynamics divide the
state space into two basins of attraction, one for each convention.  For example, in
game A, if the initial state has more than one third of the population playing Up,
the proportion of players selecting Up increases until all choose Up. Similarly, if
more than two thirds of the players initially choose Down, everyone eventually
plays Down.  Thus, knowledge of the initial behavior of the population allows us to
make a unique prediction about the course of play.

A = 
  

2 0
0 1









    B = 

  

5 0
4 2









  C = 

  

3 0
4 1











x = 1

x = 0

x = 1/3

    

x = 2/3

x = 1

x = 0    x = 0

Figure 2:  Deterministic Dynamics

We observe that the state x* which separates the two basins of attraction is the
mixed strategy equilibrium of the game.  If in game A , exactly one third of the
population plays Up, both strategies receive the same payoff (πU(  

1
3 ) = πD(  

1
3 ) =   

2
3 ), and

no adjustment occurs.  However, this equilibrium is dynamically unstable:  any
slight change in the state will lead the population towards either All Up or All
Down.  Because of the instability of the mixed equilibrium, only the two pure
strategy equilibria constitute reasonable predictions about play.

While the mixed equilibrium is unlikely to persist, it does help us characterize
risk dominance.  Recall that the risk dominant strategy is the one a player chooses in

7 On the other hand, the existence of a unique equilibrium does not necessarily imply that it is the
only possible result of evolution.  For example, if one allows more than two strategies, one can find
games and evolutionary dynamics such that the unique equilibrium of the game is dynamically unstable
and evolution leads to cyclical behavior.  See Gilboa and Matsui (1991) for an example.
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a one-shot game when he is completely uncertain about the play of his opponent.
Equivalently, it is the strategy he would prefer to choose in the population game
when the state is   

1
2 .  Examining Figure 2, we see that in game A, this state is in the

basin of attraction of All Up, which is therefore the risk dominant equilibrium.  In
game B, All Down is risk dominant.

Since the mixed equilibrium separates the two basins of attraction, it
characterizes risk dominance.  In particular, if x* <   

1
2 , All Up is risk dominant, while

if x* >   
1
2 , All Down is risk dominant.  We can also characterize the risk dominant

equilibrium by noting that it always has the larger basin of attraction.  It is this
property which drives the history independent predictions of stochastic stability
models.

4.  Stochastic Stability

Under deterministic dynamics, initial conditions dictate the population's entire
course of play.  Hence, when multiple conventions are possible, the dynamics alone
do not foretell which will eventually be established.  The remainder of this survey
considers models which yield unique, history independent predictions.  Unique
prediction is clearly at odds with the stability of multiple conventions which exists
under deterministic dynamics.  Consequently, the models which we now consider
employ stochastic dynamics.  As we shall see, slight but persistent randomness, even
in minute amounts, can radically effect the long run behavior of a dynamical
system, making history independent prediction possible.

In the next two models we consider, randomness takes the form of choice

trembles:  occasionally, players fail to play an optimal response to the behavior of
the population.  This may be a result of experimentation, the entry of newcomers
unfamiliar with established conventions, or simple errors in judgment.  That
players might sometimes make mistakes is uncontroversial.  The surprising finding
of the stochastic stability literature is that the introduction of trembles can generate
unique predictions.  Important stochastic stability models include Foster and Young
(1990), Kandori, Mailath, and Rob (1993), Nöldeke and Samuelson (1993), Young
(1993),  Samuelson (1994), and Ellison (1995).  Our treatment follows Kandori,
Mailath, and Rob (1993).

For every state of a system, a deterministic dynamic specifies the state which
must follow.  Consequently, the initial state preordains the entire course of
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evolution.  Adding even slight random influences can lead to radically different
behavior, especially in the long run.  Markov chains are the closest stochastic analog
to a deterministic system.  Rather than specify particular successors, a Markov chain
instead specifies a probability distribution of possible transitions from each state.
Hence, any initial condition can lead to an infinite variety of evolutionary paths.
Crucially, in contrast with the deterministic case, the long run behavior of the
system can be completely independent of the initial state.  It is this property which
underlies history independent prediction.

We introduce Markov chains in the context of a simple stochastic stability
model.  As we saw in the previous section, deterministic dynamics force the
population to one of the two stable conventions.  Now suppose there is a possibility
of choice trembles:  even when society is coordinated upon a convention, players
occasionally experiment with the unused strategy.  If the initial state is All Up, and
enough players experiment simultaneously, it is possible that the proportion of
players choosing Up will leap from one to something less than x*, and hence into
the basin of attraction of All Down.  If this happens, all players begin switching to
Down; barring another focused episode of experimentation, All Down will
eventually be established.  Jumps of this kind are rare, but regardless of the
infrequency of experimentation they are always possible; this fact has surprising
implications for the population's long term behavior.

We now describe a simple version of the stochastic stability model.  Assume that
the population size is some finite number N, and that the population initially plays
All Up or All Down.  Each period begins with the possibility of experimentation.
Each player independently with some small probability ε switches strategies:  that is,
each flips a coin which comes up heads with probability ε and switches strategies if
the result of the toss is heads.  After this, all players switch to a best response to the
resulting distribution of strategies.8  Thus, at the end of each period, the population
coordinates on a convention; the convention only changes if a rash of
experimentation sends the distribution of strategies in the population to the other
side of the mixed strategy equilibrium.

We now define a Markov chain based on this verbal description of the model.  A
Markov chain is defined by its state space and the probabilities of transitions
between any pair of states.  In this simple model, the state space is the two element

8 It should be noted that the qualitative results described above continue to hold if rather than
switch immediately to the best response, players only switch to the best response in any particular
period with some small, fixed probability.
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set {All Up, All Down}.  We determine the transition probabilities by computing the
likelihood that experimentation upsets a convention.  Let PDU denote the probability
that a population coordinated upon All Down switches to All Up.  For this to occur,
at least fraction x* of the population must experiment simultaneously.  The
probability of this event is given in terms of the binomial distribution:

PDU = 
    

BN ,ε (z)
z>Nx*
∑ ,

where

    
BN ,ε (z) =

N

z






ε z(1 − ε )(N − z) for z = 0, 1, ..., N.9

If less than the critical amount of experimentation occurs, there is no jump; hence
PDD = 1 – PDU.  Similarly, more than fraction 1 – x* must experiment for a jump to
occur from All Up.  Hence,

PUD = 
    

BN ,ε (z)
z>N (1−x*)

∑ ,

and PUU = 1 – PUD.  Using these data it is possible to calculate the probability that at
any future time t the population coordinates on All Up or All Down.  Hence, the
initial state and the transition probabilities give us a complete probabilistic
description of the course of evolution.

Since all transition probabilities are positive, there is a unique pair of numbers
(mU, mD) which satisfy the following three equations:

mU + mD = 1,
mUPUU + mDPDU = mU,
mUPUD + mDPDD = mD.

Since m U and m D sum to one, we can think of them as the probabilities that the
population is at All Up or All Down at some time t.  The interpretation of the latter
two equations is that if (mU, mD) describes the likelihoods of the two conventions at
time t, the probabilities of jumps "cancel each other out", and (mU, mD) continues to

9 Suppose one has a coin which comes up heads ε of the time.  Then BN,ε(z) is the probability that
exactly z out of N tosses of the coin turn up heads.
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describe the likelihoods at time t + 1, and, by induction, at all future times.  For this
reason, (mU, mD) is called the stationary distribution of the Markov chain.

If as in our model the stationary distribution is unique, it gives important
characterizations of long run behavior.  Most important for this model is the time

average property:  in the long run, the proportion of time spent at each state is given
by the stationary distribution, regardless of the initial state of the system.  Hence,
although the population randomly jumps between states forever, this randomness
engenders a regularity in the average behavior of the system.10

Solving the simultaneous equations, we see that the long run behavior of the
Markov chain is described by

(mU, mD) = 
    

PDU

PUD + PDU

,
PUD

PUD + PDU







.

Thus, the long run behavior of the system depends only on the relative likelihoods
of jumps.

When ε is small and N  large, it can be shown that either m U  ≈ 1 or m D  ≈ 1,
depending on whether All Up or All Down is risk dominant equilibrium.
Therefore, in the long run, nearly all time is spent at the risk dominant equilibrium.
Hence, we can predict that regardless of the initial behavior of the population, the
risk dominant convention will eventually have been in force for a vast majority of
play.  This is the history independent prediction of the stochastic stability model.

The intuition behind this result can be illustrated using the phase diagrams in
Figure 2.  For a jump between equilibria to occur, enough experimentation must
occur at once to move the population to the other basin of attraction.  Clearly, the
larger the basin of attraction, the more jumps that are required.  When the rate of
mutation is small, a jump requiring more mutations is far less likely than one
requiring fewer.  But the risk dominant equilibrium is the equilibrium with the
larger basin of attraction and hence the equilibrium from which it is harder to jump.
Therefore, in the long run, the population will spend far more time at the risk
dominant equilibrium than at the risk dominated equilibrium.11

10 A special case of the time average property is the Strong Law of Large Numbers, which guarantees,
for example, that in the long run, the proportion of tosses of a fair coin which come up heads will equal
one half.
11 To see this more formally, suppose that x* < 1/2, so that All Up is the risk dominant equilibrium.  A
jump from All Up from all Down takes at least N(1 – x*) experiments, while a jump in the other
direction takes at least Nx* experiments.  Since x* < 1/2, when N is large, the former jump requires
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What can be said if the underlying game has more than two strategies?  Ellison
(1995) shows that equilibrium selection results still hold in such games so long as
one of the strategies satisfies   

1
2 -dominance, a notion due to Morris, Rob, and Shin

(1995).  A strategy is   
1
2 -dominant if it is a best response whenever at least half of a

player's opponents are playing it.  By definition, any risk dominant strategy in a two
strategy game is   

1
2 -dominant.  Unfortunately, not all games possess a   

1
2 -dominant

strategy; in these cases, determining the stochastically stable outcome is a somewhat
more complicated task.  See Kandori and Rob (1995) and Ellison (1995) for further
discussion.

Stochastic stability analysis provides a mathematically rigorous history
independent prediction.  How believable is this prediction over the lengths of time
relevant in social science models?  As we discussed in the Introduction, a history
independent prediction is only credible if the predicted outcome will arise with a
very high probability over a time span which is meaningful given the object of
study.  A number of authors, including Ellison (1993), Binmore, Samuelson, and
Vaughan (1995), and Sandholm and Pauzner (1998), have observed that the
prediction of the basic stochastic stability model does not satisfy this criterion.

To illustrate this, suppose that a population playing game A initially coordinates
on All Down.  The prediction of the stochastic stability model is All Up.  However,
in order for All Up to arise, a jump must occur:  more than one third of the
population must experiment simultaneously.  When the experimentation rate is
small, even moderate population sizes make this jump extremely unlikely.  For
example, if ε = .1 and N = 200, the probability of this jump is PDU = 1.52 x   10−19 ; the
expected number of periods before the first jump occurs is therefore     

1
PDU

 = 6.57 x   1018

periods.12  Regardless of our interpretation of a period, this number is enormous.
Even if a period lasts only a second, we should not expect to see the first jump for
200 billion years.

Sandholm and Pauzner (1998) extend this criticism by considering a model in
which the population grows over time.  They show that even extremely slow
growth overturns the history independence results described above.  If
experimentation is sufficiently rare, a growing population is virtually guaranteed

many more experiments than the latter.  So, when ε, the probability of experimentation, is small, the
probability of the former, PUD, is orders of magnitude smaller than the probability of the latter, PDU.
Thus, applying the formula above, we see that mU = PDU/(PUD + PDU) is very close to one.
12 This follows because the number of periods before the first jump is geometrically distributed with
parameter PDU.
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never to jump.  In stark contrast to the fixed population model, the first equilibrium
played is quite likely to be played forever.  Hence, even if the population is initially
quite small, if it is growing the history independent prediction is unlikely to be
relevant.  In light of these criticisms, it appears that in settings in which the
stochastic stability model applies, unless the population size is both small and fixed
in size, the relevant prediction is not the risk dominant equilibrium, but rather the
equilibrium predicted by the deterministic dynamics.

5.  Stochastic Stability with Local Interaction

The predictions of the basic stochastic stability model require an unreasonably
long time span to become relevant for social science modeling.  A substantial
proportion of the population must experiment simultaneously to induce any
change in convention.  When the population is large, these changes are too rare to
form the basis for a believable prediction.

The basic stochastic stability model is predicated on uniform random matching:
all matches between players are equally likely.  However, it is often natural to think
that certain matches are more likely than others.  If the players each reside in some
particular physical location, we should expect that most encounters will take place
between players who live close by.  Rather than worry about the behavior of the
entire society, such players are mainly concerned with the actions of their neighbors.
If your neighbors all play Up, you too should play Up, regardless of the behavior of
the population at large.  Hence, a small, localized set of choice trembles can induce
changes in neighbors' behavior.  How does local interaction affect the way that
conventions evolve?  Work in this area includes papers by Blume (1993, 1995) and
Ellison (1993, 1995); our treatment follows Ellison (1993).

Imagine a society of N players whose locations are specified by positions on a
circle (see Figure 3), and suppose for simplicity that each only interacts with his
immediate neighbor on either side.  There are three possible distributions of one's
neighbors' strategies:  both Up, both Down, or one of each.  Clearly, if both of one's
neighbors are playing the same strategy, the optimal response is to follow along.  If
the neighbors are split, the expected payoffs to each strategy are πU(  

1
2 ) and πD(  

1
2 ).  By

definition, the higher value will accrue to the risk dominant strategy.  Hence, if at
least one neighbor plays the risk dominant strategy, it is optimal to play the risk
dominant strategy in response.
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Now suppose that in each period, each player chooses a best response to his two
neighbors, except on occasions on which she experiments.  Formally, this is
modeled via a Markov chain with     2

N  states:  one for each possible specification of
the N players' actions.  As before, the stationary distribution describes the long run
time averaged behavior; once again, nearly all weight in the stationary distribution
is placed on the state at which all players choose Up.  However, in contrast to the
basic stochastic stability model, under local interaction the All Up convention is a
credible prediction regardless of the initial state.

Consider a population of twelve players located around a circle.  They repeatedly
play game A, in which All Up is risk dominant, but are initially coordinated upon
All Down.  Assume that in each period, each player adjusts to play the best response
given the behavior of his neighbors.  Now, suppose that two adjacent players
simultaneously tremble, switching to Up.  In the following period, these two players
continue to play Up, as do their two immediate neighbors.  In each of the periods
which follow, barring further trembles, two more players switch to Up, until all
players have switched, at which point strategy choices stabilize.  Thus, two trembles
to Up are enough to effect the institution of the risk dominant strategy throughout
the population.  The spread of the risk dominant strategy through local interaction
is known as contagion, and is illustrated in Figure 3.
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Contagion is irreversible:  coordination on Up, once established, is very difficult
to break.  As long as two adjacent players remain who play Up, myopic best
responses will quickly return Up to predominance.  No less than half the
population must simultaneously switch to Down in order for the All Up
convention to be disturbed.  Hence, coordination on All Up is as stable here as it is
in the basic stochastic stability model.  Moreover, even if the risk dominated
convention is established first, the amount of time before it is disrupted is not very
large.  In the two neighbor matching model described above, only two mutations are
needed to break coordination on All Down.  This is true regardless of the size of the
population:  the behavior of a million member society can be radically changed by a
minute spark of experimentation.13  Thus, the local interaction makes credible
history independent predictions:  regardless of the initial conditions, we can expect
the risk dominant convention to emerge with very high probability reasonably
soon; once established, the time span before it is dislodged is astronomical.14

While in Ellison's (1993) model the risk dominant equilibrium is selected, local
interaction can lead to other outcomes if we change the assumptions governing
individual players' behavior.  For example, consider a situation in which Up and
Down correspond to two languages.  Through some extra effort, an agent could
learn both languages, easing communication in all encounters.

With this motivation, we consider a variant of a local interaction model of Goyal
and Janssen (1997) which admits the possibility of non-exclusive conventions.  That
is, in addition to playing Up or Down, a player can choose Both.  In doing so, he
plays Up against opponents playing Up and Down against those playing Down.
Moreover, when meeting another player who chooses Both, they can choose to
follow the efficient convention, which in games A  and B  is Up.  However, the
flexibility of playing Both carries with it a fixed cost which must be paid each time
Both is chosen.

Applying tools for stochastic stability analysis developed by Ellison (1995), one
can show that if the cost of playing Both is low (in games A and B, less than   

1
2 ), then

the only stable long run outcome is coordination on the Pareto dominant
equilibrium.  Thus, in contrast with the stochastic stability models considered above,

13 While we have focused on two neighbor matching, this property holds more generally:  the time
needed to disrupt the risk dominated convention depends only on the size of the neighborhood, while
the time needed to disrupt the risk dominant convention depends on the size of the whole population.
14 In analogue with his global interaction results, Ellison (1995) shows that under local interaction,
when the underlying game has more than two strategies, any 1/2-dominant equilibrium will be
stochastically stable.
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evolution in this model always leads to efficient play.15  To see why, suppose that
the underlying game is B, and consider a player who faces one neighbor playing
Down and another playing Up.  If playing Both was not an option, the best response
would be to play the risk dominant strategy, Down.  However, so long as playing
Both is not too costly, it is worthwhile to play Both and so to coordinate with both
neighbors in the succeeding periods.  But once both of the player's neighbors are
playing either Up or Both, by playing Up he can coordinate with both neighbors
without paying the flexibility fee.  Through such strategy adjustments, the possibility
of flexibility becomes a mechanism which allows efficient behavior to emerge.

Is it possible for different, interconnected regions to follow different
conventions?  A number of authors, including Sugden (1995), Anderlini and Ianni
(1996), and Goyal and Janssen (1997) consider the possibility of the coexistence of
conventions in the absence of repeated choice trembles.  Under certain assumptions
on the neighborhood structure of the local interaction model, it becomes possible for
different conventions to exist in different regions of the interaction space.
Moreover, this coexistence of conventions can be stable in the face of one-time
choice trembles.  Whether the coexistence of conventions can be stochastically stable
(i.e., whether it persists under repeated choice trembles) is a question requiring
further investigation.

6.  Communication

Without non-exclusive conventions, the stochastic stability models presented
above predict that society will coordinate on the risk dominant equilibrium.  While
there is good reason for a player who is uncertain about the behavior of his
opponents to play a risk dominant strategy, this can lead to undesirable outcomes:
in game B, the risk dominant equilibrium is the point at which societal welfare is
minimized.

In both games A and B, the outcome which arises when all players choose Up is
every player's favorite.  Suppose that before playing the game, each player can
express his intention to play Up.  Can the opportunity to communicate guarantee
efficient play?

15 Non-exclusive conventions can also be considered in the global interaction framework of Section 4.
In this setting, the Pareto dominant equilibrium is selected, but once again the waiting time before
selection occurs is extremely long.
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There is only weak support for the notion that non-binding communication,
also known as cheap talk, can lead fully rational players to play efficient equilibria.16

First, there exist "babbling equilibria" in which players ignore each others' signals to
play the efficient equilibrium.  Second, even if we assume that players listen to
credible signals, efficiency is not guaranteed.  For example, in game B, regardless of
his own action, each player always prefers that his opponent play Up.  Hence,
signaling that opponent to play Up hardly constitutes a credible commitment.17

In contrast to the eductive approach, the evolutionary approach to games with
communication assumes that signals have no intrinsic meaning.  Rather, any
meaning that the signals acquire is built up endogenously.  More importantly,
through evolution the efficient equilibrium can become the unique prediction for
long run play.  A number of authors, among them Robson (1990), Matsui (1991),
Wärneryd (1991), Kim and Sobel (1992, 1995), Banerjee and Weibull (1993), and
Schlag (1993) have studied evolution in games with communication.  The model
we present is adapted from Kim and Sobel (1995).

For concreteness, we consider the evolution of play of game A; the analysis is
identical for other two strategy coordination games.  A population of N players is
repeatedly randomly matched to play this game.  Each match consists of the play of a
two stage communication game.  In the first stage, each player sends one of two
messages, numbered 1 and 2.  Then, after hearing his opponents' message, each
player chooses Up or Down.  Thus, each communication game strategy consists of
three elements:  a message, and the base game strategy to be played in response to
messages 1 and 2.  For example, the strategy 1UD is one in which message 1 is sent,
Up is played as a response to the play of message 1 by an opponent, and Down is
played in response to message 2.

The payoffs generated in a match only depend on the coordination game
strategies that end up being played.  For instance, if a player choosing 1UD meets
another playing 2DU, both players play Down, resulting in a payoff of 1.  Many
strategy combinations yielding the same outcome:  for example, 1UD vs. 2DD and
1DD vs. 2DD also lead to a payoff of 1.  As we shall see, it is precisely this redundancy
which makes a unique prediction possible.

There are 2 x 2 x 2 = 8 strategies available in the communication game.  As in the
basic stochastic stability model, players are randomly matched, with a match with

16 For treatments of cheap talk within the standard game theoretic paradigm, see, for example,
Farrell (1988), Myerson (1989), and Rabin (1994).
17 This observation is due to Aumann (1990).
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any other member of the population equally likely.  Hence, the performance of each
communication game strategy depends on the current distribution of
communication game strategies within the population.

In the stochastic stability models, a stochastic component was introduced to the
evolutionary process via choice trembles.  Here, chance elements are not due to
suboptimal choices.  In the communication model, randomness instead takes the
form of drift between equally profitable strategies.  In particular, we assume that in
each period, one player gets the opportunity to switch strategies, and chooses
randomly from among his acceptable communication game strategies:  those that
perform at least as well as his current choice against the current distribution of
strategies in the population.

The model predicts that all players eventually play Up.  However, unlike in the
previous models, the All Up convention is associated with numerous combinations
of communication game strategies, each of which leads to play of All Up in the base
game.  It is clear that if all players choose 1UD, then all matches will result in the
play of Up in the base game and hence a payoff of 2; this is also true if all players
choose 1UU, or 2UU, or 2DU.  Furthermore, if players are divided between 1UD and
1UU, the second message is never played, and so Up is always played.  Similarly, if
the population is divided between 2UU and 2DU, or between 1UU and 2UU, the
efficient payoff is achieved.  The population will drift perpetually through all of
these sorts of states, but to none at which an inefficient payoff is possible:  once a
state at which all players receive a payoff of 2 is reached, no player will ever receive
less, as this would require a switch to a suboptimal strategy.  Thus, once the efficient
return is achieved, disruption is not just extremely unlikely; it is impossible.

Is there a stable collection of states at which everyone plays Down?  The best
candidate uses the communication game strategies 1DD and 2DD in combination.  If
all players choose one of these two strategies, and more than one is playing each,
then the only acceptable switches are to 1DD and 2DD:  since both messages are in
use, and since players always choose Down in the base game, an optimal response
must always play Down to obtain the payoff of 1.  At these states players simply
ignore the messages and play Down regardless of what they see.

Since play drifts among the acceptable strategies, the distribution between 1DD
and 2DD fluctuates over time.  Eventually, drift will lead the population to all
coordinate on a single communication game strategy, say 2DD.  At this point, since
no player is playing message 1, strategy 1UD becomes acceptable.  In the context
created by the strategy distribution, a player who chooses 1UD can be imagined
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telling his opponents, "Everyone else sends message 2 and always plays Down.  If
you meet a person who sends message 1, it's me; if you signal me by sending
message 1 yourself, we can both play Up and receive the good payoff."

Once one person switches to 1UD, the best alternative for other players receiving
the opportunity to switch is to also play 1UD; when two such players meet, their
"secret handshake" allows them to coordinate on the good outcome without being
punished when playing other members of the population.18  While some players
who receive the opportunity to switch may linger playing 2DD, once two players
play 1UD, it becomes inevitable that all players will eventually switch to this
strategy.  Once 1UD is established in this way, all players receive the efficient payoff
of 2; as we argued above the efficient payoff is never abandoned.  Thus, drift alone
can disrupt the All Down convention.19

To test whether this prediction is credible, we must consider whether a
population initially coordinated upon the All Down convention will egress from it
in a reasonable time span.  Suppose that initially all players choose 1DD or 2DD.
Until only one message is used, the only acceptable switches are to 1DD and 2DD.
Hence, the population continues to be divided between 1DD and 2DD until one
message goes unused.  How much time elapses before this occurs?

We can speed up the drift process by assuming that players always switch
strategies: that is, the chosen player always decides to alter his message.  Suppose
that the population size N is even, and for the moment, suppress the possibility that
strategies besides 1DD and 2DD will be chosen at the extreme states.  In this case, the
drift process takes the form of an Ehrenfest chain, a Markov chain which has been
studied extensively.  If we express the state of the Ehrenfest chain as the number of
players choosing message 1, its stationary distribution is binomial with parameters
N and   

1
2 .  Thus, rescaling the state space to reflect the proportion of players choosing

message 1, the Central Limit Theorem implies that the stationary distribution is
approximately normal with mean   

1
2  and variance     

1
4N .  Hence, as N grows large, the

18 The secret handshake metaphor was first proposed by Robson (1990).
19 It turns out that there is another stable state in which half of the players play 1DU, and half play
2UD.  At this distribution, players have a nearly even chance of meeting an opponent sending the same
message.  When two opponents who send the same message meet, they both play Down and receive the
payoff of 1; if the players send different messages, they both play down and receive 2.  Thus, the
average payoff from a match is approximately 3/2; any player who switches strategies receives a
strictly lower payoff.  However, the stability of this state can be destroyed by altering a modeling
detail:  by splitting the population into two groups, say, males and females, and then assuming that
each match involves exactly one male and one female, the stability of the equilibrium described above
is destroyed.  For details, see Kim and Sobel (1995).
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stationary distribution, and so the long run time average of play, is almost
completely contained in a neighborhood of   

1
2 :  the distribution of messages is nearly

always very close to even.  Furthermore, if the initial state has half of the players
using each message, the expected wait before the state at which all players choose
message 1 is reached is approximately     

1
N 2N  periods.  For a population size as small as

forty, the expected wait is about thirty trillion periods.20

Hence, if the population is large, it will take an extraordinarily long time before it
drifts to a strategy distribution with an unused message.  Inefficient states in which
messages are ignored can persist almost indefinitely.  Thus, we conclude that the
mechanism which generates the history independent prediction is too slow to be of
practical relevance.

7.  Conclusion

We have considered three models of evolution which generate history
independent predictions.  The predictions of the basic stochastic stability model and
the communication model require far longer time spans to gain relevance than
seems sensible in most applications concerning human behavior.  In contrast, local
interaction models, whose results only depend on small, concentrated choice
disturbances, yield credible history independent predictions.

Further study of local interaction models is needed to more thoroughly assess
the extent to which they make unique predictions possible.21  On the other hand,
when interactions are of a more global nature, the results described here indicate
that predictions of play may not easily be disentangled from historical conditions.
While game theoretic analysis can rule out most non-equilibrium societal

20 One could obtain very different results than the ones we have described by assuming that we choose
a message at random and increase its representation by one.  This results in a standard random walk,
which arrives at the boundaries considerably faster than does the Ehrenfest chain.  However, selecting
a message (rather than a player) at random requires that we not treat the players in an anonymous
fashion, which seems an inappropriate modeling assumption.

The Ehrenfest chain was originally introduced as a probabilistic model of physical equilibrium.
Interestingly, it was created in order to argue that although all states are possible, only those with a
nearly even distribution of messages are ever likely to be observed.  For further discussion of the
Ehrenfest chain, as well as derivations of the formulas used above, see Bhattacharya and Waymire
(1990, Chapter III.5).
21 Recent work on local interaction models includes Mailath, Samuelson, and Shaked (1994), Ely
(1995), and Morris (1996, 1997).
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outcomes, selection among those that remain may not always be reducible to a
question of payoff structure, but only to one of precedence.
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