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Abstract

A population of players repeatedly plays an n  strategy
symmetric game.  Players update their strategies by sampling the
behavior of k  opponents and playing a best response to the
distribution of strategies in the sample.  Suppose the game
possesses a     

1
k -dominant strategy which is initially played by a

positive fraction of the population.  Then if the population size
is large enough, play converges to the     

1
k -dominant equilibrium

with arbitrarily high probability.
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1.  Introduction

 Multiplicity of equilibria creates fundamental difficulties for predicting behavior
in non-cooperative games.  These difficulties are most conspicuous in coordination
games.  Since strict equilibria satisfy virtually all equilibrium refinements proposed
in the literature, games with multiple strict equilibria do not admit a single,
obviously correct prediction of play.
 In this paper, we address this issue using a simple evolutionary model.  In our
model, a fixed population of players repeatedly plays an n  strategy symmetric game,
G.  Players myopically adjust their strategy choices in response to their opponents'
current behavior.
  Many models of evolution assume that players know the current population
state when deciding how to act.  However, one might expect precise information
about the population's behavior to be difficult or costly to obtain.  For this reason, it
seems more consistent with the assumption of myopia to have players base their
decisions on limited information about opponents' play.  To capture this notion as
simply as possible, we assume that when a player receives an opportunity to update
his behavior, he draws a sample of k  ≥ 2 players from the population.  He then
chooses a best response to the distribution of behavior within his sample, viewing it
as representative of the behavior of the population as a whole.
  Surprisingly, this model can generate unique predictions of play, even in games
with multiple strict equilibria.  Suppose that G has a     

1
k -dominant strategy which is

initially played by a positive fraction of the population.  We establish that if the
population size is large enough, play converges to the     

1
k -dominant equilibrium with

arbitrarily high probability.  Thus, in some coordination games, when players have
limited information about opponents' behavior, almost global convergence to a
single equilibrium is virtually guaranteed.
 Our model does not offer a unique prediction of play in every coordination
game: in generic 2 x 2 games, a unique prediction is guaranteed only if the sample
size is two.  Still, it seems natural to assume that the sample size k  is small; while
this does not ensure a unique prediction in every game, it does create unique
predictions for many games.  Moreover, our conclusions for games which do
possess a     

1
k -dominant equilibrium are quite strong:  populations learn to play the

predicted equilibrium from nearly all initial conditions, even when other strict
equilibria are available.
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 To shed more light on our conclusions, we find it useful to contrast them with
those that have been obtained using models of stochastic stability (e.g., Kandori,
Mailath, and Rob (1993) and Young (1993a)).  These models introduce rare
mutations to some underlying evolutionary process in order to establish the
existence of a unique stochastically stable equilibrium.  By definition, such an
equilibrium is very likely to be played by the population in the sufficiently distant
future.
 The uniqueness of the stochastically stable prediction relies on the ergodicity of
the perturbed evolutionary process.  Unfortunately, ergodicity brings with it the
undesirable consequence that the predicted equilibrium is played and then
abandoned an infinite number of times.  In addition, if a strict equilibrium which is
not stochastically stable is reached first, this equilibrium should be expected to
persist; in some specifications, the expected amount of time before the equilibrium
is departed grows exponentially in the population size.1

 In our model, convergence occurs with high probability from nearly all initial
conditions; becoming stuck at the wrong equilibrium is much less of an issue.
Convergence is also permanent:  once the population reaches the     

1
k -dominant

equilibrium, it never departs.  Finally, while the large population sizes which are
natural to consider in evolutionary contexts can create tensions within stochastic
stability models, they make our results easier to prove.  However, we shall see that
our conclusions are not dependent on having a very large population:  the
predictions of our model still have force when the population is moderate in size.

2.  The Theorem

Let G = 
    

si i

n
i i

n{ } { }{ }= =1 1
, π  be an n strategy symmetric game.  If ∆ denotes the simplex

in Rn, then each πi: ∆ → R represents the payoffs to strategy si as a function of the
proportion of players choosing each strategy.  Following Morris, Rob, and Shin
(1995), we say that strategy si is p-dominant if πi(x) > πj(x) for all j ≠ i whenever x ∈  ∆
satisfies xi ≥ p.  Thus, a strategy is p-dominant if it is the unique best response when
it is played by at least proportion p of the population.  Observe that increasing p

makes p-dominance less demanding:  if p < q, any p-dominant strategy is also q-
dominant.  

                                                
1  See, for example, Ellison (1993).
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 The standard evolutionary framework considers populations of players who are
repeatedly randomly matched to play a normal form game.  In the current context,
this corresponds to the case in which each πi is linear:  πi(x) ≡ (Πx)i for some payoff
matrix Π ∈     R

n n× .2  We call a normal form game an n  x n  coordination game  if each
of the n strategies constitutes a strict equilibrium of the game:  that is, if Πii > Πji for
all i and all j ≠ i.  A   

1
2 -dominant strategy of a 2 x 2 coordination game is called strictly

risk dominant ; such a strategy is a strict best response against an opponent who is
equally likely to play either strategy.
 Our results will concern games with     

1
k -dominant strategies, where k  ≥ 2 is an

integer.  For examples of these games, consider the class of n  x n  pure coordination

games, which satisfy Π ii > 0 for all i and Π ij = 0 for all pairs ij with i ≠ j.  Suppose that
Π11 = c and that Π ii ∈  (0, 1] for all i ≠ 1.  Then it is easily verified that strategy s1 is     

1
k -

dominant whenever c > k  – 1.  If in addition Πii = 1 for some i ≠ 1, the converse
statement also holds.
 We model the evolution of play as a Markov process.  The game G is played
repeatedly by a population of N  players.  The random vector   Xt

N  =     X Xt
N

t
N n, ,, ...,1( )

represents the number of players choosing strategies s1 through sn at times t = 0, 1, … ;
by definition,     Xt

N i

i

,∑  = N  at all times t.  The initial condition     X
N
0  ∈        N0

n  is given.

During each period, one player is chosen at random from the population and given
the opportunity to revise his strategy choice.3

 In many models of evolution (e.g., Kandori, Mailath, and Rob (1993)), it is
assumed that the player granted the revision opportunity learns the exact
distribution of strategies in the population and plays a best response to this
distribution.  Under this specification, there is an absorbing state with a non-
negligible basin of attraction corresponding to each strict equilibrium of the game.
   In many settings where evolutionary models are appropriate, it may be more
natural to assume that players have limited information about opponents'
behavior.  To capture this, we suppose that the player who receives the revision
opportunity randomly samples k  ≥ 2 players from the population and learns their

                                                
2  In making this comparison with normal form games we implicitly assume that players can be
randomly matched against themselves.  When the population size is large, the effect of forbidding
self-matching become negligible; hence, ruling out self-matching would not alter our main result.
3 All of our results would continue to hold if players' revision opportunities instead arrived v ia
independent Poisson processes.
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behavior.  He then plays a best response to the distribution of strategies in the
sample.4

  Clearly, all strict equilibria of G correspond to absorbing states of this Markov
process.  But because of the randomness in the sampling procedure, the population
can converge to any of these absorbing states from any interior initial condition.
Nevertheless, we are able to show that if one equilibrium is     

1
k -dominant, a large

population is nearly certain to converge to it from nearly all initial conditions.
We call strategy si  asymptotically almost globally stable if for all δ > 0,

 
    
lim lim , ,

N t t
N i N iP X N X N

→∞ →∞
= ≥( )0 δ  = 1.

In words:  si is asymptotically almost globally stable if for any positive δ and ε , there
exists an N  = N(δ, ε) with the following property:  if the population size exceeds N

and at least proportion δ of the population initially plays si, then the probability that
play converges to the state in which all players choose si exceeds 1 – ε.

We are now able to state our main result.

Theorem:  If si is     
1
k -dominant, it is asymptotically almost globally stable.

Corollary 1:  If k = 2, G is a 2 x 2 coordination game , and si is strictly risk dominant ,
then si is asymptotically almost globally stable.

 We first offer intuition for the case in which G has exactly two strategies:  s1,
which is     

1
k -dominant, and s2, which is also a strict equilibrium.  Suppose that the

current proportion of s1 players is x.  Let D(x) be the draw rate for strategy s1:  the
probability that the player who is given the opportunity to switch strategies is an s1

player.  Clearly, D(x) = x.  Similarly, let C(x) be the choice rate for strategy s1:  the
probability that the player given the chance to switch chooses strategy s1.  Since s1 is

    
1
k -dominant, and since the sample size is k, strategy s2 will only be chosen when all

                                                
4  For simplicity, we assume that samples are drawn with replacement; allowing sampling without
replacement would not alter our main result.  In the event that a player has multiple best responses to a
particular sample, his behavior can be specified arbitrarily.
 Models of evolution with incomplete sampling have also been considered by Young (1993a, 1993b),
Hurkens (1995), Kaniovski and Young (1995), and Sáez-Martí and Weibull (1999).  In these models,
players choose best responses to an incomplete memory of past play rather than an incomplete sample
of current behavior.
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k players queried choose s2.  Therefore, the probability that s1 is chosen is C(x) = 1 – (1
– x)k.  We can compute the expected change in the number of s1 players as

 (1 – D(x))C(x) – D(x)(1 – C(x)) = C(x) – D(x) = (1 – x) – (1 – x)k,

which is strictly positive whenever x ∈  (0, 1).5  Therefore, whenever the population
is not at an absorbing state, the expected change in the number of s1 players is
positive.  But when the population size is sufficiently large, the course of evolution
is almost completely governed by the expected direction of motion.  We are
therefore able to show that for any positive initial proportion of s1 players, if the
population size is large enough, convergence to the state in which all players choose
s1 is virtually guaranteed.
 Now suppose there are more than two strategies, but that s1 is still     

1
k -dominant.

While the draw rate is unchanged, the choice rate can now depend on the
distribution of behavior among strategies besides s1.  However, since s1 is     

1
k -

dominant, the choice rate must be at least 1 – (1 – x)k.  Thus, the expected change i n
the number of s1 players remains positive.  We can therefore still establish
asymptotically almost global convergence to the     

1
k -dominant equilibrium.6

 Our definition of stability contains a limit in the population size N .  This allows
us to consider arbitrarily large populations when establishing convergence
probabilities close to 1.  How large a population do we actually need?  To address this
question, we let si be a     

1
k -dominant strategy, and define the population bound   N  by

    N( , )δ ε  = min{M : ∀ N ≥ M, 
    
P X N X N

t t
N i N ilim , ,

→∞
= ≥( )0 δ  > 1 – ε}.

Suppose that at the onset of play, at least proportion δ of the population plays
strategy si.  Then if the population size is at least     N( , )δ ε , convergence to the     

1
k -

dominant equilibrium will occur with a probability of at least 1 – ε.
  We now show that this bound grows slowly as δ and ε become small.

                                                
5  That C(x) ≥ D(x) is observed  by Chu (1993) in an evolutionary  model of law enforcement.
6  It is worth noting that when k = 1, evolution is essentially random.  For example, when G is a
coordination game, the draw and choice rates for each strategy are always equal, and each component
of the evolutionary process is a martingale.



–6–

Corollary 2:  The population bound     N( , )δ ε  satisfies

    N( , )δ ε  ≤ 

    

max
ln

ln
,

2 8
4

δ ε

δ δ
( )











k

 + 1.

Thus, for each fixed ε,     N( , )δ ε  ∈     O( ln )δ δ− −1 1 , and for each fixed δ,     N( , )δ ε  ∈     O(ln )ε −1 .

Corollary 2 shows that the population sizes needed for our predictions to be
relevant are not large, even if few players initially choose the     

1
k -dominant strategy,

and even if we demand a probability of convergence very close to 1.  In particular, as
we lower the probability ε of a failure to converge, the bound   N  only grows as the
logarithm of   ε −1:  small populations can learn to play the     

1
k -dominant equilibrium

with very high probabilities.
 The proof of these results implicitly defines an algorithm for computing
convergence probabilities, the running time of which is linear in the population
size.  Using this algorithm, we can determine exact population bounds     N( , )δ ε  for
specific choices of δ and ε.  In Table 1, we present bounds for the case in which k  = 2;
these bounds are valid when the game G has a   

1
2 -dominant equilibrium and the

sample size is 2.  The population sizes needed to ensure convergence to the   
1
2 -

dominant equilibrium are quite small.  For example, if at least 5% of the population
initially chooses the   

1
2 -dominant strategy, the probability of a failure to converge to

the   
1
2 -dominant equilibrium is less than one in a million whenever the population

size is at least 381.
 Table 2 contains population bounds for the case in which k  = 5, which are valid
when the game G has a   

1
5 -dominant equilibrium and the sample size is 5.  Fewer

games have   
1
5 -dominant equilibria than have   

1
2 -dominant equilibria.  But in those

which do, convergence to the equilibrium is robust to larger sample sizes.
Moreover, as the tables illustrate, the larger samples allow us to guarantee
convergence to the equilibrium in smaller populations.7

                                                
7  That most of the numbers in the tables have last digit 1 is a consequence of the discreteness of the
state space. For example, if N = 100, there is a state at which exactly 10% of the population plays
strategy s1, while if N = 101, all states at which at least 10% play s1 actually have at least 11/101 ≈
10.89% playing s1.  For this reason, when δ = .10 the probabilities of failures to converge drop discretely
after each multiple of 10, leading the population bounds to occur at these points.
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ε

  10 1−
  10 2−

  10 4−
  10 6−

  10 8−

.25 9 21 45 69 93
δ .10 31 61 121 191 251

.05 61 121 241 381 521

.01 301 601 1301 1901 2601

Table 1:  Population bounds     N( , )δ ε  when k = 2.

ε

  10 1−
  10 2−

  10 4−
  10 6−

  10 8−

.25 5 9 17 29 33
δ .10 11 21 51 71 101

.05 21 41 101 161 221

.01 101 201 501 801 1101

Table 2:  Population bounds     N( , )δ ε  when k = 5.

3.  The Proof

 As above, we begin with the case in which G has exactly two strategies:  a     
1
k -

dominant strategy s1, and a strict equilibrium strategy s2.  We find it convenient to
speak in terms of the number of players who are not playing the risk dominant
strategy:  define   Yt

N  ≡     Xt
N ,2  to be the number of players choosing strategy s2.  Let ZN =

{0, 1, … , N}.  Since s1 and s2 are both strict best responses to themselves,     Yt
N

t{ } =

∞

0
 is a

Markov chain on ZN whose only absorbing states are 0 and N.  We want to show that

  Yt
N  is absorbed at state 0 with high probability.

For the number of players choosing strategy s2 to increase, the player who is
given the opportunity to switch strategies must initially be playing s1, and he must
draw a sample which consists solely of s2 players.  Hence, for z ∈  {0,     

1
N , … , 1},

     P Y Y Y Nzt
N

t
N

t
N( )+ = + =1 1  = (1 – z) zk ≡ p(z).

Similarly, for   Yt
N  to fall, the player given the chance to switch must be playing s2,

and his sample must contain at least one player choosing s1.  Therefore,
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     P Y Y Y Nzt
N

t
N

t
N( )+ = − =1 1  = z (1 – zk) ≡ q(z).

 We now define three functions which will prove useful.  Define ρ: (0, 1) → R by

 ρ(z) = 
    

q z
p z
( )
( )

 = 
    

z z
z z

k

k

( )
( )

1
1

−
−

 = 
    
z zk l

l

k
1

0

1
−

=

−

∑  = 
    

z l

l

k
−

=

−

∑
0

1

.

Since k ≥ 2, ρ(·) is decreasing and 
    
lim ( )
z

z
↑1

ρ  = k.  Next, for m ∈  {1, … , N – 1} define

 πN(m) = 
    

ρ j
N

j

m

( )
=

∏
1

.

Clearly, πN(·) is increasing in m.  Finally, for y ∈  ZN define

 

    

φ
π

N

N

m

yy

y

y

m y
( )

,
,

( ) .
=

=
=

+ >











 =

−

∑

0 0
1 1

1 1
1

1

if 
if 

if 

Notice that φN(·) is strictly increasing.
 A standard result on birth and death chains (Durrett (1991, Theorem 5.3.7)) tells
us that if     Y

N
0  = y , the probability that   Yt

N  converges to N  is equal to φN(y)/φN(N).  It

will prove useful later on to see why this is so.  The function φN(·) was constructed i n
such a way that     φ

N
t
NY( )  is a martingale:  0 and N are absorbing states of   Yt

N , and it is

easily checked that for all y ∈  {1, … , N – 1},

 φN(y) = 
    
p y p q y q yy

N
N y

N
y
N

N y
N

N( ) + + − ( ) − ( )( ) + ( ) −φ φ φ( ) ( ) ( )1 1 1 (1)

 = 
    
E Y Y yN

t
N

t
Nφ +( ) =( )1

= 
    
E Y Y yN

t
N N

t
N Nφ φ φ+( ) ( ) =( )1 ( ) .

Let T0 and TN be the (random) times that   Yt
N  hits 0 and N  respectively, and let T =

min(T0, TN).  Since     φ
N

t
NY( )  is bounded and T is almost surely finite, the Optional

Stopping Theorem (Durrett (1991, Theorem 4.7.4)) tells us that

φN(y) = 
    
E Y Y yN

T
N Nφ ( ) =( )0  = φN(N)     P T TN( )< 0 .
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Rearranging this equation yields the desired result.
 Fix δ, ε > 0.  It is enough to show that if y ≤ N(1 – δ) and

 N ≥ 

    

max
ln

ln
,

2 8
4

δ ε

δ δ
( )











k

,

then φN(y)/φN(N) < ε.  Define

   ya
N  = max{y ∈  ZN: y ≤ N(1 – δ)};

  yb
N  = min{y ∈  ZN: y ≥ N(1 –   

δ
2 )}.

Observe that   yb
N  < N(1 –   

δ
2 ) + 1 < N(1 –   

δ
4 ).  Hence,

 
    

y
N y

a
N

b
N− − 1

 ≤ 
    

N
N N− − + −( ( ) )1 1 12

δ
 = 

    

1

2
2δ − N

 = 
    

2
4δ − N

 ≤ 
  

4
δ

.

Furthermore, since ρ(·) is decreasing and 
    
lim ( )
z

z
↑1

ρ  = k, we see that

 
    

π
π

N
b
N

N
a
N

y
y

( )
( )

 = 
    

ρ j
N

j y

y

a
n

b
n

( )
= +
∏

1

 ≥     ρ
δ1 4−( ) −y yb

N
a
N

 ≥     ρ
δ

δ

1 4
2−( )N

 >     k
Nδ
2  ≥ 

  

4
δε

.

Therefore, since φN(·) is increasing and positive and since πN(·) is increasing,

 
    

φ
φ

N

N

y
N
( )
( )

< 
    

φ
φ φ

N
a
N

N N
b
N

y
N y

( )
( ) ( )−

= 

    

1
1

1

1

+
=

−

=

−

∑

∑

π

π

N

m

y

N

m y

N

m

m

a
N

b
N

( )

( )

≤ 
    

y y
N y y

a
N N

a
N

b
N N

b
N

π
π

( )
( ) ( )− − 1

 ≤ 
  

4
4δ

δ ε










 = ε.

This completes the proof of the case in which G is a two strategy coordination game.
 We now consider the general case.  Suppose that strategy s1 is     

1
k -dominant, and

let     Ŷt
N  ≡ N –     Xt

N ,1 be the number of players who are playing strategies other than s1
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at time t.  Since s1 is a strict equilibrium, it is clear that 0 is an absorbing state of     Ŷt
N ,

and that no state in {1, … , N – 1} is absorbing.  We need to show that     Ŷt
N  is absorbed

at 0 with high probability.
 It is worth noting as an aside that     Ŷt

N  need not be a Markov chain.  The

probability that a player's sample causes him to switch to s1 can depend on the
distribution of the population's behavior among strategies besides s1.  Past values of

    Ŷt
N  can contain information about this distribution for which the current value of

    Ŷt
N  is not a sufficient statistic.  Therefore, transition probabilities for     Ŷt

N  that
condition only on the value of     Ŷt

N  in the current period will typically differ from

transition probabilities which also condition on the values in past periods.
 To prove the result, we will establish that     φ

N
t
NY( ˆ )  is a supermartingale.  We can

then define     T̂0  and     T̂N  to be the times that     Ŷt
N  hits 0 and N  and let     ̂T  = min(    T̂0 ,     T̂N ).

Then applying the Optional Stopping Theorem yields

 φN(y) ≥ 
    
E Y Y yN

T
N Nφ ˆ ˆ
ˆ( ) =( )0  = φN(N)     P T TN( ˆ ˆ )< 0 .

Thus,     P T TN( ˆ ˆ )< 0  ≤ φN(y)/ φN(N), and the result follows from the analysis above.
 To show that     φ

N
t
NY( ˆ )  is a supermartingale, we first observe that since strategy s1

is     
1
k -dominant, a player given the chance to switch strategies will choose to play s1 if

at least one member of his sample plays s1.  (He may also choose s1 even if no one i n
his sample chooses s1; whether he does so depends on the how the members of his
sample are distributed among the other strategies.)  In any case, it is clear that if z ∈
{0,     

1
N , … , 1},

     ̂ ( )p zt  ≡ 
    
P Y Y Y Nzt

N
t
N

t
N( ˆ ˆ ˆ )+ = + =1 1  ≤ (1 – z) zk = p(z).

Similarly, a player will certainly choose s1 if his sample contains at least one player
playing s1.  Therefore,

     ̂ ( )q zt  ≡ 
    
P Y Y Y Nzt

N
t
N

t
N( ˆ ˆ ˆ )+ = − =1 1  ≥ z (1 – zk) ≡ q(z).

Thus, applying equation (1) and utilizing the fact that φN(·) is strictly increasing, we
find that if y ∈  {1, … , N – 1},

φN(y) = 
    
p y p q y q yy

N
N y

N
y
N

N y
N

N( ) + + − ( ) − ( )( ) + ( ) −φ φ φ( ) ( ) ( )1 1 1
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≥ 
    
ˆ ( ) ˆ ( ) ( )p y p q y q yt

y
N

N
t

y
N

y
N

N y
N

N( ) + + − ( ) − ( )( ) + ( ) −φ φ φ1 1 1

≥ 
    
ˆ ( ) ˆ ˆ ( ) ˆ ( )p y p q y q yt

y
N

N
t

y
N t

y
N

N
t

y
N

N( ) + + − ( ) − ( )( ) + ( ) −φ φ φ1 1 1

= 
    
E Y Y yN

t
N

t
Nφ ˆ ˆ

+( ) =( )1

= 
    
E Y Y yN

t
N N

t
N Nφ φ φˆ ˆ ( )+( ) ( ) =( )1 .

In addition, since     Ŷt
N  can never exceed N,

 
    
E Y Y NN

t
N N

t
N Nφ φ φˆ ˆ ( )+( ) ( ) =( )1  ≤ φN(N),

and since 0 is an absorbing state of     Ŷt
N ,

 
    
E Y YN

t
N N

t
N Nφ φ φˆ ˆ ( )+( ) ( ) =( )1 0  = φN(0).

This establishes that     φ
N

t
NY( ˆ )  is a supermartingale, completing the proof of the

theorem.
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