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Evolutionary Dynamics and Extensive Form Games† by Ross Cressman 
 

Reviewed by William H. Sandholm* 
 
 
  Noncooperative game theory is one of a handful of fundamental frameworks used 
for economic modeling.  It is therefore troubling that the solution concepts on which the 
theory’s predictions are based are not as firmly grounded as one might desire.  For 
example, while Nash equilibrium is the starting point for most game theoretic analyses, 
the conditions on players’ rationality and knowledge needed to ensure that a group of 
players will play a Nash equilibrium are disconcertingly strong.  If game theoretic 
solution concepts can only be derived from heroic assumptions about individuals’ 
abilities, predictions based on these concepts are cast into doubt. 
  Evolutionary game theory offers a novel approach for generating and justifying 
predictions of behavior in strategic situations.  Under the evolutionary paradigm, one 
associates a large population of agents with each player role in the underlying game.  
Rather than impose strong requirements on individual agents’ abilities, one assumes 
instead that agents dynamically adjust their choices in response to the choices made by 
others.  Among other things, this framework allows one to ask whether and when the 
empirical distributions of agents’ choices will come to resemble a Nash equilibrium of 
the underlying game. 
  Evolutionary game theorists have succeeded in characterizing a range of contexts in 
which populations can learn to behave as the standard theory predicts.  Still, from the 
point of view of applied research these developments leave a significant gap.  The vast 
majority of work on evolution in games focuses on normal form games.  In contrast, 
most economic applications of game theory are based on extensive form games.  Of 
course, one can analyze the latter games in terms of their reduced normal forms, but 
evolutionary analyses based on the reduced normal form ignore the original game’s 
extensive form structure.  This structure underlies the basic refinements of Nash 
equilibrium, and can also considerably simplify equilibrium computations—compare 
the fixed point methods required to find Nash equilibria with the backward induction 
techniques used to compute subgame perfect equilibria.  For these reasons, the 
development of new techniques for studying extensive form evolution is a topic of 
obvious importance. 
 Ross Cressman’s Evolutionary Dynamics for Extensive Form Games is the first book 
length study of evolution in games with sequential moves.  Cressman shows how the 
                                                
†  MIT Press, 2003. 
*  Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI  53706. 
e-mail:  whs@ssc.wisc.edu.  website:   http://www.ssc.wisc.edu/~whs.  July 20, 2004. 



–2– 

notion of backward induction can be incorporated into the study of evolutionary game 
dynamics, demonstrating that backward induction is useful not only for finding refined 
equilibria, but also for understanding out-of-equilibrium play.  Cressman provides 
complete evolutionary analyses of many canonical extensive form examples.  Perhaps 
most importantly, he takes the first steps toward a general theory of evolution based on 
backward induction methods.  I expect that Cressman’s book will serve as the principal 
starting point for future research on extensive form evolution. 
 The heart of Cressman’s book uses techniques based on subgame decompositions to 
prove convergence results for the replicator dynamic.1  The main results begin in 
Chapter 7, which focuses on two player “simultaneity games”.  This class of games 
includes finitely repeated games, two stage signaling games, and the War of Attrition as 
special cases.  The strongest results concern subgame perfect equilibria (SPE) that are  
“pervasive”, in the sense of reaching each information set with positive probability.  
Cressman proves that pervasive SPE are asymptotically stable if and only if they can 
derived by applying asymptotic stability inductively, starting at the terminal subgames 
and working backward through the game tree.  The chapter concludes with an 
evolutionary analysis of the finitely repeated Prisoner’s Dilemma:  introducing new 
analytical methods, Cressman establishes convergence of the replicator dynamic to 
Nash equilibrium, thereby showing that cooperative behavior cannot persist. 
  Chapter 8 analyzes two player games of perfect information.  Despite the fact that 
classical analysis of these games via backward induction is very simple, evolutionary 
analysis can be rather difficult, and can lead to unexpected results.  For example, 
suppose we apply the replicator dynamic to a two node game of Entry Deterrence.  In 
the unique SPE of this game, entry occurs.  But while some solutions of the replicator 
dynamic converge to the SPE, others converge to the other component of Nash 
equilibria in which entry is deterred by a noncredible threat.  However, only the 
equilibrium component containing the SPE is asymptotically stable. 
   Cressman offers general conditions on perfect information games that imply the 
final statement above:  namely, that the unique asymptotically stable set is the 
component of Nash equilibria containing the SPE.  But he also shows that these 
sufficient conditions can be quite demanding.  For instance, in the Centipede game the 
unique component of equilibria is asymptotically stable when the number of decision 
nodes is 2 or 3, but fails to be even Lyapunov stable otherwise. 
  Weaved throughout the book and culminating in Chapter 9 are the beginnings of a 
general theory of evolution in extensive form games.  This theory is built on two basic 
concepts:  the Wright manifold and subgame monotonicity.   
                                                
1   The replicator dynamic is one of the fundamental dynamics of evolutionary game theory.  It is defined 
by the property that the percentage growth rate of each strategy is equal to that strategy’s excess payoff:  
that is, the difference between the strategy’s actual payoff and the population’s average payoff. 
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   Let me introduce these concepts in the context of a symmetric extensive form game,2 
.  A pure strategy in the game  specifies a player’s behavior at each of information 

sets.  Thus, if Sh is the set of choices available to the player at information set h, his pure 
strategies are elements of the product set   Shh

, where the product is taken over all of 
his information sets.  By definition, a mixed strategy is an element of X =     ( Shh

) , the 
set of probability distributions over pure strategies.   
  In evolutionary contexts, the set X plays a different role.  If a population of agents 
are randomly matched to play the symmetric game , then a population state describes 
what proportion of agents are choosing each pure strategy.  Thus, population states are 
elements of X =     ( Shh

)  as well. 
  If we view X as the set of mixed strategies, then Wright manifold W  X consists of 
those mixed strategies with the property that choices made at temporally unordered pairs of 
information sets are stochastically independent.  In evolutionary contexts, the population 
state x  X is in the Wright manifold if individuals’ choices at unordered pairs of 
information sets are statistically independent.  In other words, for x to be in W, learning 
that a randomly chosen member of the population would chose strategy s at 
information set h must provide no information about whether this agent would have 
chosen strategy    s  at information set    h , at least when    h  neither precedes nor follows h 
in the game tree. 
  In games like Centipede in which all information sets are ordered, the Wright 
manifold is simply all of X (i.e., the set of all probability measures on the product set 

  Shh
).  More generally, the Wright manifold can be much smaller than X:  when all of 

a player’s pairs of information sets in  are unordered, W need only contain the product 
distributions on   Shh

.  The restriction to product distributions reflects the fact that 
choices made at one information set provide no information about the choices made at 
the others. 
  Cressman uses a simple example to illustrate a fundamental fact about evolution in 
extensive form games:  away from the Wright manifold, the replicator dynamic can 
behave in very peculiar ways.  The example, presented in Section 4.6.1, is a Rock-Paper-
Scissors (RPS) game that is augmented by a sunspot:  before play of RPS begins, the two 
players commonly observe a toss of a fair coin.  While the payoffs of the RPS game are 
specified so that its unique equilibrium is globally stable, Cressman shows that in the 
sunspot game the unique Nash equilibrium component is unstable. 
  The importance of the Wright manifold W for understanding evolutionary dynamics 
now becomes evident.  In the sunspot game, each player has two information sets, one 
in each subgame.  Since the subgames are unordered, the Wright manifold consists of 
the product distributions on X = 

    
Shh {h1 ,h2 }

.  Cressman shows that the replicator 

                                                
2   For a formal definition, see Cressman’s Section 6.4. 
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dynamic is invariant on W:  if the individuals’ behaviors in the two subgames are 
initially statistically independent, so that the initial state is a product distribution on X, 
the replicator dynamic preserves this independence over time.  Moreover, if we  restrict 
attention to the action of the replicator dynamic on W, we find that the unique Nash 
equilibrium that lies in W is asymptotically stable.3  The intuition for this result is 
straightforward:  since the agents’ behaviors in the two subgames always remain 
independent, evolution is able to act separately in each.  On the other hand, if the 
agents’ behaviors in the two subgames are correlated, then evolutionary forces in one 
subgame can interfere with the selection process in the other, preventing convergence to 
Nash equilibrium. 
  This example is a primary motivation for the book’s final chapter, which introduces 
the concept of subgame monotonicity.  A trajectory through the state space X is called 
subgame monotone if strategy’s growth rates reflect relative payoffs not only in the game 
as a whole, but also in the subgames of  and in the truncations of  obtained by 
collapsing subgames.  Cressman shows that subgame monotonicity has a number of 
important implications:  for instance, in generic perfect information games, all interior 
subgame monotone trajectories converge to components of Nash equilibria. 
  Are there dynamics whose solution trajectories are subgame monotone?  Cressman 
shows that under the replicator dynamic, solution trajectories that lie on the Wright 
manifold are subgame monotone.  This fact can be used to prove convergence results for 
the Centipede game:  since in this game W = X, all solutions to the replicator dynamic 
are subgame monotone, and hence all interior solutions converge to Nash equilibrium.  
But when W and X differ, the conclusions we can draw about the replicator dynamic are 
more limited:  either we must arbitrarily impose independence assumptions to ensure 
that the initial state lies on the Wright manifold, or we must accept the fact that the 
replicator dynamic will sometimes exhibit seemingly strange behavior, as in the 
sunspot example above. 
  Still, there is a third alternative:  we can abandon the replicator dynamic and instead 
seek dynamics whose solution trajectories are all subgame monotone.  While the 
existence of such dynamics is an open question, Cressman suggests how they might be 
constructed.  In Sections 2.10, 4.6, and 8.4, he reports on joint work with Karl Schlag on 
evolution in one-player games in which payoffs are determined by multiarmed 
bandits—that is, by draws from unknown but fixed probability distributions.  One can 
construct rules for playing these bandit games that perform well for large classes of 
payoff distributions and game trees.  When these rules are used by many agents, their 
behavior within each subgame can resemble the replicator dynamic defined directly for 

                                                
3   The Nash equilibrium in W is the product distribution whose marginal distributions both equal the 
Nash equilibrium of the original RPS game. 
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that subgame.  By employing similar rules in multiplayer contexts, it may be possible to 
construct dynamics for general extensive form games whose solutions are always 
subgame monotone. 
  While I have attempted to summarize Cressman’s main line of argument, his book 
covers an array of other distinct but related topics.  Chapters 2 and 3 review evolution 
in matrix and bimatrix games, covering not only the replicator dynamic, but also more 
general classes of imitative dynamics as well as the best response dynamic and the 
fictitious play process.  These chapters cover topics not treated elsewhere, including the 
use of center manifold theory for evaluating the local stability of Nash equilibria, and 
the relationship between solutions of bimatrix games and solutions of their 
symmetrized counterparts. Chapter 3 also presents the phase diagrams for the 
replicator and best response dynamics in all nine distinct classes of 2 x 2 bimatrix 
games, including six degenerate classes.  Since nondegenerate extensive form games 
often induce degenerate normal form games, the phase diagrams for the degenerate 
cases are crucial building blocks for the study of extensive form evolution.  Cressman’s 
book may be the first to collect all of these diagrams in one place. 
  While many of the motivations for studying evolution in extensive form games are 
drawn from economics, the origins of evolutionary game theory actually lie in 
biological models of intraspecies competition.  Indeed, the replicator dynamic first 
appeared in precisely this context.4  Researchers later realized that the replicator 
dynamic is equivalent to the fundamental selection equation of theoretical population 
genetics, an equation with a much longer history in the mathematical biology literature.   
  In Chapter 5, Cressman develops this connection by presenting results from 
theoretical population genetics using his extensive form framework.  He shows that a 
basic model of natural selection of trait profiles (i.e., of gametes containing genes at 
multiple loci) can be described by applying the replicator dynamic to a certain class of 
symmetric extensive form games; these games consist of an initial move by Nature 
followed by the play of a matrix game with symmetric payoffs.  By applying his results 
on extensive form evolution, Cressman shows why natural selection increases 
evolutionary fitness and ultimately leads to locally efficient gamete distributions. 
  One can obtain more realistic models of genetic evolution by introducing 
recombination:  the random reshuffling of genes situated at different loci during cell 
division (meiosis).  If selection pressures are absent, recombination causes individuals’ 
genes at different loci to become statistically independent:  in our earlier terminology, 
the Wright manifold is a global attractor of the recombination process.  If we allow 
selection and recombination to act at once, we obtain a powerful integrated 

                                                
4   Peter D. Taylor and Leo B. Jonker, “Evolutionarily Stable Strategies and Game Dynamics,” 
Mathematical Biosciences 40 (1978), 145-156. 
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convergence result:  regardless of the initial specification of the gamete distribution, 
natural selection leads this distribution to a Nash equilibrium that lies on the Wright 
manifold. 
  Thus, the Wright manifold, which proves so important in studying extensive form 
evolution, has its origins elsewhere; it is actually the namesake of Sewall Wright, a 
founding father of population genetics.  This connection illustrates how applications of 
game theory in economics and biology can build on one another in unexpected ways.  
By addressing his book to both economists and biologists, and in exploring the links 
between the contributions of both groups, Cressman ably promotes future investment 
in cross-fertilization. 


