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Abstract 
 

 
 We consider a model of evolution in games in which agents 
occasionally receive opportunities to switch strategies, choosing between 
them using a probabilistic rule.  Both the rate at which revision 
opportunities arrive and the probabilities with which each strategy is 
chosen are functions of current normalized payoffs.  We call the 
aggregate dynamics induced by this model excess payoff dynamics.  We 
show that every excess payoff dynamic is well-behaved:  regardless of the 
underlying game, each excess payoff dynamic admits unique solution 
trajectories that vary continuously with the initial state, identifies rest 
points with Nash equilibria, and respects a basic payoff monotonicity 
property.  We show how excess payoff dynamics can be used to 
construct well-behaved modifications of imitative dynamics, and relate 
them to two other well-behaved dynamics based on projections. 
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1.  Introduction 
 
 Evolutionary game theory is the study of strategic interactions in large populations 
whose members base decisions on simple myopic rules.  This approach to game theory 
stands in contrast to traditional approaches based on the assumption of equilibrium 
play.  Of fundamental interest is the connection between the two approaches:  To what 
extent do evolutionary models support traditional predictions of play?  What sorts of 
myopic decision rules sustain this link? 
 In this paper, we seek evolutionary dynamics that exhibit three attractive properties 
regardless of the strategic environment at hand.  Existence, uniqueness, and continuity of 

solutions (EUC) requires a dynamic to admit exactly one solution from each initial state, 
and requires solutions to change continuously as one varies the initial state.  Failures of 
(EUC) mean that slightly inaccurate information about initial behavior can spawn large 
errors in predictions of future behavior, even over short spans of time.  Nash stationarity 
(NS) requires a one-to-one link between the stationary states of an evolutionary 
dynamic and the Nash equilibria of the underlying game.  This condition provides the 
basic link between the evolutionary dynamic and the predictions of the standard 
theory.  Finally, positive correlation (PC) requires that strategies’ growth rates and 
payoffs be positively correlated.  In so doing, the condition ensures that out-of-
equilibrium dynamics reflect strategic incentives in a reasonable way.1  We call any 
dynamic that respects properties (EUC), (NS), and (PC) well-behaved. 
 Interestingly, neither of the two best known evolutionary dynamics are well-
behaved in the sense defined above.  The replicator dynamic satisfies (EUC) and (PC), 
but fails (NS):  while all Nash equilibria are rest points of this dynamic, the dynamic 
also admits boundary rest points that are not Nash equilibria.2  The best response 
dynamic satisfies modified versions of (PC) and (NS), but fails (EUC).  Since this 
dynamic’s law of motion is discontinuous, even its behavior over short time spans is 
quite sensitive to its initial state.  Thus, while solutions to the best response dynamic 
exist and are upper hemicontinuous in their initial conditions, multiple solution 
trajectories can emanate from a single initial condition.3 
                                                
1   To understand what is at issue here, compare the replicator dynamic to the dynamic defined by its 
negation.  The solution trajectories of this new dynamic are identical to those of the replicator dynamic 
after a reversal of time.  Both of these dynamics satisfy property (EUC), and both generate identical rest 
points.  But the dynamics have very different out-of-equilibrium properties.  For instance, while strict 
Nash equilibria are asymptotically stable under the replicator dynamic, they are unstable under the time-
reversed version.   
2   See, for example, Section 3.3 of Weibull (1995). 
3   Upper hemicontinuity follows from standard results on differential inclusions—see, for example, 
Theorem 4.11 of Smirnov (2002).  For examples of nonuniqueness of solutions, see Gilboa and Matsui 
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 Both the replicator dynamic and the best response dynamic can be derived from 
models of individual choice.  The former dynamic describes aggregate behavior in 
certain models of imitation of successful agents,4 while the latter dynamic is derived 
from a model of optimal choice.   
 In this paper, we introduce a new paradigm for individual choice in evolutionary 
models:  in place of imitation or optimization, we consider moderation.  Under this 
paradigm, agents exert moderate levels of effort to find strategies that perform well.  
The measures taken to select good strategies are sufficiently modest that suboptimal 
and even subaverage choices are made with nonnegligible probability.  Moderation 
obviously differs from optimization, and it is distinct from imitation in that it is based 
on direct rather than indirect evaluation of strategies’ payoffs.  Still, we believe that 
moderation aptly describes choice behavior in many situations naturally modeled using 
an evolutionary approach.   
  Our formal analysis starts with a simple model of individual choice.  Agents receive 
opportunities to choose new strategies according to independent Poisson processes, 
choosing stochastically from the available strategies when such opportunities arise.  
Both revision rates and choice probabilities are functions of the strategies’ excess 

payoffs—that is, on the differences between the strategies’ payoffs and the population’s 
average payoff.  More precisely, the agents’ revision protocols are defined in terms of 
objects called raw choice functions  , which map each excess payoff vector  to a 
nonnegative vector 

  ( )  called a raw choice vector.  Revision rates are determined by the 

sum of the components of the raw choice vector, while choice probabilities are 
proportional to the components of this vector. 
 Rather than make specific assumptions about functional forms, we only require that 
raw choice functions satisfy two mild conditions that embody the notion of moderation 
described above.  To rule out extreme sensitivity of decisions to the exact values of 
payoffs, we require raw choice functions to be Lipschitz continuous.  In most contexts 
where evolutionary models are appropriate, excessive sensitivity of choice rules to 
payoffs seems unrealistic, making it natural to consider models that do not demand it.  
To link choices to payoffs, we impose a condition called acuteness:  each excess payoff 
vector  and corresponding raw choice vector 

  ( )  have a positive inner product.  This 

condition ensures that whenever payoff improvement opportunities exist, revision 

                                                                                                                                                       
(1991), Matsui (1992), and Hofbauer (1995).  Perturbed versions of the best response dynamic are 
discussed below. 
4  See Björnerstedt and Weibull (1996) and Schlag (1998). 
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opportunities continue to arrive, and that revising agents show some tendency to select 
strategies with above average payoffs. 
 A game, a revision protocol, and an initial state define a Markov process through the 
space of strategy distributions.  If the population size is large, this process is well-
approximated by the solutions to a certain differential equation.  This equation, called 
the mean dynamic, is defined in terms of the expected change in the population’s 
behavior at the current population state.5  We call the class of mean dynamics derived 
from our model excess payoff dynamics. 
 The main result of this paper shows that every excess payoff dynamic is well-
behaved, in the sense of satisfying properties (EUC), (NS), and (PC).  Therefore, unlike 
dynamics based on imitation and optimization, dynamics based on moderation satisfy 
all three of our evolutionary desiderata. 
 There is one canonical dynamic that satisfies all three of our desiderata:  namely, the 
Brown-von Neumann-Nash (BNN) dynamic.6  Interestingly, the BNN dynamic is the 
simplest example of an excess payoff dynamic:  it is generated when the raw choice 
function   takes a separable semilinear form.  Our analysis thus provides a 
microfoundation for the BNN dynamic, and it also shows that very little of the structure 
of this dynamic is needed to support the properties we seek. 
 One way to contend with the discontinuities inherent in the best response dynamic 
is to introduce perturbations of payoffs.  The resulting smooth dynamics are known as 
perturbed best response dynamics; within this class, the logit dynamic is the best 
known special case.7  Unlike the original best response dynamic, perturbed best 
response dynamics satisfy condition (EUC).  However, they fail conditions (NS) and 
(PC):  because of the payoff disturbances, the rest points of perturbed best response 
dynamics differ from the Nash equilibria of the underlying game, and the growth rates 
of these dynamics fail to be positively correlated with payoffs in a variety of regions of 
the state space.   
 In very rough terms, these violations of properties (NS) and (PC) are “small” when 
the payoff perturbations are “small”, so that the perturbed best response dynamic is 
“close” to the exact best response dynamic.  This observation may seem to suggest that 
how near a dynamic comes to satisfying these two desiderata depends on how close 
choices are to being optimal, or, alternatively, on how sensitive choices are to the exact 

                                                
5   See Binmore and Samuelson (1999), Sandholm (2003), Benaïm and Weibull (2003), and Section 2.2 
below. 
6   See Brown and von Neumann (1950) and Section 2.3 below. 
7   See Fudenberg and Levine (1998, Chapter 4), Hopkins (1999), Hofbauer (2000), Hofbauer and 
Hopkins (2003), and Hofbauer and Sandholm (2002, 2003). 
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value of the state.8  The results in this paper show that these conclusions are false.  The 
choice rules that underlie excess payoff dynamics can be quite remote from exact 
optimization, yet these dynamics always satisfy all three of our desiderata exactly. 
 The replicator dynamic and other imitative dynamics fail to be well-behaved 
because they violate Nash stationarity.  Happily, we can use excess payoff dynamics to 
remedy this difficulty in a minimally intrusive fashion.  In Section 4, we show that by 
modifying any imitative dynamic to an arbitrarily small extent, we can create new 
dynamics that satisfy all three of our desiderata.  These new dynamics are convex 
combinations of the imitative dynamic and an arbitrary excess payoff dynamic; they can 
be derived from choice protocols that usually are based on imitation, but that 
occasionally rely on moderation. 
 Section 5 concludes the paper by describing two additional well-behaved dynamics, 
which we call the target projection dynamic and the projection dynamic.9  We argue that 
both these two dynamics and all excess payoff dynamics can be derived from a 
common ancestor.  We hope that this pedigree provides some preliminary steps toward 
a full characterization of well-behaved dynamics. 
 
2.  The Model 
 
2.1  A Random Matching Model 
 
  To introduce our evolutionary dynamics in the simplest possible setting, we 
describe a model in which a single population of agents is recurrently randomly 
matched to play a symmetric normal form game.  We present a more general model of 
evolution in Section 2.4.   
  Let S = {1, … , n} be a set of strategies from which individual agents choose, and let 
A    R

n n  be a payoff matrix.  Component Aij represents the payoff obtained by an agent 

who chooses action i when his opponent chooses action j.   
  A large, finite population of agents is recurrently randomly matched to play the 
game with payoff matrix A.  A population state is a vector x in the simplex  = {x    R+

n : 

 
xii

 = 1}; component xi represents the current proportion of agents choosing strategy 

i.  More precisely, when the population size is N, the state is a point in the discrete grid 
{x  :  Nx    Z

n }. 

                                                
8  The latter sort of sensitivity might be measured, for example, by the dynamic’s Lipschitz constant. 
9  For the former dynamic, see Friesz et. al. (1994); for the latter, see Dupuis and Nagurney (1993), 
Nagurney and Zhang (1996), and Lahkar and Sandholm (2004). 
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   If an agent chooses action i when the population state is x, his (expected) payoff is 
Fi(x) = (Ax)i = ei·Ax; the average realized payoff at this population state is   F(x)  = x·Ax.  

We define the excess payoff of strategy i  as the difference between the two: 
 
      F̂i  (x) = Fi(x) –   F(x) . 
 
The excess payoff vector   F̂(x)     R

n  is given by 
 
      F̂(x) = F(x) – 1  F(x) , 
 
where 1    R

n  is a vector of ones. 

 
2.2  Choice Rules and Revision Rates 
 
  We now describe our revision protocol.  Agents receive revision opportunities via 
independent, variable rate Poisson processes.  When an agent receives such an 
opportunity, he considers switching strategies.  Both the rate at which agents receive 
revision opportunities and the probabilities with which they choose each strategy are 
functions of current excess payoffs. 
  Payoffs influence strategy choices in all evolutionary models.  Allowing payoffs to 
influence revision rates is less common, but seems reasonable in many contexts.10  For 
instance, the model below can be used in settings in which agents revise more 
frequently when the differences in strategies’ payoffs are large than when these 
differences are small. 
  This revision process is defined in terms of a raw choice function  , which is a map 
from excess payoff vectors      R

n

*
 =   R

n  – int(  R
n ) to nonnegative vectors 

  ( )    R+

n .  

We can leave   undefined on int(  R
n ) because an excess payoff vector cannot lie in this 

set:  for this to occur, every strategy would need to earn a strictly below average payoff, 
which is clearly impossible.  Note that int(   R

n

*
) =   R

n  –   R
n is the set of excess payoff 

vectors under which at least one strategy has an above average payoff, while bd(   R
n

*
) = 

bd(  R
n ) is the set of excess payoff vectors under which no strategy earns an above 

average payoff. 
  Given the raw choice function  , revision rates and choice probabilities are 
determined as follows.  When the excess payoff vector is , each agent’s revision 
opportunities arrive at a rate given by the sum of the components of 

  ( ) :  that is, ( ) 

                                                
10   Björnerstedt and Weibull (1996) and Weibull (1995, Section 4.4) derive the replicator dynamic and 
other imitative dynamics using choice protocols with variable revision rates. 
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= 
   T ( )   

   j( )
j S

.  After an agent receives a revision opportunity, he selects a 

strategy according to the choice rule :    R
n

*
  , the outputs of which are proportional to 

the raw choice vector: 
 

    

   

( ) =
( )

T ( )
if T ( ) 0;

arbitrary if T ( ) = 0;
 

 
Choice probabilities can be arbitrary when 

   T ( )  = 0 since in this situation no revision 

opportunities arise. 
  To interpret the raw choice function directly, consider the rate at which agents 
currently playing strategies other than i switch to strategy i.  Under the (implicit) 
assumption that the arrivals of revision opportunities and the choices made thereafter 
are independent, this rate is given by ( ) i( ) = 

   i( ) .  Describing the model in this 

manner highlights a form of inertia built into our revision process:  if for each j  i the 
scalar 

   j( )  is small, then agents playing strategy i rarely switch to other strategies. 

  To connect the agents’ revision procedure with the underlying game, we impose two 
conditions on the raw choice function  . 
 
(LC)    is Lipschitz continuous; 
(A)    ( ) ·  > 0 whenever   int(   R

n

*
). 

 
  The first condition, Lipschhitz continuity, asks that raw choice weights be Lipschitz 
continuous functions of excess payoffs.  Discontinuous raw choice functions exhibit an 
extreme sensitivity to the exact value of excess payoffs.  In most applications, this level 
of sensitivity seems unrealistic, and so condition (LC) precludes it. 
  The second condition, acuteness, requires that the excess payoff vector  and the raw 
choice vector 

  ( )  have a positive inner product whenever  lies in the interior of    R
n

*
.  

This condition has distinct implications for revision rates and choice probabilities.  For 
the former, condition (A) requires that whenever some strategy’s excess payoff is 
strictly positive, the revision rate is strictly positive as well.  In other words, acuteness 
implies a sort of persistence:  as long as some agents would benefit from switching 
strategies, revision opportunities continue to arrive.  Concerning choice probabilities, 
condition (A) requires that whenever some strategy achieves a strictly positive excess 
payoff, the expected value of a component of  chosen at random according to the 
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probability distribution ( ) is strictly positive.  Thus, on average, agents choose 

strategies with above average payoffs. 
  The simplest raw choice function satisfying conditions (LC) and (A) takes a 
separable semilinear form: 
 
(1)    

   i( )  =   [ i]+ . 
 
Two increasingly general specifications are the truncated monomial forms 
 
(2)    

   i( )  =   ([ i]+ )k ,  k  1, 
 
and the separable forms 
 
(3)    

   i( )  = i( i),  where i: R  R+ is Lipschitz continuous, 

            i( i) = 0 on (– , 0], and i( i) > 0 on (0, ). 
 
 Separable raw choice functions only assign positive weights to strategies with 
positive excess payoffs.  We now show that neither separability nor sign-preservation is 
implied by conditions (LC) and (A).  Consider the raw choice function 
 

(4)    
   i( ) =

  
(k + 1) exp(c j )j( )([ i]+ )k

+ c ([ j]+ )k+1

j( )exp(c i ) . 

 
Proposition 2.1:  Suppose that c > 0, k > 0, and (k + 1) exp(k + 2) + 1  n.  Then the raw 
choice function (4) is nonseparable, generates strictly positive choice probabilities whenever   
int(   R

n

*
), and satisfies conditions (C) and (A). 

 
 Proof:  In the Appendix. 
 
The lower bound on the exponent k is quite weak:  for example, we can let k = 1 as long 
as the number of pure strategies n does not exceed 41. 
 
2.2  Evolutionary Dynamics 
 
  The evolutionary process defined above generates a Markov process on the simplex, 
with the realized sample path of this process depending on the realizations of each 
agent's revision opportunities and randomized choices.  Using methods from the theory 
of convergence of Markov processes, Binmore and Samuelson (1999), Sandholm (2003), 
and Benaïm and Weibull (2003) show that when the population size is large, the 



–8– 

behavior of such processes is closely approximated by the solutions of a differential 
equation.  This equation, the mean dynamic of the Markov process, is defined in terms of 
the expected changes in the population's behavior given the current population state.11 
    To derive the mean dynamic for the present model, suppose that the current 
population state is x.  Since there are N agents in the population, the expected number 
of agents receiving revision opportunities during the next dt time units is N   (F̂(x))  dt.  

Since all agents are equally likely to receive revision opportunities, the expected 
number of opportunities received by agents currently choosing strategy i is N   (F̂(x))  xi 

dt.  Finally, since choice probabilities are determined using the choice rule , the 
expected number of agents who receive opportunities and select strategy i is N   (F̂(x))  

  i(F̂(x))  dt.  Therefore, the expected change in the number of agents choosing strategy i 

during the next dt time units is given by 
 
    N   (F̂(x))   ( i(F̂(x)) xi )  dt. 
 
The expected change in the proportion of agents choosing strategy i during the next dt 
time units is 
 
      (F̂(x))   ( i(F̂(x)) xi )  dt. 
 
We therefore conclude that the mean dynamic for our Markov process is 
 
(5)      x =  (F̂(x))( (F̂(x)) x) . 
 
This dynamic has a simple interpretation:  the population state always moves directly 
toward the “target state” defined by the current choice probability vector   (F̂(x))   , 
at a speed determined by the revision rate   (F̂(x))   R+. 

  By substituting in the definitions of  and , we can write this expression directly in 

terms of the raw choice function  : 
 
     x =

   (F̂(x)) T (F̂(x))x . 
 
When   satisfies conditions (LC) and (A), we call this differential equation an excess 

payoff dynamic.   
 
                                                
11  More specifically, these papers show that during any finite time span, the actual behavior of the 
population stays within a narrow band surrounding the solution to the mean dynamic with high 
probability if the population size is sufficiently large. 



–9– 

2.3  Examples 
 
2.3.1  The Brown-von Neumann-Nash Dynamic 
 
 If raw choice function takes the truncated linear form (1), we obtain the excess 
payoff dynamic 
 
   

  xi =   [F̂i(x)]
+
 – 

  
[F̂j(x)]

+

j S

xi. 

 
This equation is known as the Brown-von Neumann-Nash (BNN) dynamic.  This dynamic 
was introduced in the context of symmetric zero-sum games by Brown and von 
Neumann (1950), more recently reintroduced by Skyrms (1990), Swinkels (1992), and 
Weibull (1996), and further investigated by Hofbauer (2000), Berger and Hofbauer 
(2001), and Sandholm (2001).12 
  We can use this dynamic to demonstrate the importance of allowing revision rates to 
vary.  Had we fixed the revision rate fixed at one, we would have obtained the mean 
dynamic 
 

    
  xi = 

  

[F̂i(x)]
+

[F̂j(x)]
+j S

 – xi. 

 
The initial term in this equation, representing current choice probabilities, is 
discontinuous:  a small change in the state that causes a strategy’s payoff to drop below 
average can force the probability with which the strategy is chosen to jump from 1 to 
0.13  It follows that the fixed rate dynamic is discontinuous as well.  By allowing revision 
opportunities to arrive slowly when the benefits of switching strategies become small, 
we are able to ensure that our law of motion is Lipschitz continuous in the population 
state, thus ensuring the existence, uniqueness, and continuity of solution trajectories. 
 
2.3.2  Connections with the Best Response Dynamic 
 
  The truncated monomial raw choice function (2) yields the choice rule 
 

                                                
12  For the connection with Nash (1951), see Section 5. 
13   For example, in a two strategy game, the choice probability for strategy 1 equals 1 if F1(x) > F2(x), 
equals 0 if F1(x) < F2(x), and is undefined otherwise.  As long as neither strategy is dominant, a jump of 
the sort noted above must occur. 
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    i( ) = 

  

([ i]+ )k

([ j]+ )k

j S

 

 
whenever   int(   R

n

*
).  If we let k approach infinity, then whenever the resulting limit 

exists it is described by the discontinuous choice rule 
 
(7)    ( ) =

  
argmax

y
y . 

 
If we view equation (7) as a raw choice function, then the implied revision rate ( ) = 

   T ( )  is fixed at one.  Thus, since 
 
    

  
argmax

y
y F̂(x)  = 

  
argmax

y
y Ax x Ax  = 

  
argmax

y
y Ax   B(x), 

 
the resulting the mean dynamic is given by 
 
      x   B(x) – x. 
 
This is the best response dynamic of Gilboa and Matsui (1991) and Matsui (1992). 
  Since the best response correspondence B is discontinuous, the best response 
dynamic possesses certain nonstandard properties.  In particular, while solutions to this 
dynamic are certain to exist, they need not be unique; in certain cases, this multiplicity 
can be the source of quite complicated solution trajectories (Hofbauer (1995)).  The 
discontinuities that spawn these difficulties are consequences of exact optimization.  
Under moderation, raw choice weights cannot depend too finely on payoff 
opportunities; this coarseness ensures that solution trajectories are not only unique, but 
also continuous in the initial state. 
 

2.4  Population Games 
 
  We conclude this section by introducing a more general class of strategic 
environments to which our analysis will apply.  This new framework generalizes the 
symmetric random matching framework from Section 2.1 by allowing for multiple 
populations of agents (i.e., player roles) and by permitting payoffs to depend 
nonlinearly on the population state.  While the games we define here are formally 
specified using continuous sets of players, one can interpret our results as providing 
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approximate descriptions of the evolution of play in populations that are large but 
finite. 
 Let P = {1, ... , p} denote the set of populations, where p  1.  Population masses are 

described by the vector m = (  m
1 , … ,  m

p ).  The set of strategies for population p is 
denoted  S

p  = {1, ... ,  n
p }, and n = 

  
np

p P
 equals the total number of pure strategies.  

The set of strategy distributions within population p  P is denoted  X
p  = { x

p    R+

np

:  

 
xi

p

i Sp  =  m
p }, while X = {x = (  x

1
, ... ,   x

p
)    R+

n :   x
p

 X
p } is the set of overall strategy 

distributions. 
  The payoff function for strategy i   S

p  is denoted  Fi
p : X  R, and is assumed to be 

continuously differentiable.  Observe that the payoffs to a strategy in population p can 

depend on the strategy distribution within population p itself.  We let  F
p : X    R

np

 refer 

to the vector of payoff functions for strategies belonging to population p and let F: X 
   R

n  denote the vector of all payoff functions.  Similar notational conventions are used 

throughout the paper.  However, when we consider games with a single population, we 
assume that the population mass is one and omit the redundant superscript p. 
  The average payoff in population p is   F

p(x)  = 
  

1
mp  x

p · F
p  (x).  Hence, the excess payoff to 

strategy i   S
p  is   F̂i

p(x)  =   Fi
p(x)  –   F

p(x) , while   F̂
p (x) =  F

p (x) – 1  F
p(x)  is the excess payoff 

vector for population p. 
  State x  X is a Nash equilibrium of F if each strategy used at x is a best response to x.  

Formally, x is a Nash equilibrium if 
 
    For all p  P and i   S

p ,  xi
p  > 0 implies that i  

  
argmax

j Sp Fj
p(x) . 

 
  An evolutionary dynamic for a game F is a differential equation   x  = V(x) that 
describes the motion of the population through the set of population states X.  The 
vector field V is a map from X to TX = {z    R

n : 
 

zi
p

i Sp  = 0 for all p  P}, the tangent 

space for the set X. 
  Suppose that agents in population p use a revision rate function  

p  and a choice rule 

 
p  derived from some raw choice function   

p .  The resulting mean dynamic is 
 

     x
p = 

  
p(F̂ p(x)) mp p(F̂ p(x)) xp( )   for all p  P, 

 

Now let  
p  = { y

p    R+

np

:  
 

xi
p

i Sp  = 1} denote the simplex in   R
np

.  Then under the 

dynamic above, the state variable for population p,  x
p    X

p  =   m
p
 

p , moves in the 
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direction of the target state  m
p
  

p(rp(x))    m
p
 

p  at rate   
p(rp(x)) .  That is, the target 

state has the same relative weights as the probability vector   
p(rp(x)) , but has a total 

mass of  m
p . 

  We can once again rewrite our dynamic in terms of the raw choice functions   
p : 

 
(E)     x

p = 
   m

p p(F̂ p(x)) T
p(F̂ p(x))xp   for all p  P. 

 
Definition:  If the raw choice functions   

p  satisfy conditions (LC) and (A), we call equation 
(E) an excess payoff dynamic. 
 

3.  Properties of Excess Payoff Dynamics 
 
  We now define the three desiderata described informally in the introduction. 
 
(EUC)    x = V(x) admits a unique solution trajectory {xt}t 0 = { t(x)}t 0 from every  
     initial condition x  X, a trajectory that remains in X for all time. 
      Moreover, for each t  0, t(x) is Lipschitz continuous in x. 
(NS)  x  X is a rest point of V if and only if it is a Nash equilibrium of F. 
(PC)  For all p  P, cov(  V

p(x) ,   F
p(x) ) = 

  
1

np V p(x) Fp(x)( )  > 0 whenever   V
p(x)   0. 

 
  Condition (EUC) requires the existence, uniqueness, and continuity of solution 
trajectories.  As we argued earlier, this condition ensures that predictions of behavior 
are not overly sensitive to the exact value of the initial state, and it abrogates the 
analytical difficulties that discontinuous dynamics present. 
 Condition (NS), Nash stationarity, requires that the rest points of the dynamics and 
the Nash equilibria of the underlying game coincide.  The condition captures the idea 
that there should be no impetus leading the population state to change if and only if no 
agent can unilaterally improve his payoffs. 
  Condition (PC), positive correlation, requires that the growth rates and payoffs of 
strategies within each population be positively correlated, strictly so whenever the 
some growth rate is nonzero.  To see that the equality stated in the condition is true, 
notice that 
 
   cov(  V

p(x) ,  F
p(x) ) = 

  
1

np (Vi
p(x) 1

np Vj
p(x))(

j Spi Sp Fi
p(x) 1

np Fj
p(x))

j Sp  

     = 
  

1
np (Vi

p(x) 0)(
i Sp Fi

p(x) 1
np Fj

p(x))
j Sp  
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     = 
  

1
np V p(x) Fp(x) + 1

np Fi
p(x)

i Sp Vi
p(x)

i Sp( )  

     = 
  

1
np V p(x) Fp(x)( ) , 

 
where the second and fourth equalities follow from the fact that V(x)  TX.  Conditions 

closely related to positive correlation have been proposed by Friedman (1991), Swinkels 
(1993), and Sandholm (2001).  Requirements of this sort are the weakest used in the 
evolutionary literature, as they restrict each population’s behavior using only a single 
scalar inequality.14 
 We call a dynamic well-behaved if it satisfies properties (EUC), (NS), and (PC) 
regardless of the population game F being played.  With this definition in hand, we can 
state our main result. 
 
Theorem 3.1:  Every excess payoff dynamic is well-behaved. 
 
 Property (EUC) is a direct consequence of the facts that excess payoff dynamics are 
Lipschitz continuous and that they are inward pointing on the boundary of X.15 To 
establish the other two properties, we prove three preliminary results. 
 
Lemma 3.2:  Let   x  = V(x) be an excess payoff dynamic.  Then for all p  P and x  X, 

  (i)    x
p F̂ p(x)  = 0; 

 (ii)  If   F̂
p(x)   int(   R

np

*
), then   V

p(x)  ·   F
p(x)  > 0. 

 
Part (i) of Lemma 3.2 observes that each population’s state is always orthogonal to its 
excess payoff vector.  Part (ii) shows that condition (PC) holds whenever some strategy 
earns an above average payoff. 
 
  Proof: (i)   x

p F̂ p(x) =  x
p  · (  F

p(x) – 1  F
p(x) ) =  x

p  ·   F
p(x)  – ( x

p · 1)(
  

1
mp   x

p ·  F
p(x) ) = 0. 

  (ii)  Suppose that   F̂
p(x)   int(   R

np

*
).  Then the fact that V(x)  TX, part (i) of the 

lemma, and acuteness imply that 
 
      V

p(x) ·  F
p(x)  =    V

p(x) (F̂ p(x) + 1F p(x))  
        = 

   (m
p p(F̂ p(x)) xp

T
p(F̂ p(x))) F̂ p(x)  

                                                
14  For stronger monotonicity conditions, see Nachbar (1990), Samuelson and Zhang (1992), Ritzberger 
and Weibull (1995), and Hofbauer and Weibull (1996). 
15   To be inward pointing means that   Vi

p (x)   0 whenever  xi

p  = 0.  For a proof that Lipschitz continuity 
and the inward pointing property imply (EUC), see Appendix A.1 of Ely and Sandholm (2004). 
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        = 
   m

p p(F̂ p(x)) F̂ p(x) T
p(F̂ p(x))xp F̂ p(x)  

        = 
   m

p p(F̂ p(x)) F̂ p(x)  > 0.   

 
  The next lemma uses acuteness and continuity to restrict the action of raw choice 

functions on the boundary of    R
np

*
:  strategies whose payoffs are below average must 

receive zero weight, and a strategy whose payoff is exactly average can receive positive 
weight only if it is the only such action. 
 

Lemma 3.3:  Let   
p  satisfy properties (LC) and (A), and let  

p   bd(   R
np

*
), so that the set of 

strategies earning average payoffs,   Z
p( p ) = {i  S

p :   i
p  = 0}, is nonempty.  Then 

 (i)   If i    Z
p( p )  (i.e., if  i

p  < 0), then 
   i

p( p )  = 0; 

 (ii)   If   Z
p( p )  = {j}, then 

   
p( p )  = c

 
e j

p  for some c  0; 

  (iii)    If   #Zp( p )   2, then 
   

p( p )  = 0. 
 
  Proof:  For notational convenience, we only consider the case in which p = 1; the 

proof of the general case is an easy extension. 
  (i)  Suppose that   bd(   R

n

*
), i  Z( ), and j  Z( ).  For  > 0, let ( ) =  + ej  

int(   R
n

*
) (see Figure 1).  Then if k  j, 

 
    

   k( ( ))   k( )  = 
   k( ( )) k  0. 

 
Moreover, 
 
    

 
lim

0    j( ( ))
  j( )  = 

 
lim

0    j( ( ))  = 0. 

 
Now were 

   i( )  strictly greater than zero, it would follow from continuity that 
 
    

 
lim

0    i( ( ))   i( )  = 
   i( ) i < 0. 

 
The last three expressions would then imply that 

  ( ( )) ( )  < 0 for all sufficiently 
small , contradicting acuteness.  Therefore, 

   i( ) = 0. 

  (ii)  Follows immediately from part (i). 
  (iii)  Suppose that   bd(   R

n

*
).  If i  Z( ), then 

   i( )  = 0 by part (i).  So let i, j  Z( ), 
and suppose that 

   i( )  > 0. 

  Define ( ) =  – ej +  
2 ej  int(   R

n

*
) (see Figure 2).  If k  {i, j}, then 

 
    

   k( ( ))   k( )  = 
   k( ( )) k  0. 
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Thus, 
 
    

  ( ( )) ( )   
   i( ( ))   i( )  + 

   j( ( ))
  j( )  

        = –
   i( ( )) + 

2

   j( ( ))  

        = (–
   i( ( ))  + 

   j( ( )) ), 
 
which by continuity must be strictly negative once  small.  This contradicts acuteness.  
We therefore conclude that 

   i( )  = 0.   

 
[[Insert Figures 1 and 2 about here]] 

 
Figures 1 and 2:  Sequences of excess payoff vectors that approach   bd(Rn

*) . 
 
 The next proposition provides two alternate characterizations of states x at which 

the excess payoff vector   F̂
p(x)  lies on the boundary of    R

np

*
.  This result and the previous 

two imply properties (NS) and (PC). 
 
Proposition 3.4:  Let   x  = V(x) be an excess payoff dynamic, and fix x  X and p  P.  Then 

the following are equivalent: 
  (i)  For all i  S

p ,  xi
p  > 0 implies that i  

  
argmax

j Sp Fj
p(x) ; 

  (ii)    F̂
p(x)   bd(   R

np

*
); 

  (iii)   V
p(x)  = 0. 

 
  Proof:  We first prove that (i) implies (ii).  If condition (i) holds, then all strategies in 
the support of  x

p  yield the maximal payoff, which is therefore the population’s average 
payoff:  maxj   

Fj
p(x)  =   F

p(x) .  It follows that   F̂i
p(x)  = 

  
Fj

p(x)  –   F
p(x)   0 for all i   S

p , with 

equality whenever  xi
p  > 0.  Hence,   F̂

p(x)   bd(   R
np

*
). 

  Second, we show that (ii) implies (i).  Suppose that   F̂
p(x)   bd(   R

np

*
), and let i be a 

strategy in the support of  x
p .  If   F̂i

p(x)  < 0, then Lemma 3.2(i) implies that 
  
F̂j

p(x)  > 0 for 

some action j  S
p , contradicting the definition of   F̂

p(x) .  Thus,   F̂i
p(x)  = 0 = 

  
max

j Sp   
F̂j

p(x) .  Since a strategy maximizes excess payoffs if and only if it also 

maximizes actual payoffs, we conclude that i  
  
argmax

j Sp Fj
p(x) . 
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  Third, we prove that (ii) implies (iii).  Let   F̂
p(x)   bd(   R

np

*
), so that   Z

p(F̂ p(x))  = 

  
argmax

j Sp F̂j
p(x)  = 

  
argmax

j Sp Fj
p(x) .  We divide the analysis into two cases.   

  For the first case, suppose that   Z
p(F̂ p(x))  = {i}.  Then since strategy i is the sole 

optimal strategy, statement (i) implies that  xk
p  = 0 for all k  i, and so  x

p  =  m
p

 ei
p .  Now 

Lemma 3.3(ii) tells us that 
   

p(F̂ p(x))  = c ei
p  for some c  0.  Hence, 

 
      V

p(x)  = 
   m

p
i
p(F̂ p(x)) xi

p
T
p(F̂ p(x))  

     =   m
p(c ei

p ) (mpei
p )c  = 0, 

 
which is statement (iii). 
  For the second case, suppose that   Z

p(F̂ p(x))   2.  Then Lemma 3.3(iii) implies that 

   
p(F̂ p(x))  = 0, which immediately implies that   V

p(x)  = 0. 

  Fourth, we establish that (iii) implies (ii) by proving the contrapositive.   Suppose 

that   F̂
p(x)   int(   R

np

*
).  Then Lemma 3.2(ii) implies that   V

p(x)  ·   F
p(x)  > 0, and hence 

that   V
p(x)   0.  This completes the proof of the proposition.   

 
 With our preliminary results in hand we prove Theorem 3.1.  Lemma 3.2(ii) shows 

that condition (PC) holds whenever   F̂
p(x)   int(   R

np

*
), and Proposition 3.4 shows that 

condition (PC) holds when   F̂
p(x)   bd(   R

np

*
), since it tells us that   V

p(x)  = 0 in this case.  

Furthermore, if the conditions in Proposition 3.4 are imposed on all populations at once, 
then statement (i) says that x is a Nash equilibrium, while statement (iii) says that x is a 
rest point of V.  Since Proposition 4 tells us that these statements are equivalent, 
condition (NS) holds.  This completes the proof of the theorem. 
 

4.  Well-Behaved Approximations of Imitative Dynamics 
 
  The best known evolutionary dynamic is the replicator dynamic, defined by 
 
    

  xi
p  =   xi

pF̂i
p(x) . 

 
This dynamic was introduced by Taylor and Jonker (1978) as a biological model of 
competition between species.  More recently, Björnerstedt and Weibull (1996) and 
Schlag (1998) have shown that the replicator dynamic describes the behavior of agents 
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who use decision procedures based on imitation, justifying the application of this 
dynamic in economic models.16 
  By allowing more general classes of imitative decision procedures, one obtains the 
class of imitative dynamics.  These are smooth dynamics on X of the form 
 
   

  xi
p  =   Ii

p(x)  =   xi
p gi

p(x)  

 
that exhibit monotone percentage growth rates:17 
 
      gi

p(x)   
  
gj

p(x)  if and only if   Fi
p(x)   

  
Fj

p(x) . 

 
  Since imitative dynamics are smooth, they admit unique solution trajectories from 
every initial condition.  It is not difficult to show that these dynamics satisfy positive 
correlation as well.18  But it is well known that imitative dynamics fail Nash stationarity:  
while every Nash equilibrium is a rest point of I, not all rest points of I are Nash 
equilibria.  In fact, x is a rest point if and only if it is a restricted equilibrium of the 
underlying game:  that is, if for each p  P, every strategy in the support of  x

p  achieves 

the same payoff.  Thus, the extra rest points of imitative dynamics all lie on the 
boundary of the state space X.  The reason for these extra rest points is clear:  whenever 
all agents choose the same strategy, imitation accomplishes nothing.  While such 
behavior is plausible in some economic contexts, in others it is more natural to expect 
that a successful strategy will eventually be played even if it is currently unused. 
  For this reason, it is common to introduce perturbed versions of imitative dynamics.  
A typical formulation of a perturbed dynamic is 
 
      x

p = (1 – )  I
p(x)  +  ( m

p p – x
p ), 

 

where  
p   int( 

np

) is some completely mixed strategy and  is a small positive 

constant.  One interpretation of this dynamic is that each agent’s revision opportunities 
are driven by two independent Poisson alarm clocks.  Rings of the first clock lead to an 
application of an imitative choice rule of the kind mentioned above, while rings of the 

                                                
16   Choice rules that generate the replicator dynamic must allow choice probabilities to depend not only 
on current payoffs, but also on the revising agent’s current strategy; however, these more complicated 
choice rules can be paired with a constant revision rate.  
17   This property has appeared in the literature under a variety of names:  relative monotonicity (Nachbar 
(1990)), order compatibility of predynamics (Friedman (1991)), monotonicity (Samuelson and Zhang (1992)), 
and payoff monotonicity (Weibull (1995)). 
18   See Fudenberg and Levine (1998, Proposition 3.6) or Sandholm (2002, Lemma A3). 
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second clock, which arrive at a much slower rate, lead to a randomized choice 
according to mixed strategy  

p .  This perturbation of the dynamic eliminates all rest 
points that are not Nash equilibria.  Still, the assumption about behavior on which it is 
based seems rather ad hoc.  It also has some negative consequences:  under the 
perturbed dynamic, growth rates and payoffs are negatively correlated near the 
boundary of X and near the rest points that survive the perturbation; moreover, these 
surviving rest points need only approximate Nash equilibria. 
  The analysis in Section 3 leads us to consider a different modification of I.  Let V be 
an excess payoff dynamic, and define a new dynamic C  by 
 
      x =   C (x)   (1 – ) I(x) +  V(x), 
 
As before, one can interpret this dynamic in terms of pairs of Poisson alarm clocks; this 
time, the second alarm clock rings at a variable rate (·), and leads to the use of a choice 
rule (·) as defined above.  Put differently, the dynamic C  captures the behavior of 

agents whose decisions are usually based on imitation, but are occasionally based on 
moderate efforts to choose a strategy that performs well, whether or not it is currently 
in use.  As Theorem 4.1 shows, this modification eliminates non-Nash rest points of the 
imitative dynamic, and does so without disturbing the dynamic’s other desirable 
properties.   
 
Theorem 4.1:  If   (0, 1], the dynamic  C  is well-behaved. 
 
 Proof:  In the Appendix. 
 
  The intuition behind this result is as follows.  Out of our three desiderata for 
evolutionary dynamics, imitative dynamics only fail condition (NS), and then only on 
the boundary of the state space.  It is therefore quite easy to introduce modifications of 
these dynamics that eliminate this failure, but typically at the cost of introducing other 
failures.  Excess payoff dynamics are desirable modifications because they themselves 
satisfy (EUC), (PC) and (NS).  This fact allows us to recover condition (NS) while 
preserving our other desiderata. 
 In addition to being well-behaved, many combined dynamics C  have another 

appealing property:  the local stability of their rest points only depends on the rest 
points’ stability under the imitative dynamic I.  As an example, consider a single 
population game F, and the excess payoff dynamic V(x) = 

   (F̂(x)) T (F̂(x))x  driven by 

the raw choice function 
   i( )  =  ([ i]+ )k , where the exponent k is strictly greater than 
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one.  Then   is well defined on all of   R
n , and one can check that its derivative matrix 

   D ( )  is the zero matrix whenever the excess payoff vector  lies on the boundary of 

   R
n

*
.  Proposition 3.4 shows that the excess payoff vector   F̂(x)  lies on this boundary 

whenever x is a Nash equilibrium.  It follows that the derivative matrix DV(x) of the 
dynamic V is the zero matrix at any equilibrium, and consequently that 
 
   DC (x) = (1 – ) DI(x) +  DV(x) = (1 – ) DI(x). 
 
Therefore, if the Nash equilibrium x is a hyperbolic rest point of the imitative dynamic 
I,19 then the eigenvalues of DI(x) determine the stability of x not only under I, but also 
under the combined dynamic C .   

 We express this idea in somewhat greater generality in the following proposition. 
 
Proposition 4.2:  Let x be a Nash equilibrium of F.  Suppose that the raw choice functions   

p  
used to define the excess payoff dynamic V have null derivative matrices at   F̂(x)   bd(   R

n

*
), and 

that x is a hyperbolic rest point of the imitative dynamic I.  Then x is an asymptotically stable 
rest point of C  if and only if it is an asymptotically stable rest point of I, and it is an unstable 

rest point of C  if and only if it is an unstable rest point of I. 
 

5.  Additional Well-Behaved Dynamics 
 
 The properties that define excess payoff dynamics are sufficient conditions for an 
evolutionary dynamic to be well-behaved.  Are there simple necessary conditions for a 
dynamic to be well-behaved?  How close are these necessary conditions to the sufficient 
conditions studied here? 
 To conclude this paper, we present two additional well-behaved dynamics, neither 
of which are excess payoff dynamics.  While doing so, we argue that excess payoff 
dynamics and these two new dynamics can all be viewed as descendents of a common 
ancestor.  This genealogy may provide a first step toward answering the questions 
raised above. 
 For convenience, we consider games played by a single population, so that 
population states are elements of the simplex X.  The common ancestor of all the 
dynamics we consider is the discrete-time “ur-dynamic” 
 

                                                
19  The rest point x is hyperbolic if the eigenvalues of the derivative matrix DI(x) corresponding to 
eigenvectors in the tangent space TX have nonzero real parts. 
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(U)   xt+1  xt +    F(xt ) 1 t( ) . 
 
In this expression, 1 is the vector of ones, and t represents a reference payoff at time t.   

 The right hand side of (U) need not define an element of the simplex, and we use the 
symbol “ ” to emphasize that (U) does not specify a well-defined dynamic.  Yet there is 

a sense in which this expression captures a property intimately connected with well-
behavedness:  strategies whose payoffs are high should tend to be come more common, 
while strategies whose payoffs are low should tend to become less so. 
  If t =   F(xt )  = xt · F(xt) equals the average payoff in the population at time t, then (U) 

becomes 
 
    xt+1  xt +   F̂(xt ) . 
 
To turn this expression into a legitimate dynamic, we replace the excess payoff vector 

  F̂(xt )  with a nonnegative proxy:  the raw choice vector 
   (F̂(xt )) . 

 
(8)   xt+1  xt + 

   (F̂(xt )) . 
 
The right hand side of expression (8) is a positive vector, so normalizing its components 
to sum to one yields a legitimate discrete-time dynamic: 
 

(9)    xt+1 = 
   

xt + (F̂(xt ))

1 + T (F̂(xt ))
. 

 
 It is not difficult to show that if   is continuous and acute, then the rest points of (9) 
are the Nash equilibria of F.  In fact, if   returns the positive parts of excess payoffs 
(i.e., if 

   i( )  = [ i]+), then equation (9) is the mapping used in Nash’s (1951) proof of 

existence of equilibrium. 
  To obtain a continuous-time dynamic, we shorten the time increment and the state 
increment in expression (8) in this natural way: 
 
     xt+   xt + 

   (F̂(xt )) . 
 
Normalizing again yields a well-defined discrete-time dynamic: 
 

     xt+  = 
   

xt + (F̂(xt ))

1 + T (F̂(xt ))
. 
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To obtain a continuous-time dynamic, we rearrange this expression to obtain 
 

    
 

xt+ xt  = 
   

(F̂(xt )) T (F̂(xt ))xt

1 + T (F̂(xt ))
. 

 
Then taking limits of both sides of this equation as  goes to zero yields 
 
(E)   

  xt = 
   (F̂(xt )) T (F̂(xt ))xt , 

 
the excess payoff dynamic derived from excess payoff function .  If 

   i( )  = [ i]+, then 

equation (E) is the BNN dynamic. 
  We obtain our two new well-behaved dynamics through a different method of 
salvaging the ur-dynamic (U).  This time, we replace the vector xt +    F(xt ) 1 t( )  in (U) 

with the closest point to this vector in the simplex X.  That is, 
 
    xt+1 = 

   X xt + F(xt ) 1 t( )( ) , 
 
where X denotes the closest-point projection onto the closed convex set X.  Actually, 

since the vector 1 is orthogonal to the simplex, the previous equation can be rewritten as 
 
(10)   xt+1 =   X xt + F(xt )( ) , 
 
regardless of the specification of the reference payoff t.

20   

 One way to derive a continuous-time dynamic from equation (10) is to consider 
stepping only  of the way from xt to X(xt + F(xt)) during the first time interval of 
length : 
 
    xt+  = (1 – )xt + X(xt + F(xt)). 
 
Rearranging this equation yields 
 

   
 

xt+ xt  = X(xt + F(xt)) – xt, 

 
and so taking  to zero yields 
 
(TP)  

  xt  = X(xt + F(xt)) – xt. 

                                                
20   Equation (10) is not new to game theory.  Gul, Pearce, Stacchetti (1993) observe that the fixed points 
of this equation are the Nash equilibria of F.  These authors credit Hartman and Stampacchia (1966) for 
introducing this map in a more general mathematical context. 
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We call the dynamic (TP) the target projection dynamic.  To the best of our knowledge, 
this dynamic first appeared in the transportation science literature in the work of Friesz 
et. al. (1994).  It is not difficult to verify that the target projection dynamic is well-
behaved.  Unfortunately, we do not know of an appealing way of deriving this dynamic 
from a model of individual choice. 
  Alternatively, we can derive a continuous time dynamic from equation (10) by 
reducing the size of the increment in the state before employing the projection X:21 
 
    xt+  = X(xt +  F(xt)). 
 
Subtracting xt and dividing by  on each side of this equation yields 
 

    
 

xt+ xt  = 
  

X(xt + F(xt )) xt . 

 
By taking the limit as  approaches zero and appealing to a geometrically obvious fact 

from convex analysis,22 we obtain the following differential equation: 
 
(P)   

  xt  = 
  TX(xt )(F(xt )) . 

 
 The right hand side of equation (P) is the projection of the payoff vector F(xt) onto 
TX(xt), the cone of feasible directions of motion from state xt.  On the interior of the 
simplex, equation (P) immediately reduces to 
 
   

  xt  =   F̂
u(xt ) , 

 
where 
 
     F̂i

u(xt )  = Fi(xt) –  
1
n 1 · F(x) 

 
is the excess payoff to strategy i over the unweighted average payoff.  On the boundary 
of the simplex, describing the dynamic without using projections requires some 

                                                
21  This order of operations is analogous to the one we used when deriving the excess payoff dynamic 
earlier in this section.  In that case, reversing the order of the two initial operations (i.e., normalizing 
before reducing the step size) results in a dynamic that is equivalent to the excess payoff dynamic up to a 
reparameterization of time. 
22  See, e.g., Proposition 3.5.3.5 of Hiriart-Urruty and Lemaréchal (1993). 
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additional effort.  Lahkar and Sandholm (2004) call the dynamic (P) the projection 

dynamic.23 
 Since the set of feasible directions TX(xt) changes discontinuously as the boundary of 
the simplex is reached, the dynamic (P) is discontinuous.  Nevertheless, results of 
Dupuis and Nagurney (1993), who study projection dynamics in a broader 
mathematical context, imply that the dynamic (P) nevertheless satisfies our existence, 
uniqueness, and continuity property (EUC).  With this property in hand, it is not 
difficult to show that the projection dynamic respects properties (NS) and (PC), and so 
that it is well-behaved. 
  Unlike the target projection dynamic (TP), the projection dynamic (P) can be derived 
from a natural model of individual choice.  It also has the attractive property of 
eliminating all iteratively strictly dominated strategies of the underlying game.  For 
detailed analyses of the payoff projection dynamic, we refer the reader to Nagurney and 
Zhang (1996) and Lahkar and Sandholm (2004). 
 We have now described two well-behaved dynamics that are not excess payoff 
dynamics, but that like excess payoff dynamics are descended from the ur-dynamic (U).  
Necessary and sufficient conditions for dynamics to be well-behaved, as well as the 
relationship between these conditions and equation (U), are important topics for future 
research. 
 

Appendix:  Additional Proofs 
 
The Proof of Proposition 2.1 
 Lipschitz continuity, nonseparability, and strict positivity clearly hold.  To check 
acuteness, we compute that 
 

    
  ( )  = 

  
(k + 1) exp(c j )j( ) i([ i]+ )k

i( ) + c ([ j]+ )k+1

j( ) i exp(c i )i( )  

     = 
  

exp(c i )(c i + k + 1)
i( ) ([ j]+ )k+1

j( ) . 

The second summation is strictly positive on int(   R
n

*
).  To sign the first summation, note 

that the derivative of its ith term, c exp(c i)(c i + k + 2), has the same sign as i +  
k+2

c .  

                                                
23  On the interior of the simplex, the dynamic (P) is equivalent to Friedman’s (1991) linear dynamic (see 
his Appendix A.1).  However, there are important differences between the definitions of the two 
dynamics on the boundary of the simplex.  For example, while Friedman’s linear dynamic admits non-
Nash rest points on bd(X), the projection dynamic satisfies Nash stationarity, and is even well-behaved.  
See Lahkar and Sandholm (2004) for further discussion. 
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Thus, the ith term itself is minimized when i = –  
k+2

c , where it takes the value –exp(–(k + 

2)).  Now any vector in int(   R
n

*
) has at least one strictly positive component j.  The 

corresponding component of the first summation must strictly exceed k + 1.  Since each 
of the remaining n – 1 components the summation is bounded below by –exp(–(k + 2)), 
the summation will be strictly positive whenever –(n – 1) exp(–(k + 2)) + (k + 1)  0, and 
hence whenever (k + 1) exp(k + 2) + 1  n.   
 
The Proof of Proposition 4.1 
  It is easy to see that the properties we appealed to in the proof of Theorem 3.1 in 
proving existence and uniqueness of solutions are satisfied not only by V, but also by I, 
and that these properties are closed under convex combination.  Thus,  C satisfies 

condition (EU).  It is also simple to verify that condition (PC) is closed under convex 
combination, so Lemma A3 of Sandholm (2002) and Theorem 3.2 above imply that  C  

satisfies this condition.  To establish condition (NS), recall that the rest points of V are 
precisely the Nash equilibria of the underlying game (by Theorem 3.3), and that the rest 
points of I include the Nash equilibria of F.  It follows immediately that all Nash 
equilibria are rest points of  C , and that non-Nash rest points of I are not rest points of 

 C .  To complete the proof, suppose that x is neither a rest point of V nor a rest point of 

I.  Then since both of these dynamics satisfy condition (PC), we know that   V
p(x)  ·   F

p(x)  
> 0 and   I

p(x)  ·   F
p(x)  > 0 for all p  P.  Hence,   C

p(x) ·   F
p(x)  > 0, and so x is not a rest 

point of  C .  We therefore conclude that  C  satisfies (NS).   
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