
Proceedings of Symposia in Applied Mathematics

Stochastic Evolutionary Game Dynamics:
Foundations, Deterministic Approximation,

and Equilibrium Selection

William H. Sandholm

Abstract. We present a general model of stochastic evolution in games played

by large populations of anonymous agents. Agents receive opportunities to
revise their strategies by way of independent Poisson processes. A revision

protocol describes how the probabilities with which an agent chooses each of

his strategies depend on his current payoff opportunities and the current be-
havior of the population. Over finite time horizons, the population’s behavior

is well-approximated by a mean dynamic, an ordinary differential equation de-
fined by the expected motion of the stochastic evolutionary process. Over the

infinite time horizon, the population’s behavior is described by the stationary

distribution of the stochastic evolutionary process. If limits are taken in the
population size, the level of noise in agents’ revision protocols, or both, the

stationary distribution may become concentrated on a small set of popula-

tion states, which are then said to be stochastically stable. Stochastic stability
analysis allows one to obtain unique predictions of very long run behavior even

when the mean dynamic admits multiple locally stable states. We present a

full analysis of the asymptotics of the stationary distribution in two-strategy
games under noisy best protocols, and discuss extensions of this analysis to

other settings.

1. Introduction

Evolutionary game theory studies the behavior of large populations of agents
who repeatedly engage in anonymous strategic interactions—that is, interactions
in which each agent’s outcome depends not only on his own choice, but also on the
distribution of others’ choices. Applications range from natural selection in animal
populations, to driver behavior in highway networks, to consumer choice between
different technological standards, to the design of decentralized controlled systems.

In an evolutionary game model, changes in agents’ behavior may be driven
either by natural selection via differences in birth and death rates in biological
contexts, or by the application of myopic decision rules by individual agents in
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economic contexts. The resulting dynamic models can be studied using tools from
the theory of dynamical systems and from the theory of stochastic processes, as
well as those from stochastic approximation theory, which provides important links
between the two more basic fields.

In these notes, we present a general model of stochastic evolution in large-
population games, and offer a glimpse into the relevant literature by presenting a
selection of basic results. In Section 2, we describe population games themselves,
and offer a few simple applications. In Sections 3 and 4, we introduce our stochas-
tic evolutionary process. To define this process, we suppose that agents receive
opportunities to revise their strategies by way of independent Poisson processes.
A revision protocol describes how the probabilities with which an agent chooses
each of his strategies depend on his current payoff opportunities and the current
behavior of the population. Together, a population game, a revision protocol, and
a population size implicitly define the stochastic evolutionary process, a Markov
process on the set of population states. In Section 4, we show that over finite
time horizons, the population’s behavior is well-approximated by a mean dynamic,
an ordinary differential equation defined by the expected motion of the stochastic
evolutionary process.

To describe behavior over very long time spans, we turn to an infinite-horizon
analysis, in which the population’s behavior is described by the stationary distri-
bution of the stochastic evolutionary process. We begin the presentation in Section
5, which reviews the relevant definitions and results from the theory of finite-state
Markov processes and presents a number of examples. In order to obtain tight
predictions about very long run play, one can examine the limit of the station-
ary distributions as the population size grows large, the level of noise in agents’
decisions becomes small, or both. The stationary distribution may then become
concentrated on a small set of population states, which are said to be stochasti-
cally stable. Stochastic stability analysis allows one to obtain unique predictions of
very long run behavior even when the mean dynamic admits multiple locally stable
states. In Sections 6 and 7 we introduce the relevant definitions, and we present a
full analysis of the asymptotics of the stationary distribution for the case of two-
strategy games under noisy best response protocols. This analysis illustrates how
the specification of the revision protocol can influence equilibrium selection results.
We conclude in Section 8 by discussing extensions of our analyses of infinite-horizon
behavior to more complicated strategic settings.

This presentation is based on portions of Chapters 10–12 of Sandholm (2010c),
in which a complete treatment of the topics considered here can be found.

2. Population Games

We consider games played by a single population (i.e., games in which all
agents play equivalent roles). We suppose that there is a unit mass of agents,
each of whom chooses a pure strategy from the set S = {1, . . . , n}. The aggregate
behavior of these agents is described by a population state; this is an element of
the simplex X = {x ∈ Rn+ :

∑
j∈S xj = 1}, with xj representing the proportion of

agents choosing pure strategy j. We identify a population game with a continuous
vector-valued payoff function F : X → Rn. The scalar Fi(x) represents the payoff
to strategy i when the population state is x.
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Population state x∗ is a Nash equilibrium of F if no agent can improve his payoff
by unilaterally switching strategies. More explicitly, x∗ is a Nash equilibrium if

(1) x∗i > 0 implies that Fi(x) ≥ Fj(x) for all j ∈ S.

Example 2.1. In a symmetric two-player normal form game, each of the two players
chooses a (pure) strategy from the finite set S; which we write generically as S =
{1, . . . , n}. The game’s payoffs are described by the matrix A ∈ Rn×n. Entry Aij
is the payoff a player obtains when he chooses strategy i and his opponent chooses
strategy j; this payoff does not depend on whether the player in question is called
player 1 or player 2.

Suppose that the unit mass of agents are randomly matched to play the sym-
metric normal form game A. At population state x, the (expected) payoff to strat-
egy i is the linear function Fi(x) =

∑
j∈S Aijxj ; the payoffs to all strategies can be

expressed concisely as F (x) = Ax. It is easy to verify that x∗ is a Nash equilibrium
of the population game F if and only if x∗ is a symmetric Nash equilibrium of the
symmetric normal form game A. �

While population games generated by random matching are especially simple,
many games that arise in applications are not of this form.

Example 2.2. Consider the following model of highway congestion, due to Beck-
mann et al. (1956). A pair of towns, Home and Work, are connected by a network
of links. To commute from Home to Work, an agent must choose a path i ∈ S con-
necting the two towns. The payoff the agent obtains is the negation of the delay on
the path he takes. The delay on the path is the sum of the delays on its constituent
links, while the delay on a link is a function of the number of agents who use that
link.

Population games embodying this description are known as a congestion games.
To define a congestion game, let Φ be the collection of links in the highway network.
Each strategy i ∈ S is a route from Home to Work, and so is identified with a set of
links Φi ⊆ Φ. Each link φ is assigned a cost function cφ : R+ → R, whose argument
is link φ’s utilization level uφ:

uφ(x) =
∑
i∈ρ(φ)

xi , where ρ(φ) = {i ∈ S : φ ∈ Φi}

The payoff of choosing route i is the negation of the total delays on the links in this
route:

Fi(x) = −
∑
φ∈Φi

cφ(uφ(x)).

Since driving on a link increases the delays experienced by other drivers on
that link (i.e., since highway congestion involves negative externalities), cost func-
tions in models of highway congestion are increasing; they are typically convex as
well. Congestion games can also be used to model positive externalities, like the
choice between different technological standards; in this case, the cost functions are
decreasing in the utilization levels. �

3. Revision Protocols and the Stochastic Evolutionary Process

We now introduce foundations for our models of evolutionary dynamics. These
foundations are built on the notion of a revision protocol, which describes both
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the timing and results of agents’ myopic decisions about how to continue playing
the game at hand. This approach to defining evolutionary dynamics was developed
in Björnerstedt and Weibull (1996), Weibull (1995), Hofbauer (1995), and Benäım
and Weibull (2003), and Sandholm (2003, 2010b).

3.1. Definitions. A revision protocol is a map ρ : Rn×X → Rn×n+ that takes
the payoff vectors π and population states x as arguments, and returns nonnegative
matrices as outputs. For reasons to be made clear below, scalar ρij (π, x) is called
the conditional switch rate from strategy i to strategy j.

To move from this notion to an explicit model of evolution, let us consider a
population consisting of N <∞ members. A number of the analyses to follow will
consider the limit of the present model as the population size N approaches infinity.
When the population is of size N , the set of feasible social states is the finite set
XN = X ∩ 1

NZn = {x ∈ X : Nx ∈ Zn}, a grid embedded in the simplex X.
A revision protocol ρ, a population game F , and a population size N define a

continuous-time evolutionary process—a Markov process {XN
t }—on the finite state

space XN . A one-size-fits-all description of this process is as follows. Each agent in
the society is equipped with a “stochastic alarm clock”. The times between rings
of of an agent’s clock are independent, each with a rate R exponential distribution.
The ringing of a clock signals the arrival of a revision opportunity for the clock’s
owner. If an agent playing strategy i ∈ S receives a revision opportunity, he switches
to strategy j 6= i with probability ρij/R. If a switch occurs, the population state
changes accordingly, from the old state x to a new state y that accounts for the
agent’s change in strategy.

To describe the stochastic evolutionary process {XN
t } formally, it is enough to

specify its jump rates {λNx }x∈X N , which describe the exponential rates of transitions
from each state, and its transition probabilities {PNxy}x,y∈X N , which describe the
probabilities that a transition starting at state x ends at state y.

If the current social state is x ∈ XN , then Nxi of the N agents are playing
strategy i ∈ S. Since agents receive revision opportunities independently at ex-
ponential rate R, the basic properties of the exponential distribution imply that
revision opportunities arrive in the society as a whole at exponential rate NR.

When an agent playing strategy i ∈ S receives a revision opportunity, he
switches to strategy j 6= i with probability ρij/R. Since this choice is indepen-
dent of the arrivals of revision opportunities, the probability that the next revision
opportunity goes to an agent playing strategy i who then switches to strategy j is

Nxi
N
× ρij

R
=
xiρij
R

.

This switch decreases the number of agents playing strategy i by one and increases
the number playing j by one, shifting the state by 1

N (ej − ei).
Summarizing this analysis yields the following observation.

Observation 3.1. A population game F , a revision protocol ρ, a constant R,
and a population size N define a Markov process {XN

t } on the state space XN .
This process is described by some initial state XN

0 = xN0 , the jump rates λNx = NR,
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and the transition probabilities

PNx,x+z =



xiρij(F (x), x)
R

if z = 1
N (ej − ei), i, j ∈ S, i 6= j,

1−
∑
i∈S

∑
j 6=i

xiρij(F (x), x)
R

if z = 0,

0 otherwise.

3.2. Examples. In economic contexts, revision protocols of the form

(2) ρij(π, x) = xjrij(π, x)

are called imitative protocols. These protocols can be given a very simple inter-
pretation: when an agent receives a revision opportunity, he chooses an opponent
at random and observes her strategy. If our agent is playing strategy i and the
opponent strategy j, the agent switches from i to j with probability proportional
to rij . Notice that the value of the population share xj is not something the agent
need know; this term in (2) accounts for the agent’s observing a randomly chosen
opponent.

Example 3.2. Suppose that after selecting an opponent, the agent imitates the
opponent only if the opponent’s payoff is higher than his own, doing so in this case
with probability proportional to the payoff difference:

ρij(π, x) = xj [πj − πi]+.
This protocol is known as pairwise proportional imitation; see Helbing (1992) and
Schlag (1998). �

Additional references on imitative protocols include Björnerstedt and Weibull (1996),
Weibull (1995), and Hofbauer (1995).

Protocols of form (2) also appear in biological contexts, starting with the work
of Moran (1962), and revisited more recently by Nowak et al. (2004) among oth-
ers, see Nowak (2006) and Traulsen and Hauert (2009) for further references. In
these cases we refer to (2) as a natural selection protocol. The biological interpreta-
tion of (2) supposes that each agent is programmed to play a single pure strategy.
An agent who receives a revision opportunity dies, and is replaced through asex-
ual reproduction. The reproducing agent is a strategy j player with probability
ρij(π, x) = xj ρ̂ij(π, x), which is proportional both to the number of strategy j
players and to some function of the prevalences and fitnesses of all strategies. Note
that this interpretation requires the restriction∑

j∈S
ρij(π, x) ≡ 1.

Example 3.3. Suppose that payoffs are always positive, and let

(3) ρij(π, x) =
xj πj∑
k∈S xk πk

.

Understood as a natural selection protocol, (3) says that the probability that the
reproducing agent is a strategy j player is proportional to xjπj , the aggregate fitness
of strategy j players.

In economic contexts, we can interpret (3) as an imitative protocol based on
repeated sampling. When an agent’s clock rings he chooses an opponent at ran-
dom. If the opponent is playing strategy j, the agent imitates him with probability
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proportional to πj . If the agent does not imitate this opponent, he draws a new
opponent at random and repeats the procedure. �

In the previous examples, only strategies currently in use have any chance
of being chosen by a revising agent (or of being the programmed strategy of the
newborn agent). Under other protocols, agents’ choices are not mediated through
the population’s current behavior, except indirectly via the effect of behavior on
payoffs. These direct protocols require agents to directly evaluate the payoffs of each
strategy, rather than to indirectly evaluate them as under an imitative procedure.

Example 3.4. Suppose that choices are made according to the logit choice rule:

(4) ρij(π, x) =
exp(η−1πj)∑
k∈S exp(η−1πk)

.

The interpretation of this protocol is simple. Revision opportunities arrive at unit
rate. When an opportunity is received by an i player, he switches to strategy j with
probability ρij(π, x), which is proportional to an exponential function of strategy
j’s payoffs. The parameter η > 0 is called the noise level. If η is large, choice
probabilities under the logit rule are nearly uniform. But if η is near zero, choices
are optimal with probability close to one, at least when the difference between the
best and second best payoff is not too small. �

4. Finite Horizon Deterministic Approximation

4.1. Mean Dynamics. A revision protocol ρ, a population game F , and a
population size N define a Markov process {XN

t } on the finite state space XN .
We now derive a deterministic process—the mean dynamic—that describes the
expected motion of {XN

t }. In Section 4.3, we will describe formally the sense in
which this deterministic process provides a very good approximation of the behavior
of the stochastic process {XN

t }, at least over finite time horizons and for large
population sizes. But having noted this result, we will focus in this section on the
deterministic process itself.

To compute the expected increment of {XN
t } over the next dt time units, recall

first that each of the N agents receives revision opportunities via a rate R expo-
nential distribution, and so expects to receive Rdt opportunities during the next dt
time units. If the current state is x, the expected number of revision opportunities
received by agents currently playing strategy i is approximately NxiRdt. Since an
i player who receives a revision opportunity switches to strategy j with probabil-
ity ρij/R, the expected number of such switches during the next dt time units is
approximately Nxi ρij dt. Therefore, the expected change in the number of agents
choosing strategy i during the next dt time units is approximately

(5) N

∑
j∈S

xjρji(F (x), x)− xi
∑
j∈S

ρij(F (x), x)

 dt.

Dividing expression (5) by N and eliminating the time differential dt yields a differ-
ential equation for the rate of change in the proportion of agents choosing strategy
i:

(M) ẋi =
∑
j∈S

xjρji(F (x), x)− xi
∑
j∈S

ρij(F (x), x).
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Equation (M) is the mean dynamic (or mean field) generated by revision pro-
tocol ρ in population game F . The first term in (M) captures the inflow of agents
to strategy i from other strategies, while the second captures the outflow of agents
to other strategies from strategy i.

4.2. Examples. We now revisit the revision protocols from Section 3.2. To
do so, we let

F (x) =
∑
i∈S

xiFi(x)

denote the average payoff obtained by the members of the population, and define
the excess payoff to strategy i,

F̂i(x) = Fi(x)− F (x),

to be the difference between strategy i’s payoff and the population’s average payoff.

Example 4.1. In Example 3.2, we introduced the pairwise proportional imitation
protocol ρij(π, x) = xj [πj − πi]+. This protocol generates the mean dynamic

(6) ẋi = xiF̂i(x).

Equation (6) is the replicator dynamic of Taylor and Jonker (1978), the best-known
dynamic in evolutionary game theory. Under this dynamic, the percentage growth
rate ẋi/xi of each strategy currently in use is equal to that strategy’s current excess
payoff; unused strategies always remain so. There are a variety of revision protocols
other than pairwise proportional imitation that generate the replicator dynamic as
their mean dynamics; see Björnerstedt and Weibull (1996) and Hofbauer (1995).
�

Example 4.2. In Example 3.3, we assumed that payoffs are always positive, and
introduced the protocol ρij(π, x) ∝ xj πj , which we interpreted both as a model
of biological natural selection and as a model of imitation with repeated sampling.
The resulting mean dynamic,

(7) ẋi =
xiFi(x)∑
k∈S xkFk(x)

− xi =
xiF̂i(x)
F (x)

,

is the Maynard Smith replicator dynamic, due to Maynard Smith (1982). This
dynamic only differs from the standard replicator dynamic (6) by a change of speed,
with motion under (7) being relatively fast when average payoffs are relatively low.
In multipopulation models, the two dynamics are less similar because the changes
in speed may differ across populations, affecting the direction of motion. �

Example 4.3. In Example 3.4 we introduced the logit choice rule ρij(π, x) ∝ exp(η−1πj).
The corresponding mean dynamic,

(8) ẋi =
exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

− xi,

is called the logit dynamic, due to Fudenberg and Levine (1998). �

We summarize these and other examples of revision protocols and mean dynamics in
Table 1. Dynamics from the table that have not been mentioned so far include the
best response dynamic of Gilboa and Matsui (1991), the BNN dynamic of Brown
and von Neumann (1950), and the Smith (1984) dynamic. Discussion, examples,
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Revision protocol Mean dynamic Name

ρij = xj [πj − πi]+ ẋi = xiF̂i(x) replicator

ρij =
exp(η−1πj)∑
k∈S exp(η−1πk)

ẋi =
exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

− xi logit

ρij = 1{j=argmaxk∈S πk} ẋ ∈ BF (x)− x best response

ρij = [πj −
∑
k∈S xkπk]+ ẋi = [F̂i(x)]+ − xi

∑
j∈S

[F̂j(x)]+ BNN

ρij = [πj − πi]+
ẋi =

∑
j∈S

xj [Fi(x)− Fj(x)]+

−xi
∑
j∈S

[Fj(x)− Fi(x)]+
Smith

Table 1: Five basic deterministic dynamics.

and results concerning these and other deterministic dynamics can be found in J.
Hofbauer’s contribution to this volume.

4.3. Deterministic Approximation Theorem. In Section 3, we defined
the Markovian evolutionary process {XN

t } from a revision protocol ρ, a population
game F , and a finite population size N . In Section 4.1, we argued that the expected
motion of this process is captured by the mean dynamic

(M) ẋi = V F (x) =
∑
j∈S

xjρji(F (x), x)− xi
∑
j∈S

ρij(F (x), x).

The basic link between the Markov process {XN
t } and its mean dynamic (M) is

provided by the following theorem (Kurtz (1970), Sandholm (2003), Benäım and
Weibull (2003)).

Theorem 4.4 (Deterministic Approximation of {XN
t }). Suppose that V F is

Lipschitz continuous. Let the initial conditions XN
0 = xN0 converge to state x0 ∈ X,

and let {xt}t≥0 be the solution to the mean dynamic (M) starting from x0. Then
for all T <∞ and ε > 0,

lim
N→∞

P

(
sup
t∈[0,T ]

∣∣XN
t − xt

∣∣ < ε

)
= 1.

Thus, when the population sizeN is large, nearly all sample paths of the Markov
process {XN

t } stay within ε of a solution of the mean dynamic (M) through time
T . By choosing N large enough, we can ensure that with probability close to one,
XN
t and xt differ by no more than ε for all t between 0 and T (Figure 1).

The intuition for this result comes from the law of large numbers. At each
revision opportunity, the increment in the process {XN

t } is stochastic. Still, the
expected number of revision opportunities that arrive during the brief time interval
I = [t, t+ dt] is large—in particular, of order N dt. Since each opportunity leads to
an increment of the state of size 1

N , the size of the overall change in the state during
time interval I is of order dt. Thus, during this interval there are a large number
of revision opportunities, each following nearly the same transition probabilities,
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=

Figure 1: Deterministic approximation of the Markov process {XN
t }.

and hence having nearly the same expected increments. The law of large numbers
therefore suggests that the change in {XN

t } during this interval should be almost
completely determined by the expected motion of {XN

t }, as described by the mean
dynamic (M).

It should be emphasized that Theorem 4.4 cannot be extended to an infinite
horizon result. To see why not, consider the logit choice protocol (Example 4.3),
under which switches between all pairs of strategies occur with positive probability
regardless of the current state. As we discuss in Section 5, this property implies
that the induced Markov process {XN

t } is irreducible, and hence that every state
in XN is visited infinitely often with probability one. This fact clearly precludes
an infinite horizon analogue of Theorem 4.4. However, the failure of this result
introduces a new possibility, that of obtaining unique predictions of infinite horizon
behavior. We consider this question in Sections 6 and 7.

4.4. Analysis of Deterministic Dynamics. With this justification in hand,
one can use methods from dynamical systems theory to study the behavior of the
mean dynamic (M). A large literature has considered this question for a wide
range of choices of the revision protocol ρ and the game F , proving a variety
of results about local stability of equilibrium, global convergence to equilibrium,
and nonconvergence. Other contributions to this volume, in particular those of
J. Hofbauer and R. Cressman, address such results; for general references, see
Hofbauer and Sigmund (1988, 1998, 2003), Weibull (1995), Sandholm (2009), and
chapters 4–9 of Sandholm (2010c).

5. Stationary Distributions

Theorem 4.4 shows that over finite time spans, the stochastic evolutionary
process {XN

t } follows a nearly deterministic path, closely shadowing a solution
trajectory of the corresponding mean dynamic (M). But if we look at longer time
spans—that is, if we fix the population size N of interest and consider the position of
the process at large values of t—the random nature of the process must assert itself.
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If the process is generated by a full support revision protocol, one that always assigns
positive probabilities to transitions to all neighboring states in XN , then {XN

t }must
visit all states in XN infinitely often. Evidently, an infinite horizon approximation
theorem along the lines of Theorem 4.4 cannot hold. To make predictions about play
over very long time spans, we need new techniques for characterizing the infinite
horizon behavior of the stochastic evolutionary process. We do so by considering
the stationary distribution µN of the process {XN

t }. A stationary distribution
is defined by the property that a process whose initial condition is described by
this distribution will continue to be described by this distribution at all future
times. If {XN

t } is generated by a full support revision protocol, then its stationary
distribution µN is not only unique, but also describes the infinite horizon behavior of
{XN

t } regardless of this process’s initial distribution. In principle, this fact allows us
to use the stationary distribution to form predictions about a population’s very long
run behavior that do not depend on its initial behavior. This contrasts sharply with
predictions based on the mean dynamic (M), which generally require knowledge of
the initial state.

5.1. Full Support Revision Protocols. To introduce the possibility of unique
infinite-horizon predictions, we now assume in addition that the conditional switch
rates are bounded away from zero: there is a positive constant R such that

(9) ρij(F (x), x) ≥ R for all i, j ∈ S and x ∈ X.
We refer to a revision protocol that satisfies condition (9) as having full support.

Example 5.1. Best response with mutations. Under best response with mutations
at mutation rate ε > 0, called BRM (ε) for short, a revising agent switches to his
current best response with probability 1 − ε, but chooses a strategy uniformly at
random (or mutates) with probability ε > 0. Thus, if the game has two strategies,
each yielding different payoffs, a revising agent will choose the optimal strategy
with probability 1− ε

2 and will choose the suboptimal strategy with probability ε
2 .

(Kandori et al. (1993), Young (1993)) �

Example 5.2. Logit choice. In Example 3.4 we introduced the logit choice protocol
with noise level η > 0. Here we rewrite this protocol as

(10) ρij(π) =
exp(η−1(πj − πk∗))∑
k∈S exp(η−1(πk − πk∗))

.

where k∗ is an optimal strategy under π. Then as η approaches zero, the denomina-
tor of (10) converges to a constant (namely, the number of optimal strategies under
π), so as η−1 approaches infinity, ρij(π, x) vanishes at exponential rate πk∗ − πj .
(Blume (1993, 1997)) �

As their noise parameters approach zero, both the BRM and logit protocols
come to resemble an exact best response protocol. But this similarity masks a
fundamental qualitative difference between the two protocols. Under best response
with mutations, the probability of choosing a particular suboptimal strategy is
independent of the payoff consequences of doing so: mutations do not favor alter-
native strategies with higher payoffs over those with lower payoffs. In contrast,
since the logit protocol is defined using payoff perturbations that are symmetric
across strategies, more costly “mistakes” are less likely to be made. One might
expect the precise specification of mistake probabilities to be of little consequence.
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But as we shall see below, predictions of infinite horizon behavior hinge on the
relative probabilities of rare events, so that seemingly minor differences in choice
probabilities can lead to entirely different predictions of behavior.

5.2. Review: Irreducible Markov Processes. The full support assump-
tion (9) ensures that at each revision opportunity, every strategy in S has a positive
probability of being chosen by the revising agent. Therefore, there is a positive
probability that the process {XN

t } will transit from any given current state x to
any other given state y within a finite number of periods. A Markov process with
this property is said to be irreducible. Below we review some basic results about
infinite horizon behavior of irreducible Markov processes on a finite state space; for
details, see e.g. Norris (1997).

Suppose that {Xt}t≥0 is an irreducible Markov process on the finite state space
X , where the process has equal jump rates λx ≡ l and transition matrix P . Then
there is a unique probability vector µ ∈ RX

+ satisfying

(11)
∑
x∈X

µxPxy = µy for all y ∈ X .

The vector µ is called the stationary distribution of the process {Xt}. Equation
(11) tells us that if we run the process {Xt} from initial distribution µ, then at the
random time of the first jump, the distribution of the process is also µ. Moreover,
if we use the notation Pπ(·) to represent {Xt} being run from initial distribution
π, then

(12) Pµ (Xt = x) = µx for all x ∈ X and t ≥ 0.

In other words, if the process starts off in its stationary distribution, it remains in
this distribution at all subsequent times t.

While equation (12) tells us what happens if {Xt} starts off in its stationary
distribution, our main interest is in what happens to this process in the very long
run if it starts in an arbitrary initial distribution π. Then as t grows large, the time
t distribution of {Xt} converges to µ:

(13) lim
t→∞

Pπ(Xt = x) = µx for all x ∈ X .

Thus, looking at the process {Xt} from the ex ante point of view, the probable
locations of the process at sufficiently distant future times are essentially determined
by µ.

To describe long run behavior from an ex post point of view, we need to consider
the behavior of the process’s sample paths. Here again, the stationary distribution
plays the central role. Then along almost every sample path, the proportion of time
spent at each state in the long run is described by µ:

(14) Pπ

(
lim
T→∞

1
T

∫ T

0

1{Xt=x} dt = µx

)
= 1 for all x ∈ X .

We can also summarize equation (14) by saying that the limiting empirical distri-
bution of {Xt} is almost surely equal to µ.

In general, computing the stationary distribution of a Markov process means
finding an eigenvector of a matrix, a task that is computationally daunting unless
the state space, and hence the dimension of the matrix, is small. But there is a spe-
cial class of Markov processes whose stationary distributions are easy to compute.
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A constant jump rate Markov process {Xt} is said to be reversible if it admits a
reversible distribution: a probability distribution µ on X that satisfies the detailed
balance conditions:

(15) µxPxy = µyPyx for all x, y ∈ X .

A process satisfying this condition is called reversible because, probabilistically
speaking, it “looks the same” whether time is run forward or backward. Since
summing the equality in (15) over x yields condition (11), a reversible distribution
is also a stationary distribution.

While in general reversible Markov processes are rather special, we now in-
troduce one important case in which reversibility is ensured. A constant jump
rate Markov process {XN

t } on the state space XN = {0, 1
N , . . . , 1} is a birth and

death process if the only positive probability transitions move one step to the right,
move one step to the left, or remain still. This implies that there are vectors
pN , qN ∈ RX N

with pN1 = qN0 = 0 such that the transition matrix of {XN
t } takes

the form

PNx y ≡


pNx if y = x + 1

N ,

qNx if y = x − 1
N ,

1− pNx − qNx if y = x ,
0 otherwise.

Clearly, the process {XN
t } is irreducible if pNx > 0 for x < 1 and qNx > 0 for

x > 0, as we henceforth assume. For the transition matrix above, the reversibility
conditions (15) reduce to

µNx q
N
x = µNx−1/N p

N
x−1/N for x ∈ { 1

N , . . . , 1}.

Applying this formula inductively, we find that the stationary distribution of {XN
t }

satisfies

(16)
µNx
µN0

=
Nx∏
j=1

pN(j−1)/N

qNj/N
for x ∈ { 1

N , . . . , 1},

with µ0 determined by the requirement that the weights in µN must sum to 1.

5.3. Stationary Distributions for Two-Strategy Games. When the pop-
ulation plays a game with just two strategies, the state space XN is a grid in the
simplex in R2. In this case it is convenient to identify state x with the weight
x ≡ x1 that it places on strategy 1. Under this notational device, the state space of
the Markov process {XN

t } becomes XN = {0, 1
N , . . . , 1}, a uniformly-spaced grid in

the unit interval. We will also write F (x ) for F (x) and ρ(π, x ) for ρ(π, x) whenever
it is convenient to do so.

Because agents in our model switch strategies sequentially, transitions of the
process {XN

t } are always between adjacent states, implying that {XN
t } is a birth

and death processes. Let us now use formula (16) to compute the stationary distri-
bution of our stochastic evolutionary process, maintaining the assumption that the
process is generated by a full support revision protocol. Referring back to Section
3.1, we find that the process {XN

t } has constant jump rates λNx = NR, and that
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its upward and downward transition probabilities are given by

pNx = (1− x ) · 1
Rρ01(F (x ), x ) and(17)

qNx = x · 1
Rρ10(F (x ), x ).(18)

Substituting formulas (17) and (18) into equation (16), we see that for x ∈ { 1
N ,

2
N , . . . , 1},

we have

µNx
µN0

=
Nx∏
j=1

pN(j−1)/N

qNj/N
=

Nx∏
j=1

(1− j−1
N )

j
N

·
1
R ρ01(F ( j−1

N ), j−1
N )

1
R ρ10(F ( jN ), jN )

.

Simplifying this expression yields the following result.

Theorem 5.3. Suppose that a population of N agents plays the two-strategy
game F using the full support revision protocol ρ. Then the stationary distribution
for the evolutionary process {XN

t } on XN is given by

µNx
µN0

=
Nx∏
j=1

(N − j + 1)
j

·
ρ01(F ( j−1

N ), j−1
N )

ρ10(F ( jN ), jN )
for x ∈ { 1

N ,
2
N , . . . , 1},

with µN0 determined by the requirement that
∑

x∈X N µNx = 1.

In what follows, we will use Theorem 5.3 to understand the infinite-horizon
behavior of the process {XN

t }, in particular as various parameters are taken to
their limiting values.

5.4. Examples. The power of infinite horizon analysis lies in its ability to
generate unique predictions of play even in games with multiple strict equilibria.
We now illustrate this idea by computing some stationary distributions for two-
strategy coordination games under the BRM and logit rules. In all cases, we find
that these distributions place most of their weight near a single equilibrium. But
we also find that the two rules need not select the same equilibrium.

Example 5.4. Stag Hunt. The symmetric normal form coordination game

A =
(
h h
0 s

)
with s > h > 0 is known as Stag Hunt. By way of interpretation, we imagine that
each agent in a match must decide whether to hunt for hare or for stag. Hunting
for hare ensures a payoff of h regardless of the match partner’s choice. Hunting for
stag can generate a payoff of s > h if the opponent does the same, but results in a
zero payoff otherwise. Each of the two strategies has distinct merits. Coordinating
on Stag yields higher payoffs than coordinating on Hare. But the payoff to Hare is
certain, while the payoff to Stag depends on the choice of one’s partner.

Suppose that a population of agents is repeatedly matched to play Stag Hunt.
If we let x denote the proportion of agents playing Stag, then with our usual
abuse of notation, the payoffs in the resulting population game are FH(x ) = h
and FS(x ) = sx . This population game has three Nash equilibria: the two pure
equilibria, and the mixed equilibrium x ∗ = h

s . We henceforth suppose that h = 2
and s = 3, so that the mixed equilibrium places mass x ∗ = 2

3 on Stag.
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Figure 2: Stationary distribution weights µx for Stag Hunt (h = 2, s = 3, N = 100).

Suppose that agents follow the best response with mutations protocol, with
mutation rate ε = .10. The resulting mean dynamic,

ẋ =

{
ε
2 − x if x < 2

3 ,

(1− ε
2 )− x if x > 2

3 ,

has stable rest points at x = .05 and x = .95. The basins of attraction of these
rest points meet at the mixed equilibrium x ∗ = 2

3 . Note that the rest point that
approximates the all-Hare equilibrium has the larger basin of attraction.

In Figure 2(i), we present this mean dynamic underneath the stationary distri-
bution µN for N = 100, which we computed using the formula derived in Theorem
5.3. While the mean dynamic has two stable equilibria, nearly all of the mass in the
stationary distribution is concentrated at states where between 88 and 100 agents
choose Hare. Thus, while coordinating on Stag is efficient, the “safe” strategy Hare
is selected by the stochastic evolutionary process.

Suppose instead that agents use the logit rule with noise level η = .25. The
mean dynamic is then the logit dynamic,

ẋ =
exp(3x η−1)

exp(2η−1) + exp(3x η−1)
− x ,

which has stable rest points at x = .0003 and x = .9762, and an unstable rest
point at x = .7650, so that the basin of attraction of the “almost all-Hare” rest
point x = .0003 is even larger than under BRM. Examining the resulting stationary
distribution (Figure 2(ii)), we see that virtually all of its mass is placed on states
where either 99 or 100 agents choose Hare, in rough agreement with the result for
the BRM(.10) rule. �

Why does most of the mass in the stationary distribution becomes concentrated
around a single equilibrium? The stochastic evolutionary process {XN

t } typically
moves in the direction indicated by the mean dynamic. If the process begins in
the basin of attraction of a rest point or other attractor of this dynamic, then the
initial period of evolution generally results in convergence to and lingering near this
locally stable set.

However, since BRM and logit choice lead to irreducible evolutionary processes,
this cannot be the end of the story. Indeed, we know that the process {XN

t }
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Figure 3: Stationary distribution weights µx for a nonlinear Stag Hunt (h = 2, s = 7, N = 100).

eventually reaches all states in XN ; in fact, it visits all states in XN infinitely
often. This means that the process at some point must leave the basin of the
stable set visited first; it then enters the basin of a new stable set, at which point
it is extremely likely to head directly the set itself. The evolution of the process
continues in this fashion, with long periods of visits to each attractor punctuated
by sudden jumps between the stable set.

Which states are visited most often over the infinite horizon is determined by
the relative unlikelihoods of these rare but inevitable transitions between stable
sets. In the examples above, the transitions from the Stag rest point to the Hare
rest point and from the Hare rest point to the Stag rest point are both very unlikely
events. But for purposes of determining the stationary distribution, what matters
is that in relative terms, the former transitions are much more likely than the latter.
This enables us to conclude that over very long time spans, the evolutionary process
will spend most periods at states where most agents play Hare.

Example 5.5. A nonlinear Stag Hunt. We now consider a version of the Stag Hunt
game in which payoffs depend nonlinearly on the population state. With our usual
abuse of notation, we define payoffs in this game by FH(x ) = h and FS(x ) = sx 2,
with x representing the proportion of agents playing Stag. The population game
F has three Nash equilibria: the pure equilibria x = 0 and x = 1, and the mixed
equilibrium x ∗ =

√
h/s. We focus on the case in which h = 2 and s = 7, so that

x ∗ =
√

2/7 ≈ .5345.
Suppose first that a population of 100 agents play this game using the BRM(.10)

rule. In Figure 3(i) we present the resulting mean dynamic beneath a graph of the
stationary distribution µ100. The mean dynamic has rest points at x = .05, x = .95,
and x ∗ ≈ .5345, so the the “almost all Hare” rest point again has the larger basin of
attraction. As was true in the linear Stag Hunt from Example 5.4, the stationary
distribution generated by the BRM(.10) rule in this nonlinear Stag Hunt places
nearly all of its mass on states where at least 88 agents choose Hare.

Figure 3(ii) presents the mean dynamic and the stationary distribution µ100 for
the logit rule with η = .25. The rest points of the logit(.25) dynamic are x = .0003,
x = 1, and x = .5398, so the “almost all Hare” rest point once again has the larger
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basin of attraction. Nevertheless, the stationary distribution µ100 places virtually
all of its mass on the state in which all 100 agents choose Stag.

To summarize, our prediction for very long run behavior under the BRM(.10)
rule is inefficient coordination on Hare, while our prediction under the logit(.25)
rule is efficient coordination on Stag. �

For the intuition behind this discrepancy in predictions, recall the discussion
from Section 5.1 about the basic distinction between the logit and BRM protocols:
under logit choice, the probability of a “mistake” depends on its payoff conse-
quences, while under BRM, it does not. The latter observation implies that under
BRM, the probabilities of escaping from the basins of attraction of stable sets, and
hence the identities of the states predominate in the very long run, depend only
on the size and the shapes of the basins. In the current one-dimensional example,
these shapes are always line segments, so that only the size of the basins matters;
since the “almost all-Hare” state has the larger basin, it is selected under the BRM
rule.

On the contrary, the probability of escaping a stable equilibrium under logit
choice depends not only on the shape and size of its basin, but also on the payoff
differences that must be overcome during the journey. In the nonlinear Stag Hunt
game, the basin of the “almost all-Stag” equilibrium is smaller than that of the
all-Hare equilibrium. But because the payoff advantage of Stag over Hare in the
former’s basin tends to be much larger than the payoff advantage of Hare over Stag
in the latter’s, it is more difficult for the population to escape the all-Stag equilib-
rium than the all-Hare equilibrium; as a result, the population spends virtually all
periods coordinating on Stag over the infinite horizon.

We can compare the process of escaping from the basin of a stable rest point
to an attempt to swim upstream. Under BRM, the strength of the stream’s flow is
constant, so the difficulty of a given excursion is proportional to distance. Under
logit choice, the strength of the stream’s flow is variable, so the difficulty of an ex-
cursion depends on how this strength varies over the distance travelled. In general,
the probability of escaping from a stable set is determined by both the distance
that must be travelled and the strength of the oncoming flow.

To obtain unique predictions of infinite horizon behavior, it is generally enough
either that the population size not be too small, or that the noise level in agents’
choices not be too large. But one can obtain cleaner and more general results by
studying the limiting behavior of the stationary distribution as the population size
approaches infinity, the noise level approaches zero, or both. This approach to
studying infinite horizon behavior, known as stochastic stability theory.

One difficulty that can arise in this setting is that the prediction of infinite
horizon behavior can depend on the identity or on the order in which limits are
taken. Our last example, based on Binmore and Samuelson (1997), illustrates this
point.

Example 5.6. Consider a population of agents who are matched to play the sym-
metric normal form game with strategy set S = {0, 1} and payoff matrix

A =
(

1 2
3 1

)
.
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Figure 4: Stationary distribution weights µN,ε
x in an anticoordination game under an “imitation

with mutation” protocol.

The unique Nash equilibrium of the population game F (x) = Ax is the mixed
equilibrium x∗ = (x∗0 , x∗1 ) = ( 1

3 ,
2
3 ). To simplify notation in what follows we allow

self-matching, but the analysis is virtually identical without it.
Suppose that agents employ the following revision protocol, which combines

imitation of successful opponents and mutations:

ρεij(π, x) = xjπj + ε.

The protocol ρε generates the mean dynamic

(19) ẋi = V εi (x) = xiF̂i(x) + 2ε ( 1
2 − xi),

which is the sum of the replicator dynamic and an order ε term that points toward
the center of the simplex. When ε = 0, this dynamic is simply the replicator
dynamic: the Nash equilibrium x∗ = ( 1

3 ,
2
3 ) attracts solutions from all interior

initial conditions, while pure states e0 and e1 are unstable rest points. When ε > 0,
the two boundary rest points disappear, leaving a globally stable rest point that is
near x∗, but slightly closer to the center of the simplex.

Using the formulas from Theorem 5.3, we can compute the stationary distri-
bution µN,ε of the process {XN,ε

t } generated by F and ρε for any fixed values of N
and ε. Four instances are presented in Figure 4.

Figure 4(i) presents the stationary distribution when ε = .1 and N = 100. This
distribution is drawn above the phase diagram of the mean dynamic (19), whose
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global attractor is appears at x̂ ≈ .6296. The stationary distribution µN,ε has its
mode at state x = .64, but is dispersed rather broadly about this state.

Figure 4(ii) presents the stationary distribution and mean dynamic when ε = .1
and N = 10,000. Increasing population size moves the mode of the distribution
occurs to state x = .6300, and, more importantly, causes the distribution to exhibit
much less dispersion around the modal state. This numerical analysis suggests that
in the large population limit, the stationary distribution µN,ε will approach a point
mass at x̂ ≈ .6296, the global attractor of the relevant mean dynamic.

As the noise level ε approaches zero, the rest point of the mean dynamic ap-
proaches the Nash equilibrium x ∗ = 2

3 . Therefore, if after taking N to infinity we
take ε to zero, we obtain the double limit

(20) lim
ε→0

lim
N→∞

µN,ε = δx ∗ ,

where the limits refer to weak convergence of probability measures, and δx ∗ denotes
the point mass at state x ∗.

The remaining pictures illustrate the effects of setting very small mutation
rates. When N = 100 and ε = 10−5 (Figure 4(iii)) most of the mass in µ100,ε falls
in a bell-shaped distribution centered at state x = .68, but a mass of µ100,ε

1 = .0460
sits in isolation at the boundary state x = 1. When ε is reduced to 10−7 (Figure
4(iv)), this boundary state commands a majority of the weight in the disribution
(µ100,ε

1 = .8286).
This numerical analysis suggests that when the mutation rate approaches zero,

the stationary distribution will approach a point mass at state 1. Increasing the
population size does not alter this result, so for the small noise double limit we
obtain

(21) lim
N→∞

lim
ε→0

µN,ε = δ1,

where δ1 denotes the unit point mass at state 1.
Comparing equations (20) and (21), we conclude that the large population

double limit and the small noise double limit disagree. �

In the preceding example, the large population limits agree with the predictions
of the mean dynamic, while the small noise limits do not. Still, the behavior of
the latter limits is easy to explain. Starting from any interior state, and from the
boundary as well when ε > 0, the expected motion of the process {XN,ε

t } is toward
the interior rest point of the mean dynamic V ε. But when ε is zero, the boundary
states 0 and 1 become rest points of V ε, and are absorbing states of {XN,ε

t }; in fact,
it is easy to see that they are the only recurrent states of the zero-noise process.
Therefore, when ε = 0, {XN,ε

t } reaches either state 0 or state 1 in finite time, and
then remains at that state forever.

If instead ε is positive, the boundary states are no longer absorbing, and they
are far from any rest point of the mean dynamic. But once the process {XN,ε

t }
reaches such a state, it can only depart by way of a mutation. Thus, if we fix
the population size N and make ε extremely small, then a journey from an interior
state to a boundary state—here a journey against the flow of the mean dynamic—is
“more likely” than an escape from a boundary state by way of a single mutation.
It follows that in the small noise limit, the stationary distribution must become
concentrated on the boundary states regardless of the nature of the mean dynamic.
(In fact, it will typically become concentrated on just one of these states.)
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As this discussion indicates, the prediction provided by the small noise limit
does not become a good approximation of behavior at fixed values of N and ε
unless ε is so small that lone mutations are much more rare than excursions from
the interior of XN to the boundary. In Figures 4(iii) and (iv), which consider a
modest population size of N = 100, we see that a mutation rate of ε = 10−5 is
not small enough to yield agreement with the prediction of the small noise limit,
though a mutation rate of ε = 10−7 yields a closer match. With larger population
sizes, the relevant mutation rates would be even smaller.

This example suggests that in economic contexts, where the probabilities of
“mutations” may not be especially small, the large population limit is more likely
to be the relevant one in cases where the predictions of the two limits disagree.
In biological contexts, where mutation rates may indeed be quite small, the choice
between the limits seems less clear.

6. Asymptotics of the Stationary Distribution and Stochastic Stability

The examples in Section 5 show that even when the underlying game has multi-
ple strict equilibria, the stationary distribution is often concentrated in the vicinity
of just one of them if the noise level η is small or the population size N is large. In
these cases, the population state so selected provides a unique prediction of infinite
horizon play.

In order to obtain clean selection results, we now allow the parameters η and
N to approach their limiting values. While each fixed stationary distribution µN,η

has full support on XN , the limit of a sequence of stationary distributions may
converge to a point mass at a single state; thus, taking limits in η and N allows us to
obtain exact equilibrium selection results. Moreover while computing a particular
stationary distribution requires solving a large collection of linear equalities, the
limiting stationary distribution can often be found without explicitly computing
any of the stationary distributions along the sequence (see Section 8).

Population states that retain mass in a limiting stationary distribution are said
to be stochastically stable. There are a number of different definitions of stochastic
stability, depending on which limits are taken—just η, just N , η followed by N , or
N followed by η—and on what should count as “retaining mass”. Taking only the
small noise limit, or taking this limit first, emphasizes the rarity of suboptimal play
as the key force behind equilibrium selection. Taking only the large population
limit, or taking it first, emphasizes the effects of large numbers of conditionally
independent decisions in driving equilibrium selection. Since it is not always easy
to know which of these forces should be viewed as the primary one, a important
goal in stochastic stability analysis is to identify settings in which the small noise
and large population limits agree.

Analysis of stochastic stability in games have been carried out under a wide
array of assumptions about the form of the underlying game, the nature of the
revision protocol, the specification of the evolutionary process, and the limits taken
to define stochastic stability—see Section 8 and Sandholm (2009, 2010c) for refer-
ences. In what follows, we focus on an interesting setting in which all calculations
can be carried until their very end, and in which one can obtain precise statements
about infinite horizon behavior and about the agreement of the small noise and
large population limits.
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7. Noisy Best Response Protocols in Two-Strategy Games

Here we consider evolution in two-strategy games under a general class of noisy
best response protocols We introduce the notion of the cost of a suboptimal choice,
which is defined as the rate of decay of the probability of making this choice as
the noise level approaches zero. Using this notion, we derive simple formulas that
characterize the asymptotics of the stationary distribution under the various limits
in η and N , and offer a necessary and sufficient condition for an equilibrium to
be uniquely stochastically stable under every noisy best response protocol. This
section follows Sandholm (2010a), which builds on earlier work by Binmore and
Samuelson (1997), Blume (2003), and Sandholm (2007).

7.1. Noisy Best Response Protocols and their Cost Functions. We
consider evolution under noisy best response protocols. These protocols can be
expressed as

(22) ρηij(π) = ση(πj − πi),

for some function ση : R → (0, 1): when a current strategy i player receives a
revision opportunity, he switches to strategy j 6= i with a probability that only
depends on the payoff advantage of strategy j over strategy i. To justify its name,
the protocol ση should recommend optimal strategies with high probability when
the noise level is small:

lim
η→0

ση(a) =

{
1 if a > 0,
0 if a < 0.

To place further structure on the probabilities of suboptimal choices, we impose
restrictions on the rates at which the probabilities ση(a) of choosing a suboptimal
strategy approach zero as η approaches zero. To do so, we define the cost of
switching to a strategy with payoff disadvantage d ∈ R as

(23) κ(d) = − lim
η→0

η log ση(−d).

By unpacking this expression, we can write the probability of switching to a strategy
with payoff disadvantage d when the noise level is η as

ση(−d) = exp
(
−η−1(κ(d) + o(1))

)
,

where o(1) represents a term that vanishes as η approaches 0. Thus, κ(d) is the ex-
ponential rate of decay of the choice probability ση(−d) as η−1 approaches infinity.

We are now ready to define the class of protocols we will consider.

Definition. We say that the noisy best response protocol (22) is regular if
(i) the limit in (23) exists for all d ∈ R, with convergence uniform on compact intervals;
(ii) κ is nondecreasing;
(iii) κ(d) = 0 whenever d < 0;
(iv) κ(d) > 0 whenever d > 0.

Conditions (ii)-(iv) impose constraints on the rates of decay of switching prob-
abilities. Condition (ii) requires the rate of decay to be nondecreasing in the payoff
disadvantage of the alternative strategy. Condition (iii) requires the switching prob-
ability of an agent currently playing the suboptimal strategy to have rate of decay
zero; the condition is satisfied when the probability is bounded away from zero,
although this is not necessary for the condition to hold. Finally, condition (iv)
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requires the probability of switching from the optimal strategy to the suboptimal
one to have a positive rate of decay. These conditions are consistent with having
either κ(0) > 0 or κ(0) = 0: thus, when both strategies earn the same payoff, the
probability that a revising agent opts to switch strategies can converge to zero with
a positive rate of decay, as in Example 7.1 below, or can be bounded away from
zero, as in Examples 7.2 and 7.3.

We now present the three leading examples of noisy best response protocols.

Example 7.1. Best response with mutations. The BRM protocol with noise level
η (= −(log ε)−1), introduced in Example 5.1, is defined by

ση(a) =

{
1− exp(−η−1) if a > 0,
exp(−η−1) if a ≤ 0.

In this specification, an indifferent agent only switches strategies in the event of a
mutation. Since for d ≥ 0 we have −η log ση(−d) = 1, protocol ση is regular with
cost function

κ(d) =

{
1 if d ≥ 0,
0 if d < 0. �

Example 7.2. Logit choice. The logit choice protocol with noise level η > 0, intro-
duced in Examples 3.4 and 5.2, is defined in two-strategy games by

ση(a) =
exp(η−1a)

exp(η−1a) + 1
.

For d ≥ 0, we have that −η log ση(−d) = d+ η log(exp(−η−1d) + 1). It follows that
ση is regular with cost function

κ(d) =

{
d if d > 0,
0 if d ≤ 0. �

Example 7.3. Probit choice. The logit choice protocol can be derived from a random
utility model in which the strategies’ payoffs are perturbed by i.i.d., double expo-
nentially distributed random variables (see Hofbauer and Sandholm (2002)). The
probit choice protocol assumes instead that the payoff perturbations are i.i.d. normal
random variables with mean 0 and variance η. Thus

ση(a) = P(
√
η Z + a >

√
η Z ′),

where Z and Z ′ are independent and standard normal. It follows easily that

(24) ση(a) = Φ
(

a√
2η

)
,

where Φ is the standard normal distribution function.
A well-known approximation of Φ tells us that when z < 0,

(25) Φ(z) = K(z) exp(−z
2

2 )

for some K(z) ∈ ( −1√
2π z

(1 − 1
z2 ), −1√

2π z
). By employing this observation, one can

show that ση is regular with cost function

κ(d) =

{
1
4d

2 if d > 0,
0 if d ≤ 0. �
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7.2. The (Double) Limit Theorem. Our result on the asymptotics of the
stationary distribution requires a few additional definitions and assumptions. We
suppose that the sequence of two-strategy games {FN}∞N=N0

converges uniformly
to a continuous-population game F , where F : [0, 1]→ R2 is a continuous function.
We let

F∆(x ) ≡ F1(x )− F0(x )
denote the payoff advantage of strategy 1 at state x in the limit game.

We define the relative cost function κ̃ : R→ R by

κ̃(d) = lim
η→0

(
−η log ση(−d) + η log ση(d)

)
= κ(d)− κ(−d).(26)

Our assumptions on κ imply that κ̃ is nondecreasing, sign preserving (sgn(κ̃(d)) =
sgn(d)), and odd (κ̃(d) = −κ̃(−d)).

We define the ordinal potential function I : [0, 1]→ R by

(27) I(x ) =
∫ x

0

κ̃(F∆(y)) dy ,

where the relative cost function κ̃ is defined in equation (26). Observe that by
marginally adjusting the state x so as to increase the mass on the optimal strategy,
we increase the value of I at rate κ̃(a), where a is the optimal strategy’s payoff
advantage. Thus, the ordinal potential function combines information about payoff
differences with the costs of the associated suboptimal choices.

Finally, we define ∆I : [0, 1]→ (−∞, 0] by

(28) ∆I(x ) = I(x )− max
y∈[0,1]

I(y).

Thus, ∆I is obtained from I by shifting its values uniformly, doing so in such a
way that the maximum value of ∆I is zero.

Example 7.4. If ρη represents best response with mutations (Example 7.1), then
the ordinal potential function (27) becomes the signum potential function

Isgn(x ) =
∫ x

0

sgn
(
F∆(y)

)
dy .

This slope of this function at state x is 1, −1, or 0, according to whether the
optimal strategy at x is strategy 1, strategy 0, or both. �

Example 7.5. If ρη represents logit choice (Example 7.2), then (27) becomes the
(standard) potential function

I1(x ) =
∫ x

0

F∆(y) dy ,

whose slope at state x is just the payoff difference at x . �

Example 7.6. If ρη represents probit choice (Example 7.3), then (27) becomes the
quadratic potential function

I2(x ) =
∫ x

0

1
4

〈
F∆(y)

〉2 dy ,

where 〈a〉2 = sgn(a) a2 is the signed square function. The values of I2 again depend
on payoff differences, but relative to the logit case, larger payoff differences play
a more important role. This contrast can be traced to the fact that at small
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noise levels, the double exponential distribution has fatter tails than the normal
distribution—compare Example 7.3. �

Theorem 7.7 shows that whether one takes the small noise limit before the large
population limit, or the large population before the small noise limit, the rates of
decay of the stationary distribution are captured by the ordinal potential function
I. Since the double limits agree, our predictions of infinite horizon behavior under
noisy best response rules do not depend on which force drives the equilibrium
selection results.

Theorem 7.7. The stationary distributions µN,η satisfy

(i) lim
N→∞

lim
η→0

max
x∈X N

∣∣∣ ηN logµN,ηx −∆I(x )
∣∣∣ = 0 and

(ii) lim
η→0

lim
N→∞

max
x∈X N

∣∣∣ ηN logµN,ηx −∆I(x )
∣∣∣ = 0.

Theorem 7.7 is proved by manipulating the stationary distribution formula from
Theorem 5.3 and applying the dominated convergence theorem.

7.3. Stochastic Stability: Examples and Analysis. Theorem 7.7 de-
scribes the rate of decay of the stationary distribution weights as η approaches
0 and N approaches infinity. If the main concern is with the states that are likely
to be observed with some frequency over the infinite horizon, then one can focus on
states x ∈ [0, 1] with ∆I(x ) = 0, since only neighborhoods of such states receive
nonnegligible mass in µN,η for large N in small η. We therefore call state x weakly
stochastically stable if it maximizes the ordinal potential I on the unit interval, and
we call state x uniquely stochastically stable if it is the unique maximizer of I on
the unit interval. We now investigate in greater detail how a game’s payoff function
and the revision protocol’s cost function interact to determine the stochastically
stable states.

Stochastic stability analysis is most interesting when it allows us to select among
multiple strict equilibria. For this reason, we focus the analysis to come on coordi-
nation games. The two-strategy population game F : [0, 1]→ R2 is a coordination
game if there is a state x ∗ ∈ (0, 1) such that

sgn(F∆(x )) = sgn(x − x ∗) for all x 6= x ∗.
Any ordinal potential function I for a coordination game is quasiconvex, with local
maximizers at each boundary state. Because I(0) ≡ 0 by definition, Theorem 7.7
implies the following result.

Corollary 7.8. Suppose that the limit game F is a coordination game. Then
state 1 is uniquely stochastically stable in both double limits if I(1) > 0, while state
0 is uniquely stochastically stable in both double limits if I(1) < 0.

The next two examples, which revisit two games introduced in the previous
chapter, show that the identity of the stochastically stable state may or may not
depend on the revision protocol the agents employ.

Example 7.9. Stag Hunt revisited. In Example 5.4, we considered stochastic evolu-
tion in the Stag Hunt game

A =
(
h h
0 s

)
,
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(i) h = 2, s = 3
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(ii) h = 2, s = 5

Figure 5: The ordinal potentials ∆Isgn (solid), ∆I1 (dashed), and ∆I2 (dotted) for Stag Hunt.

where s > h > 0. When a continuous population of agents are matched to play
this game, their expected payoffs are given by FH(x ) = h and FS(x ) = sx , where
x denotes the proportion of agents playing Stag. This coordination game has two
pure Nash equilibria, as well as a mixed Nash equilibrium that puts weight x ∗ = h

s
on Stag.

The ordinal potentials for the BRM, logit, and probit protocols in this game
are

Isgn(x ) =
∣∣x − x ∗

∣∣− x ∗,
I1(x) = s

2x 2 − hx , and

I2(x) =

{
− s2

12x 3 + hs
4 x 2 − h2

4 x if x ≤ x ∗,
s2

12x 3 − hs
4 x 2 + h2

4 x − h3

6s if x > x ∗.
Figure 5 presents the normalized functions ∆Isgn, ∆I1, and ∆I2 for two specifi-
cations of payoffs: h = 2 and s = 3 (in (i)), and h = 2 and s = 5 (in (ii)). For
any choices of s > h > 0, ∆I is symmetric about its minimizer, the mixed Nash
equilibrium x ∗ = h

s . As a result, the three protocols always agree about equi-
librium selection: the all-Hare equilibrium is uniquely stochastically stable when
x ∗ > 1

2 (or, equivalently, when 2h > s), while the all-Stag equilibrium is uniquely
stochastically stable when the reverse inequality holds. �

Example 7.10. Nonlinear Stag Hunt revisited. In Example 5.5, we introduced the
nonlinear Stag Hunt game with payoff functions FH(x ) = h and FS(x ) = sx 2,
with x again representing the proportion of agents playing Stag. This game has
two pure Nash equilibria and a mixed equilibrium at x ∗ =

√
h/s. The payoffs and

mixed equilibria for h = 2 and various choices of s are graphed in Figure 6.
The ordinal potentials for the BRM, logit, and probit models are given by

Isgn(x ) =
∣∣x − x ∗

∣∣− x ∗,
I1(x) = s

3x 3 − hx , and

I2(x) =

{
− s2

20x
5 + hs

6 x
3 − h2

4 x if x ≤ x ∗,
s2

20x
5 − hs

6 x
3 + h2

4 x−
4h2x ∗

15 if x > x ∗.
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Figure 6: Payoffs and mixed equilibria in Nonlinear Stag Hunt when h = 2 and s = 5, 5.75, 7,
and 8.5.
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Figure 7: The ordinal potentials ∆Isgn (solid), ∆I1 (dashed), and ∆I2 (dotted) for Nonlinear

Stag Hunt.
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Figure 7 presents the functions ∆Isgn, ∆I1, and ∆I2 for h = 2 and for various
choices of s.

When s is at its lowest level of 5, coordination on Stag is at its least appealing.
Since x ∗ =

√
2/5 ≈ .6325, the basin of attraction of the all-Hare equilibrium is

considerably larger than that of the all-Stag equilibrium. Figure 7(i) illustrates
that coordination on Hare is stochastically stable under all three protocols.

If we make coordination on Stag somewhat more attractive by increasing s
to 5.75, the mixed equilibrium becomes x ∗ =

√
2/5.75 ≈ .5898. The all-Hare

equilibrium remains stochastically stable under the BRM and logit rules, but all-
Stag becomes stochastically stable under the probit rule (Figure 7(ii)).

Increasing s further to 7 shifts the mixed equilibrium closer to the midpoint of
the unit interval (x ∗ =

√
2/7 ≈ .5345). The BRM rule continues to select all-Hare,

while the probit and logit rules both select all-Stag (Figure 7(iii)).
Finally, when s = 8.5, the all-Stag equilibrium has the larger basin of attraction

(x ∗ =
√

2/8.5 ≈ .4851). At this point, coordination on Stag becomes attractive
enough that all three protocols select the all-Stag equilibrium (Figure 7(iv)).

Why as we increase the value of s does the transition to selecting all-Stag
occur first for the probit rule, then for the logit rule, and finally for the BRM
rule? Examining Figure 6, we see that increasing s not only shifts the mixed Nash
equilibrium to the left, but also markedly increases the payoff advantage of Stag
at states where it is optimal. Since the cost function of the probit rule is the most
sensitive to payoff differences, its equilibrium selection changes at the lowest level
of s. The next selection to change is that of the (moderately sensitive) logit rule,
and the last is the selection of the (insensitive) BRM rule. �

7.4. Risk Dominance, Stochastic Dominance, and Stochastic Stabil-
ity. Building on these examples, we now seek general conditions on payoffs that
ensure stochastic stability under all noisy best response protocols.

Example 7.9 showed that in the Stag Hunt game with linear payoffs, the noisy
best response rules we considered always selected the equilibrium with the larger
basin of attraction. The reason for this is easy to explain. Linearity of payoffs,
along with the fact that the relative cost function κ̃ is sign-preserving and odd (see
equation (26)), implies that the ordinal potential function I is symmetric about the
mixed equilibrium x ∗, where it attains its minimum value. If, for example, x ∗ is
less than 1

2 , so that pure equilibrium 1 has the larger basin of attraction, then I(1)
exceeds I(0), implying that state 1 is uniquely stochastically stable. Similarly, if
x ∗ exceeds 1

2 , then I(0) exceeds I(1), and state 0 is uniquely stochastically stable.
With this motivation, we call strategy i strictly risk dominant in the two-

strategy coordination game F if the set of states where it is the unique best response
is larger than the corresponding set for strategy j 6= i. Thus, if F has mixed
equilibrium x ∗ ∈ (0, 1), then strategy 0 is strictly risk dominant if x ∗ > 1

2 , and
strategy 1 is strictly risk dominant if x ∗ < 1

2 . If the relevant inequality holds
weakly in either case, we call the strategy in question weakly risk dominant.

The foregoing arguments yield the following result, in which we denote by ei
the state at which all agents play strategy i.

Corollary 7.11. Suppose that the limit game F is a coordination game with
linear payoffs. Then

(i) State ei is weakly stochastically stable under every noisy best response pro-
tocol if and only if strategy i is weakly risk dominant in F .
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(ii) If strategy i is strictly risk dominant in F , then state ei is uniquely stochas-
tically stable under every noisy best response protocol.

Example 7.10 shows that once we turn to games with nonlinear payoffs, risk
dominance only characterizes stochastic stability under the BRM rule. In any
coordination game with mixed equilibrium x ∗, the ordinal potential function for
the BRM rule is Isgn(x ) =

∣∣x − x ∗
∣∣ − x ∗. This function is minimized at x ∗, and

increases at a unit rate as one moves away from x ∗ in either direction, reflecting the
fact that under the BRM rule, the probability of a suboptimal choice is independent
of its payoff consequences. Clearly, whether Isgn(1) is greater than Isgn(0) depends
only on whether x ∗ is less than 1

2 . We therefore have

Corollary 7.12. Suppose that the limit game F is a coordination game and
that ση is the BRM rule. Then

(i) State ei is weakly stochastically stable if and only if strategy i is weakly risk
dominant in F .

(ii) If strategy i is strictly risk dominant in F , then state ei is uniquely stochas-
tically stable.

Once one moves beyond the BRM rule and linear payoffs, risk dominance is no
longer a necessary or sufficient condition for stochastic stability. In what follows,
we introduce a natural refinement of risk dominance that serves this role.

To work toward our new definition, let us first observe that any function on the
unit interval [0, 1] can be viewed as a random variable by regarding the interval as a
sample space endowed with Lebesgue measure λ. With this interpretation in mind,
we define the advantage distribution of strategy i to be the cumulative distribution
function of the payoff advantage of strategy i over the alternative strategy j 6= i:

Gi(a) = λ({x ∈ [0, 1] : Fi(x )− Fj(x ) ≤ a}).
We let Ḡi denote the corresponding decumulative distribution function:

Ḡi(a) = λ({x ∈ [0, 1] : Fi(x )− Fj(x ) > a}) = 1−Gi(a).

In words, Ḡi(a) is the measure of the set of states at which the payoff to strategy
i exceeds the payoff to strategy j by more than a.

It is easy to restate the definition of risk dominance in terms of the advantage
distribution.

Observation 7.13. Let F be a coordination game. Then strategy i is weakly
risk dominant if and only if Ḡi(0) ≥ Ḡj(0), and strategy i is strictly risk dominant
if and only if Ḡi(0) > Ḡj(0).

To obtain our refinement of risk dominance, we require not only that strategy
i be optimal at a larger set of states than strategy j, but also that strategy i have
a payoff advantage of at least a at a larger set of states than strategy j for every
a ≥ 0. More precisely, we say that strategy i is weakly stochastically dominant in the
coordination game F if Ḡi(a) ≥ Ḡj(a) for all a ≥ 0. If in addition Ḡi(0) > Ḡj(0),
we say that strategy i is strictly stochastically dominant. The notion of stochastic
dominance for strategies proposed here is obtained by applying the usual definition
of stochastic dominance from utility theory (see Border (2001)) to the strategies’
advantage distributions.

Theorem 7.14 shows that stochastic dominance is both sufficient and necessary
to ensure stochastic stability under every noisy best response rule.
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Theorem 7.14. Suppose that the limit game F is a coordination game. Then
(i) State ei is weakly stochastically stable under every noisy best response pro-

tocol if and only if strategy i is weakly stochastically dominant in F .
(ii) If strategy i is strictly stochastically dominant in F , then state ei is uniquely

stochastically stable under every noisy best response protocol.

The idea behind Theorem 7.14 is simple. The definitions of I, κ̃, κ, F∆, and
Gi imply that

I(1) =
∫ 1

0

κ̃(F∆(y)) dy(29)

=
∫ 1

0

κ(F1(y)− F0(y)) dy −
∫ 1

0

κ(F0(y)− F1(y)) dy

=
∫ ∞
−∞

κ(a) dG1(a)−
∫ ∞
−∞

κ(a) dG0(a).

As we have seen, whether state e1 or state e0 is stochastically stable depends on
whether I(1) is greater than or less than I(0) = 0. This in turn depends on whether
the value of the first integral in the final line of (29) exceeds the value of the second
integral. Once we recall that the cost function κ is monotone, Theorem 7.14 reduces
to a variation on the standard characterization of first-order stochastic dominance:
namely, that distribution G1 stochastically dominates distribution G0 if and only
if
∫
κdG1 ≥

∫
κdG0 for every nondecreasing function κ.

8. Further Developments

The analyses in the previous sections have focused on evolution in two-strategy
games, mostly under noisy best response protocols. Two-strategy games have the
great advantage of generating birth-and-death processes. Because such processes
are reversible, their stationary distributions can be computed explicitly, greatly
simplifying the analysis. Other work in stochastic evolutionary game theory fo-
cusing on birth-and-death chain models includes Binmore and Samuelson (1997),
Maruta (2002), Blume (2003), and Sandholm (2011). The only many-strategy evo-
lutionary game environments known to generate reversible processes are potential
games (Monderer and Shapley (1996); Sandholm (2001)), with agents using either
the standard (Example 5.2) or imitative versions of the logit choice rule; see Blume
(1993, 1997) and Sandholm (2011) for analyses of these models.

Once one moves beyond reversible settings, obtaining exact formulas for the
stationary distribution is generally impossible, and one must attempt to determine
the stochastically stable states by other means. In general, the available techniques
for doing so are descendants of the analyses of sample path large deviations due
to Freidlin and Wentzell (1998), and introduced to evolutionary game theory by
Kandori et al. (1993) and Young (1993).

One portion of the literature considers small noise limits, determining which
states retain mass in the stationary distribution as the amount of noise in agents’
decisions vanishes. The advantage of this approach is that the set of population
states stays fixed and finite. This makes it possible to use the ideas of Freidlin
and Wentzell (1998) with few technical complications, but also without the com-
putational advantages that a continuous state space can provide. Many of the
analyses of small noise limits focus on the best response with mutations model
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(Example 5.1); see Kandori et al. (1993), Young (1993, 1998), Kandori and Rob
(1995, 1998), Ellison (2000), and Beggs (2005). Analyses of other important models
include Myatt and Wallace (2003), Fudenberg and Imhof (2006, 2008), Dokumacı
and Sandholm (2011), and Staudigl (2011).

Alternatively, one can consider large population limits, examining the behavior
of the stationary distribution as the population size approaches infinity. Here, as one
increases the population size, the set of population states becomes an increasingly
fine grid in the simplex X. While this introduces some technical challenges, it also
allows one to use methods from optimal control theory in the analysis of sample
path large deviations. The use of large population limits in stochastic evolutionary
models was first proposed by Binmore and Samuelson (1997) and Blume (2003) in
two-strategy settings. Analyses set in more general environments include Benäım
and Weibull (2003) and Benäım and Sandholm (2011), both of which build on
results in Benäım (1998). The analysis of infinite-horizon behavior in the large
population limit is still at an early stage of development, and so offers a promising
avenue for future research.
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