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Abstract

Population games describe strategic interactions among large numbers of small, anonymous agents.
Behavior in these games is typically modeled dynamically, with agents occasionally receiving
opportunities to switch strategies, basing their choices on simple myopic rules called revision
protocols. Over finite time spans the evolution of aggregate behavior is well approximated by the
solution of a differential equation. From a different point of view, every revision protocol defines a
map—a deterministic evolutionarydynamic—that assigns each population game a differential equation
describing the evolution of aggregate behavior in that game.

In this chapter, we provide an overview of the theory of population games and deterministic
evolutionary dynamics. We introduce population games through a series of examples and illustrate
their basic geometric properties. We formally derive deterministic evolutionary dynamics from revision
protocols, introduce the main families of dynamics—imitative/biological, best response, comparison
to average payoffs, and pairwise comparison—and discuss their basic properties. Combining these
streams, we consider classes of population games in which members of these families of dynamics
converge to equilibrium; these classes include potential games, contractive games, games solvable by
iterative solution concepts, and supermodular games. We relate these classes to the classical notion
of an evolutionarily stable state and to recent work on deterministic equilibrium selection. We present
a variety of examples of cycling and chaos under evolutionary dynamics, as well as a general result
on survival of strictly dominated strategies. Finally, we provide connections to other approaches to
game dynamics, and indicate applications of evolutionary game dynamics to economics and social
science.
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13.1. INTRODUCTION

Consider a population of commuters, each of whom must select a path through a
highway network from his home to his workplace. Each commuter’s payoff depends
not only on the route he chooses, but also on the distribution of the route choices of
other drivers, as these will determine the delays the commuter will face.

Population games are a powerful tool for modeling strategic environments like traffic
networks, in which the number of agents is large, each agent is small, and agents are
anonymous, with each agent’s payoffs depending on his own strategy and the distribution
of others’ strategies. One typically imposes further restrictions on the agents’ diversity:
there are a finite number of populations, and agents in each population are identical, in
that they choose from the same set of strategies and have identical payoff functions.
Despite their simplicity, population games offer a powerful tool for applications in
economics, computer science, biology, sociology, and other fields that study interactions
among large numbers of participants.1

The traditional approach to prediction in noncooperative games, equilibrium anal-
ysis, is based on strong assumptions about what players know. Such assumptions—that
players fully understand the game they are playing, and that they are able to correctly
anticipate how others will act—are overly demanding in many applications, particularly
those in which the number of participants is large.

An alternative approach, one especially appropriate for recurring interactions with
many agents, proceeds through a dynamic, disequilibrium analysis. One assumes that
agents occasionally receive opportunities to switch strategies. A modeling device called
a revision protocol specifies when and how they do so. The definition of the protocol
reflects what information is available to agents when they make decisions, and how this
information is used. Protocols can capture imitation, optimization, or any other criterion
that agents can employ to respond to current strategic conditions.

Together, a population game, a population size, and a revision protocol generate
a Markov process on the set of population states—that is, of distributions over pure
strategies. While this Markov process can be studied directly, particularly powerful
conclusions can be reached by evaluating this process over a fixed time horizon in the

1 Research on population games is distinguished from the literature on large noncooperative games
(Schmeidler, 1973; Khan and Sun, 2002; Balder, 2002; Carmona and Podczeck, 2009) by both the limited
diversity assumption and the central role played by disequilibrium dynamics.
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large population limit.2 A suitable law of large numbers implies that as the population
size grows large, the sample paths of the Markov process can be approximated arbitrarily
well by a deterministic trajectory. This trajectory is obtained as a solution of an ordinary
differential equation: the mean dynamic induced by the game and the protocol.

We can view this development in a different light by fixing the revision protocol,
thereby obtaining a map from population games to differential equations. This map—and
by the usual synecdoche, the output of this map—is known as a deterministic evolutionary
dynamic. Deterministic evolutionary dynamics reflect the character of the protocols that
generate them; for example, dynamics based on imitation are readily distinguished from
those based on optimization. Nevertheless, in some classes of games, dynamics derived
from a variety of choice principles exhibit qualitatively similar behavior.

Evolutionary dynamics are nonlinear differential equations, so explicit formulas for
solution trajectories are almost never available. Instead, methods from the theory of
dynamical systems are used to establish local stability, global convergence, and noncon-
vergence results. Software for computing and visualizing numerical solutions offers a
powerful tool for understanding the behavior of evolutionary dynamics, particularly in
cases of cyclical and chaotic behavior.3

Section 13.2 introduces population games, provides some basic examples, and offers
geometric intuitions. Section 13.3 introduces revision protocols and mean dynamics, and
describes the deterministic approximation theorem that allows one to move from one to
the other. Section 13.4 formalizes the notion of deterministic evolutionary dynamics,
and introduces criteria that relate their behavior to incentives in the underlying games.
Section 13.5 introduces the main families of evolutionary dynamics that have been
studied in the literature: imitative dynamics (and biological dynamics), the best response
dynamic and its variants, and dynamics based on comparisons to average payoffs and
pairwise comparisons.

With these basic ingredients in place, the next four sections present convergence
and nonconvergence results for various combinations of games and dynamics. Section
13.6 considers the class of potential games, for which the most general convergence
results are available. Section 13.7 introduces the notion of an evolutionarily stable state
(ESS), which provides a general sufficient condition for local stability. It also studies
the class of contractive games, which are motivated by a version of the ESS condition,
and which admit global convergence results. Section 13.8 addresses iterative solution
concepts, supermodular games, and deterministic equilibrium selection. Section 13.9

2 The other main approach to studying this process focuses on its infinite horizon behavior, as either a noise
parameter or the population size approaches its limit. This approach, known as stochastic stability analysis, is
the subject of the chapter by Wallace and Young in this volume, and is discussed in Section 13.10.1 below.
For complete treatments, see Young (1998) and Sandholm (2010c, Chapters 11 and 12).

3 The phase diagrams in this chapter were created using the Dynamo software suite (Sandholm et al., 2012).
See Franchetti and Sandholm (2013) for an introduction.
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provides examples of cycling and chaos under evolutionary dynamics, and presents a
general result on survival of strictly dominated strategies.

While the material above is the core of the theory of population games and
deterministic evolutionary dynamics, many other topics in the theory have been
explored to various degrees. Section 13.10 provides snapshots of work on these topics,
connections to other approaches to game dynamics, and a brief summary of applications
in economics and social science.

Other treatments of evolutionary game theory with a focus on deterministic
dynamics include survey papers by Hofbauer and Sigmund (2003), Sandholm (2009a),
Hofbauer (2011) and Cressman (2011), and books by Hofbauer and Sigmund (1988,
1998), Weibull (1995), Cressman (2003), and Sandholm (2010c). The last reference
includes detailed treatments of the mathematics used in the analysis of evolution-
ary game dynamics, and provides full accounts of many of the topics introduced
below.

13.2. POPULATIONGAMES

This section introduces games played by a single population, with all agents sharing the
same strategy set and payoff function. Extending the model to allow multiple populations
is simple, but complicates the notation; see Sandholm (2010c) for details.

13.2.1 Definitions
We consider a unit mass of agents, each of whom chooses a pure strategy from the set
S = {1, . . . , n}. The aggregate behavior of these agents is described by a population state.
This is an element of the simplex X = {x ∈ R

n+ :
∑

j∈S xj = 1}, with xj representing
the proportion of agents choosing pure strategy j. The standard basis vector ei ∈ R

n

represents the pure population state at which all agents choose strategy i.
We identify a population game with a continuous vector-valued payoff function

F : X → R
n. The scalar Fi(x) represents the payoff to strategy i when the population

state is x.
A population state is a Nash equilibrium of F, denoted x ∈ NE(F), if no agent can

improve his payoff by unilaterally switching strategies. More explicitly, x∗ is a Nash
equilibrium if

x∗i > 0 implies that Fi(x
∗) ≥ Fj(x

∗) for all j ∈ S. [13.1]

By representing Nash equilibria as fixed points of the game’s best response correspon-
dence (see Section 13.5.2), one can use the Kakutani fixed point theorem to prove that
equilibrium exists.

Theorem 13.1. Every population game admits at least one Nash equilibrium.
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As we argued in the introduction, the direct assumption of equilibrium play rests on
strong knowledge assumptions, assumptions that are particularly suspect in games with
large numbers of participants. But in large population settings, equilibrium predictions
can sometimes be justified by consideration of disequilibrium dynamics. Sections 13.6,
13.7, and 13.8 will show that for certain interesting classes of population games, various
dynamic adjustment processes lead to equilibrium play. It is not coincidental that in these
classes of games, existence of equilibrium can be established by elementary methods—
in particular, without recourse to fixed point theorems. In games for which the full
power of fixed point theory is needed to establish existence of equilibrium, the direct
assumption of equilibrium play is least convincing.

13.2.2 Examples
We now introduce some basic examples of population games that we revisit throughout
the chapter.

Example 13.1. (Matching in two-player symmetric normal form games) In a
symmetric two-player normal form game, each of the two players chooses a (pure) strategy
from the finite set S = {1, . . . , n}. The game’s payoffs are described by the matrix A ∈ R

n×n.
Entry Aij is the payoff a player obtains when he chooses strategy i and his opponent chooses strategy
j; this payoff does not depend on whether the player in question is called player 1 or player 2.

Suppose that the unit mass of agents are randomly matched to play the symmetric normal
form game A (or, alternatively, that each agent is matched once with each possible opponent).
The expected payoff to strategy i at population state x is described by the linear function Fi(x) =∑

j∈S Aijxj. The payoffs to all strategies can be expressed concisely as F(x) = Ax.

For many reasons, population games based on matching in normal form games
are by far the most commonly studied in the literature. Linearity of payoffs in the
population state makes these games mathematically simple. Furthermore, some research
on population games and evolutionary dynamics is motivated not by a direct interest
in large games per se, but rather by the possibility of obtaining equilibrium selection
results for (reduced) normal form games by embedding them in a larger context. But
if one is genuinely interested in modeling behavior in large populations of strategically
interacting agents, focusing on the linear case is unnecessarily restrictive. Indeed, there
are some applications in which nonlinearity is essential.

Example 13.2. (Congestion games) Consider the following model of highway congestion,
due to Beckmann et al. (1956). A pair of towns, Home and Work, are connected by a network of
links. To commute from Home to Work, an agent must choose a path i ∈ S connecting the two
towns. The payoff the agent obtains is the negation of the delay on the path he takes. The delay on
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the path is the sum of the delays on its links, and the delay on a link is a function of the number
of agents who use that link.

To formalize this environment as a congestion game, let L be the collection of links in the
highway network. Each strategy i ∈ S is a path from Home to Work, and so is identified with a
set of links L i ⊆ L . Each link � is assigned a cost function c� : R+ → R, whose argument
is link �’s utilization level u�:

u�(x) =
∑
i∈S(�)

xi , where S(�) = {i ∈ S : � ∈ L i}.

The payoff of choosing path i is the negation of the total delays on its links:

Fi(x) = −
∑
�∈L i

c�(u�(x)).

Since highway congestion involves negative externalities, cost functions in models of highway
congestion are increasing. They are typically convex as well: delays are essentially fixed until a
link becomes congested, at which point they increase quickly. Congestion games can also be used to
model positive externalities, like the choice between different technological standards; in this case,
cost functions are decreasing in the utilization levels.

Population games also provide a useful framework for macroeconomic applications.

Example 13.3. (Search with positive externalities) Agents in a unit mass population
choose levels of search effort from the set S = {1, . . . , n}. Stronger efforts increase the likelihood
of finding trading partners, so that payoffs are increasing both in own search effort and in aggregate
search effort. This search model is represented by a population game with payoffs Fi(x) =
mi b(a(x)) − ci, where a(x) = ∑n

k=1 kxk represents aggregate search effort, the increasing
function b : R+ → R represents the benefits of search as a function of aggregate effort, the increasing
function m : S → R is the benefit multiplier, and the arbitrary function c : S → R captures search
costs.

13.2.3 The geometry of population games
An important advantage of the population game framework is the possibility of
representing games’ incentive structure geometrically, at least in low-dimensional cases.
Intuition obtained in these cases often carries over to higher dimensions.

To present population games in pictures, we introduce the matrix � = I − 1
n11

′ ∈
R
n×n, where 1 ∈ R

n is the vector of ones. This matrix represents the orthogonal
projection of Rn onto the subspace TX = {z ∈ R

n :
∑

i∈S zi = 0}, which is the tangent
space of the simplex X. For a payoff vector π ∈ R

n, the projected payoff vector
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�π = π − 1

(
1
n

∑
i∈S

π i

)
≡ π − 1π̄

is obtained by subtracting the population average payoff π̄ from each component. Thus
applying the projection � to a payoff vector eliminates information about average
payoffs, while preserving information about payoff differences, and hence about the
incentives that revising agents face.

Example 13.4. (Drawing two-strategy games) Figure 13.1 presents the payoff vectors
and projected payoff vectors for the two-strategy coordination game FC2 and the Hawk-Dove game
FHD:

FC2(x) =
(
1 0
0 2

)(
x1
x2

)
=
(
x1
2x2

)
; FHD(x) =

(−1 2
0 1

)(
xH
xD

)
=
(
2xD − xH

xD

)
.

In each case, the first strategy is represented on the vertical axis, so as to agree with the payoff matrix,
and the projected payoff vectors are those running parallel to the simplex. In the coordination game,
the payoff vectors push outward, away from the mixed equilibrium x∗ = (2

3 ,
1
3

)
and toward the

pure equilibria e1 and e2. In Hawk-Dove, the payoff vectors push inward, toward the unique Nash
equilibrium x∗ = (1

2 ,
1
2

)
.

We will see that the basic payoff monotonicity condition for disequilibrium dynamics (see Section
13.4.2) requires the vector describing the motion of the population state to agree with the payoff
vector, in the weak sense that the angle between the two is acute. In a two-strategy game, this
condition and feasibility completely determine the direction in which evolution should proceed: the
state should move in the direction indicated by the projected payoff vector. Thus, Figure 13.1 shows
that evolution sends the population toward a pure equilibrium in the coordination game, and toward
the mixed equilibrium in the Hawk-Dove game.

In games with three strategies, it is no longer possible to draw the payoff vectors
directly; only the projected payoff vectors may be drawn. Moreover, while these vectors

Figure 13.1 Payoffs and projected payoffs in two-strategy games.
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Figure 13.2 Projected payoffs in three-strategygames.

continue to describe incentives, they are no longer enough to determine the direction
in which the population state will move, which will depend on the details of the revision
procedure.

Example 13.5. (Drawing three-strategy games) Figure 13.2 illustrates projected payoffs
in the three-strategy coordination game FC3 and the standard Rock-Paper-Scissors game FRPS.

FC3(x) =
⎛
⎝1 0 0
0 2 0
0 0 3

⎞
⎠
⎛
⎝x1x2
x3

⎞
⎠ =

⎛
⎝ x1
2x2
3x3

⎞
⎠ ;

FRPS(x) =
⎛
⎝ 0 −1 1

1 0 −1
−1 1 0

⎞
⎠
⎛
⎝xRxP
xS

⎞
⎠ =

⎛
⎝xS − xP
xR − xS
xP − xR

⎞
⎠ .

In the coordination game, the payoff vectors again push outward toward the pure equilibria. We
will see in Section 13.6.5 that for a large class of evolutionary dynamics, play will converge to one
of these equilibria from most initial states.

In the standard Rock-Paper-Scissors game, the projected payoffs cycle around the simplex. This
suggests that evolutionary dynamics in this game need not converge to Nash equilibrium. As we
will see below, whether or not convergence occurs depends on the revision protocol agents employ.

In Figures 13.1 and 13.2, the Nash equilibria of the games in question are drawn as
dots. While these Nash equilibria can be found by checking definition [13.1], they can
also be discovered geometrically.

For each population state x, we define the tangent cone of X at x to be the set of
directions of motion from x that do not cause the state to leave the simplex X:

TX(x) = {
z ∈ R

n : z = α (y− x) for some y ∈ X and some α ≥ 0
}
.
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Figure 13.3 Tangent cones and normal cones.

The normal cone of X at x is the polar of the tangent cone of X at x. In other words, it
is the set of directions that form an obtuse or right angle with every vector in TX(x):

NX(x) = (TX(x))◦ = {
y ∈ R

n : y′z ≤ 0 for all z ∈ TX(x)
}
.

The possible forms of the tangent and normal cones in two- and three-strategy games are
presented in Figure 13.3. In the latter case this is done after applying the projection �.

Observe that

x ∈ NE(F) ⇔ [xi > 0 ⇒ Fi(x) ≥ Fj(x)] for all i, j ∈ S

⇔ x′F(x) ≥ y′F(x) for all y ∈ X

⇔ (y− x)′F(x) ≤ 0 for all y ∈ X. [13.2]

We thus have the following geometric characterization of Nash equilibrium.

Theorem 13.2. Let F be a population game. Then x ∈ NE(F) if and only if F(x) ∈ NX(x).

According to the theorem, the Nash equilibria drawn in Figures 13.1 and 13.2 are
precisely those states whose payoff vectors lie in the relevant normal cones, as drawn in
Figure 13.3.

13.3. REVISION PROTOCOLS ANDMEANDYNAMICS

Evolutionary dynamics for population games are designed to capture two basic as-
sumptions. The first, inertia, means that agents only occasionally consider switching
strategies. This assumption is natural when the environment being modeled is one of
many in which the agents participate, so that the agents only pay limited attention to
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each. The second assumption, myopia, says that agents do not attempt to forecast future
behavior, but instead base their decisions on the information they have about the current
strategic environment. These two assumptions are mutually reinforcing: myopic behavior
is most sensible when opponents’ behavior adjusts slowly, so that strategies that perform
well now are likely to continue to do so.4

To specify the adjustment process most transparently, we consider how individual
agents make decisions. Formally, this is accomplished by means of objects called revision
protocols. Revision protocols describe when and how agents decide to switch strategies,
and they implicitly specify what information agents use to make these decisions.

Together, a population game and a revision protocol generate a differential equation
called the mean dynamic. This dynamic describes the evolution of aggregate behavior
when the revision protocol is employed during recurrent play of the game.

This section introduces revision protocols and mean dynamics, and justifies the
use of the latter to describe the evolution of the population state. This approach to
defining deterministic evolutionary dynamics via microfoundations was first developed
for imitative dynamics by Björnerstedt and Weibull (1996) and Weibull (1995), and later
expanded by Benaïm and Weibull (2003, 2009) and Sandholm (2003, 2010b).

13.3.1 Revision protocols
In the most general case, a revision protocol ρ is a map that assigns each population game
F a function ρF : X → R

n×n+ , which maps population states x ∈ X to collections of
conditional switch rates ρFij (x). A population game F, a revision protocol ρ, and a finite
population sizeN together define a stochastic evolutionary process—aMarkov process—
that runs on the discrete grid X N = X ∩ 1

NZ
n = {x ∈ X : Nx ∈ Z

n}.5
This process, which we define formally below, can be described as follows. Each

agent in the society is equipped with a “stochastic alarm clock.” The times between
rings of an agent’s clock are independent, each with a rate R exponential distribution,
where R = R(ρF) ≥ maxx,i

∑
j �=i ρFij (x),6 and different agents’ clocks are independent

of one another. The ringing of a clock signals the arrival of a revision opportunity for
the clock’s owner. If an agent playing strategy i ∈ S receives a revision opportunity, he

4 Other approaches to dynamics for population games build on different assumptions. The most notable
example, the perfect foresight dynamics of Matsui and Matsuyama (1995), are obtained by retaining the
assumption of inertia, but assuming that agents are forward looking. While evolutionary dynamics describe
disequilibrium adjustment, perfect foresight dynamics represent adjustments that occur within a dynamic
equilibrium.

5 This process can also be formulated in discrete time, and can be adjusted to account for finite-population
effects; see Benaïm and Weibull (2003, 2009) and Sandholm (2010c, Section 10.3). One can also
incorporate finite-population effects into the definition of population games; see Sandholm (2010c,
Section 11.4).

6 As we will see, the mean dynamic is not affected by the value of the clock rate R.
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switches to strategy j �= i with probability 1
RρFij (x), and he continues to play strategy i

with probability 1 − 1
R

∑
j �=i ρFij (x). This decision is made independently of the timing

of the clocks’ rings. If a switch occurs, the population state changes accordingly, from
the old state x to a new state y that accounts for the agent’s choice.

This interpretation of the stochastic evolutionary process has the advantage of
working for any revision protocol. But once a protocol is fixed, one can use the
structure provided by that protocol to provide a simpler interpretation of the process—
see Example 13.6 below.

According to the description above, the diagonal elements ρFii (x) of a revision
protocol are irrelevant. An important exception occurs when the protocol has unit row
sums,

∑
j∈S ρFij (x) = 1 for all x ∈ X and i ∈ S, so that ρFi· (x) = (ρFi1(x), . . . , ρ

F
in(x)) is

a probability vector. In this case, we set the clock rate R at 1, and refer to ρFij (x) as a
conditional switch probability.

13.3.2 Information requirements for revision protocols
The model above describes the behavior of agents who only occasionally consider
switching strategies. To assess how well a particular revision protocol agrees with this
general approach, we introduce some restrictions concerning the information that
revision protocols may require.

Most of the protocols studied in the literature are of the form ρF(x) = ρ(F(x), x),
so that the current conditional switch rates only depend on the game by way of the
current payoff. We call such protocols reactive. The remaining protocols, which we call
prospective, are more demanding, in that they require agents to know enough about the
payoff functions to engage in counterfactual reasoning.Wewill only consider prospective
protocols in Section 13.8.3, where we will see that dynamics based on them can differ
markedly from those based on reactive protocols.

Protocols can also be distinguished by the amount and types of data about the
current strategic environment that they require. The least demanding protocols require
knowledge of only one payoff, that of the current or the candidate strategy; slightly
more demanding ones require both. Still more demanding ones require knowledge
of the current payoffs to all strategies. Protocols that require further information—
say, information about the average payoffs in the population—may be regarded as too
demanding for typical applications.

A third distinction separates continuous and discontinuous protocols. Under continuous
protocols, agents’ choices do not change abruptly after small changes in the strategic
environment. This property accords well with the evolutionary paradigm. Discontinuous
protocols, which require exact information about the current strategic environment,
are perhaps less natural under this paradigm, but are used to define important ideal
cases.
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13.3.3 The stochastic evolutionary process andmean dynamics
Formally, the game F, the protocol ρ, and a finite population size N define a Markov
process {XN

t }t≥0 on the finite state space X N . Since each of the N agents receives
revision opportunities at rate R, revision opportunities arrive in the population as a
whole at rate NR, which is thus the expected number of revision opportunities arriving
during each unit of clock time. Letting τ k denote the arrival time of the kth revision
opportunity, we can describe the transition law of the process {XN

t } by

P

(
XN

τ k+1
= y

∣∣XN
τ k

= x
)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xiρFij (x)

R
if y = x+ 1

N
(ej − ei), j �= i,

1 −
∑
i∈S

∑
j �=i

xiρFij (x)

R
if y = x,

0 otherwise.

While one can analyze this Markov process directly, we instead consider its limiting
behavior as the population size N becomes large. Notice that all of the randomness in
the process {XN

t } is idiosyncratic: both the assignments of revision opportunities and the
randomizations performed by the agents are independent of past events conditional on
the current state. Therefore, taking the limit as N grows large enables us to approximate
{XN

t } by a deterministic trajectory—namely, a solution of the so-called mean dynamic
generated by ρ and F. We introduce the mean dynamic next, saving the formal
approximation result for the next section.

To derive the mean dynamic, we consider the behavior of the process {XN
t } over

the next dt time units, starting from state x. Since each of the N agents receives
revision opportunities at rate R, the expected number of opportunities arriving during
these dt time units is NRdt. Each opportunity is equally likely to go to each agent,
so the expected number of these opportunities that are received by current strategy
i players is Nxi R dt; the expected number of these that lead to switches to strategy
j is Nxi ρFij (x) dt. Hence, the expected change in the proportion of agents using
strategy i is ⎛

⎝∑
j∈S

xjρFji (x) − xi
∑
j∈S

ρFij (x)

⎞
⎠ dt.

The mean dynamic induced by population game F and revision protocol ρ is thus

ẋ = VF(x), where VF
i (x) =

∑
j∈S

xjρ
F
ji (x) − xi

∑
j∈S

ρFij (x). [13.3]

Here ẋ = ẋt = d
dt xt denotes the time derivative of the solution trajectory {xt}t≥0.
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The mean dynamic [13.3] is an ordinary differential equation defined on the simplex
X. Evidently, VF

i (x) ≥ 0 whenever xi = 0, so V (x) ∈ TX(x) for all x ∈ X; that is, VF

never points outward from the boundary of X. So long as VF is Lipschitz continuous,7

existence and uniqueness of solutions to [13.3] follow from standard results.

Theorem 13.3. If VF is Lipschitz continuous, then the mean dynamic [13.3] admits a unique
forward solution from each ξ ∈ X: that is, a trajectory {xt}t≥0 satisfying x0 = ξ and d

dt xt =
VF(xt) for all t ≥ 0.

Typically, Lipschitz continuity of VF is ensured by assuming that the game F is
Lipschitz continuous and that the protocol ρF(x) = ρ(F(x), x) is reactive and Lipschitz
continuous.

Example 13.6. (Pairwise proportional imitation and the replicator dynamic)
Helbing (1992) and Schlag (1998) introduce the following reactive protocol, called pairwise
proportional imitation:

ρFij (x) = ρij(F(x), x) = xj[Fj(x) − Fi(x)]+. [13.4]

Under protocol [13.4], an agent who receives a revision opportunity chooses an opponent at random.
This opponent is a strategy j player with probability xj. The agent imitates the opponent only if
the opponent’s payoff is higher than his own, doing so with probability proportional to the payoff
difference.

Substituting protocol [13.4] into formula [13.3], we find that the mean dynamic associated
with this protocol is

ẋi =
∑
j∈S

xjxi[Fi(x) − Fj(x)]+ − xi
∑
j∈S

xj[Fj(x) − Fi(x)]+

= xi
∑
j∈S

xj(Fi(x) − Fj(x))

= xi

⎛
⎝Fi(x) −

∑
j∈S

xjFj(x)

⎞
⎠ .

This is the replicator dynamic of Taylor and Jonker (1978), the best known dynamic in
evolutionary game theory. Under this dynamic, the percentage growth rate ẋi/xi of each strategy
currently in use is equal to the difference between that strategy’s payoff and the average payoff
obtained in the population; unused strategies always remain so. We discuss this dynamic further in
Example 13.8 below.

7 The function VF : X → R
n is Lipschitz continuous if there exists a constant K > 0 such that |VF(y) −

VF(x)| ≤ K|y− x| for all x, y ∈ X .
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13.3.4 Finite horizon deterministic approximation
The basic link between the Markov processes {XN

t } and the mean dynamic [13.3] is
provided by the following theorem.

Theorem 13.4. Suppose that the mean dynamic VF is Lipschitz continuous. Let the initial
conditions XN

0 = xN0 converge to state x0 ∈ X, and let {xt}t≥0 be the solution to the mean
dynamic [13.3] starting from x0. Then for all T < ∞ and ε > 0,

lim
N→∞P

(
sup

t∈[0,T ]
∣∣XN

t − xt
∣∣ < ε

)
= 1. [13.5]

Theorem 13.4, due to Kurtz (1970), says that when the population size N is large,
nearly all sample paths of the Markov process {XN

t } stay within ε of a solution of the
mean dynamic [13.3] through time T . In particular, by choosing N large enough, we
can ensure that with probability close to one, XN

t and xt differ by no more than ε at all
times t between 0 and T (Figure 13.4).8

The intuition for this result comes from the law of large numbers. At each revision
opportunity, the increment in the process {XN

t } is stochastic. But if we fix dt, then

Figure 13.4 Deterministic approximation of the Markov process {XN
t }.

8 Benaïm and Weibull (2003) prove that the rate of convergence in [13.5] is exponential in N . Roth
and Sandholm (2013) extend the theorem to allow the mean dynamic to be an upper hemicontinuous
differential inclusion, as in the case of the best response dynamic (see Section 13.5.2). Hwang et al.
(2013) consider stochastic evolutionary processes for large games on spatial domains with long-range
interactions, and establish convergence of these processes to solutions of deterministic integro-differential
equations.
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when N is large enough, the expected number of revision opportunities arriving during
time interval I = [t, t + dt], namely NRdt, is large as well. Since each opportunity
leads to an increment of the state of size 1

N , the overall change in the state during
interval I is only of order R dt. Thus, during this interval, there are many of revision
opportunities, each involving nearly the same transition probabilities. The law of large
numbers therefore suggests that the change in {XN

t } during this interval should be almost
completely determined by the expected motion of {XN

t }, as described by the mean
dynamic [13.3].

It is important to note that Theorem 13.4 cannot be extended to an infinite horizon
result. If, for instance, the conditional switch rates ρFij (x) are always positive, then

the process {XN
t } is irreducible, and thus must visit every state in {XN

t } infinitely
often with probability one. Even so, one can use the mean dynamic [13.3] to obtain
restrictions on the infinite horizon behavior of the process {XN

t }, a point we explain in
Section 13.10.1.

13.4. DETERMINISTIC EVOLUTIONARY DYNAMICS
13.4.1 Definition
We are now prepared to state a formal definition of deterministic evolutionary dynamics.
Let F be a set of population games F : X → R

n (with some fixed number of strategies
n). Let D be the class of Lipschitz continuous ordinary differential equations ẋ = V (x)
on the simplex X, where the vector field V : X → R

n satisfies V (x) ∈ TX(x) for all
x ∈ X.9 A map that assigns each game F ∈ F a differential equation in D is called a
deterministic evolutionary dynamic.

Every well-behaved revision protocol implicitly defines a deterministic evolutionary
dynamic. Specifically, suppose that the revision protocol ρ is such that for each F ∈ F ,
the function ρF : X → R

n×n+ is Lipschitz continuous. Then ρ defines an evolutionary
dynamic ẋ = VF(x) by way of equation [13.3].

13.4.2 Incentives and aggregate behavior
In order to draw links between deterministic evolutionary dynamics and traditional
game-theoretic analyses, we must introduce conditions that relate the evolution of
aggregate behavior under the dynamics to the incentives in the underlying game. The
two most important conditions are these:

Positive correlation VF(x) �= 0 ⇒ VF(x)′F(x) > 0. [PC]

Nash stationarity VF(x) = 0 ⇔ x ∈ NE(F). [NS]

9 In what follows, we often identify the differential equation ẋ = V (x) with the vector field V .
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Positive correlation (PC) is the basic restriction on disequilibrium dynamics. In game-
theoretic terms, it requires that there be a positive correlation between growth rates and
payoffs under the uniform probability distribution on strategies: under this distribution,

E(VF(x)) =
∑
k∈S

1
nV

F
k (x) = 0, and so

Cov(VF(x),F(x)) = E(VF(x)F(x)) − E(VF(x))E(F(x)) = 1
nV

F(x)′F(x).

Geometrically, (PC) requires that whenever the growth rate vectorVF(x) is nonzero,
the angle it forms with the payoff vector F(x) is acute. Thus, away fromNash equilibrium
(see Proposition 13.1 below), (PC) restricts the direction of motion to a half space. In
this sense, it is as weak a condition as one could hope to be useful. We will see in Sections
13.6 and 13.7 that it is useful indeed.10

Example 13.7. (Drawing positive correlation) Figure 13.5 presents projected payoff
vectors and vectors of motion under the replicator dynamic in 123 Coordination (Example 13.5).
Evidently, the direction of motion makes an acute angle with the payoff vector whenever the

Figure 13.5 Condition (PC): Projected payoff vectors and vectors of motion under the replicator
dynamic in 123 Coordination. The latter point within the simplex.

10 Versions of this condition are considered by Friedman (1991), Swinkels (1993), Sandholm (2001b), and
Demichelis and Ritzberger (2003). For other monotonicity conditions, some of which are particular
to imitative dynamics, see Nachbar (1990), Friedman (1991), Samuelson and Zhang (1992), Swinkels
(1993), Ritzberger and Weibull (1995), Hofbauer and Weibull (1996), and Viossat (2011).
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population is not at rest. This illustrates the general fact that the replicator dynamic satisfies positive
correlation (PC) (see Section 13.5.1.3).

Nash stationarity (NS) requires that the Nash equilibria of the game F and the rest
points of the dynamic VF coincide. It can be split into two distinct restrictions. First,
(NS) asks that every Nash equilibrium of F be a rest point of VF . If state x is a Nash
equilibrium, then no agent benefits from switching strategies; (NS) demands that in this
situation, aggregate behavior is at rest under VF . This does not imply that individual
agents’ behavior is also at rest—remember that VF only describes the expected motion
of the underlying stochastic process.11

In any case, this direction of Nash stationarity is implied by positive correlation:

Proposition 13.1. If VF satisfies (PC), then x ∈ NE(F) implies that VF(x) = 0.

The proof of this result is simple if we use the geometric ideas from Section 13.2.3. If
x ∈ NE(F), then F(x) ∈ NX(x) (by Theorem 13.2). But VF(x) ∈ TX(x) (since it is a
feasible direction of motion from x). Thus VF(x)′F(x) ≤ 0 (by the definition of normal
cones), so (PC) implies that VF(x) = 0.

Second, Nash stationarity asks that every rest point of VF be a Nash equilibrium
of F. If the current population state is not a Nash equilibrium, then there are agents
who would benefit from switching strategies. (NS) requires that enough agents avail
themselves of this opportunity that aggregate behavior is not at rest.

13.5. FAMILIES OF EVOLUTIONARY DYNAMICS

Evolutionary dynamics are defined in families, with members of a family being derived
from qualitatively similar revision protocols. This approach addresses the fact that in
practice, one does not expect to know the protocols agents employ with much precision.
If we can show that qualitatively similar protocols lead to qualitatively similar aggregate
dynamics, then knowing which family a protocol comes from may be enough to draw
conclusions about aggregate play.

We present five basic examples of revision protocols and their mean dynamics in
Table 13.1. As the protocols in this section are all reactive, we write them as ρ ij(π , x),
so that ρFij (x) = ρ ij(F(x), x).

We also introduce some additional notation. We define F̂i(x) = Fi(x) − F̄(x) to be
the excess payoff to strategy i; this is the difference between strategy i’s payoff and the
population average payoff F̄(x) = ∑

i∈S xiFi(x). In addition, we letM : Rn ⇒ X denote
the (mixed) maximizer correspondence, M(π) = argmaxy∈X y′π .

11 This distinction is important in local stability analyses of the underlying stochastic process—see Sandholm
(2003).
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Table 13.1 Five basic deterministic dynamics.

Revision protocol Mean dynamic Name

ρ ij = xj[π j − π i]+ ẋi = xiF̂i(x) Replicator

ρ i· = M(π) ẋ ∈ M(F(x)) − x Best response

ρ ij =
exp(η−1π j)∑
k∈S exp(η−1πk)

ẋi = exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

− xi Logit

ρ ij = [π j −∑
k∈S xkπk]+ ẋi = [F̂i(x)]+ − xi

∑
j∈S

[F̂j(x)]+ BNN

ρ ij = [π j − π i]+
ẋi = ∑

j∈S
xj[Fi(x) − Fj(x)]+

−xi∑
j∈S

[Fj(x) − Fi(x)]+
Smith

Figure 13.6 presents phase diagrams for the five basic dynamics when agents are
matched to play standard Rock-Paper-Scissors (Example 13.5). The phase diagram of
the replicator dynamic displays closed orbits around the unique Nash equilibrium x∗ =(1
3 ,

1
3 ,

1
3

)
. Since this dynamic is based on imitation (or on reproduction), each face and

each vertex of the simplex X is an invariant set: a strategy initially absent from the
population will never subsequently appear.

The other four dynamics presented in the figure are based on protocols that allow
agents to select unused strategies. Under these dynamics, the Nash equilibrium is
the sole rest point, and attracts solutions from all initial conditions.12 Under the best
response dynamic, solution trajectories quickly change direction and then accelerate
when the best response changes; under the Smith dynamic, solutions approach the Nash
equilibrium in a less angular, more gradual fashion.

13.5.1 Imitative dynamics
Imitative dynamics are the most thoroughly studied dynamics in evolutionary game
theory. They are the descendants, or more accurately, a reinterpretation of the game
dynamics studied in biology,13 and they predominated in the early economic literature
on evolutionary game dynamics.14

12 In the case of the logit dynamic, the rest point happens to coincide with the Nash equilibrium only
because of the symmetry of the game—see Section 13.5.2.3.

13 See, for instance, Taylor and Jonker (1978), Maynard Smith (1982), and Hofbauer and Sigmund (1988,
1998).

14 See, for example, Nachbar (1990), Samuelson and Zhang (1992), Björnerstedt and Weibull (1996),
Weibull (1995), and Hofbauer (1995a).
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Figure 13.6 Five basic deterministic dynamics in standard Rock-Paper-Scissors. Shading represents
speeds.

Imitative dynamics are derived from protocols under which agents consider switching
to the strategy of a randomly sampled opponent, with the ultimate decision depending
on payoff considerations. This specification leads imitative dynamics to have a particularly
convenient functional form, in which strategies’ absolute growth rates are proportional
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to their current levels of use. This functional form is just as apposite from the biological
point of view: there the dynamics reflect births and deaths of different genetic types, and
so are naturally expressed relative to current population shares.

13.5.1.1 Definition
The Lipschitz continuous revision protocol ρ is an imitative protocol if

ρij(π , x) = xjrij(π , x), where [13.6a]

π j ≥ π i ⇐⇒ [rkj(π , x) − rjk(π , x) ≥ rki(π , x) − rik(π , x) for all i, j, k ∈ S]. [13.6b]

The values of rij are called conditional imitation rates. Condition [13.6b], called net
monotonicity of conditional imitation rates, says that when strategy j has a higher payoff
than strategy i, the net rate of imitation from any strategy k to j exceeds the net rate
of imitation from k to i. This condition is enough to ensure that the resulting mean
dynamic has the monotonicity properties we desire.

Substituting the functional form [13.6a] into the general equation [13.3] for mean
dynamics, we obtain

ẋi = xi
∑
j∈S

xj
(
rji(F(x), x) − rij(F(x), x)

)
. [13.7]

When the conditional imitation rates satisfy net monotonicity [13.6b], we call [13.7]
an imitative dynamic. Under these dynamics, strategies’ (absolute) growth rates are
proportional to their current levels of use, while unused strategies remain so.

Table 13.2 lists a variety of specifications of imitative protocols consistent with
condition [13.6b]. Under the first three, the agent observes the strategy of a single
opponent and decides whether to imitate him; under the last, the agent repeatedly draws
opponents until he deems one worthy of imitating. The protocols also require different
pieces of data. Under imitation via pairwise comparisons, the agent compares his own
payoff to that of the opponent he observes; under imitation driven by dissatisfaction,
he only observes his own payoff, and under both forms of imitation of success, he only
considers the payoffs of those he observes.

Table 13.2 Some specifications of imitative revision protocols.
Formula Restriction Interpretation

ρ ij(π , x) = xj φ(π j − π i) sgn(φ(d)) = sgn([d]+) Imitation via pairwise comparisons
ρ ij(π , x) = a(π i) xj a decreasing Imitation driven by dissatisfaction
ρ ij(π , x) = xj c(π j) c increasing Imitation of success

ρ ij(π , x) = xj w(π j)∑
k∈S xk w(π k)

w increasing
Imitation of success
with repeated sampling
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13.5.1.2 Examples
We now consider some important instances of these protocols and the dynamics they
induce.

Example 13.8. (The replicator dynamic) Example 13.6 introduced the replicator
dynamic, which we can express concisely using the notation introduced above as

ẋi = xiF̂i(x). [13.8]

Example 13.6 derived this dynamic from imitation via pairwise comparisons with the semilinear
functional form ρ ij(π , x) = xj[π j − π i]+. It can also be derived from the linear versions of
imitation driven by dissatisfaction (ρ ij(π , x) = (K − π i)xj with K sufficiently large) and of
imitation of success (ρ ij(π , x) = xj(π j − K) with K sufficiently small).

While in social science contexts the replicator dynamic is best understood as describing the
aggregate consequences of imitation, the dynamic first appeared as a biological model: it was
introduced by Taylor and Jonker (1978) to provide a dynamic foundation for Maynard Smith
and Price’s (1973) notion of an evolutionarily stable strategy.15

The replicator dynamic has deep connections with other dynamic models from biology. Hofbauer
(1981) shows that the replicator dynamic is equivalent after a nonlinear change of variable to the
Lotka-Volterra equation, a fundamental model of the dynamics of ecological systems. Schuster and
Sigmund (1983) observe that basic models of population genetics (Crow and Kimura (1970)) and
of biochemical evolution (Eigen and Schuster (1979)) can be viewed as special cases of the replicator
dynamic; they are also the first to refer to the dynamic by this name.16

Example 13.9. (The Maynard Smith replicator dynamic) Suppose that agents employ
imitation of success with repeated sampling, that payoffs are positive, and that w(π j) = π j.17 In
this case, the mean dynamic [13.7] becomes

ẋi = xi F̂i(x)

F̄(x)
. [13.9]

This is known as the Maynard Smith replicator dynamic, after Maynard Smith (1982). In
the current single-population context, dynamics [13.8] and [13.9] differ only by a change of speed.
With multiple populations this is no longer true, since the changes of speed differ across populations;
consequently, the two dynamics have different stability properties in some multipopulation
games.

15 However, the connection between the two constructions is looser than one might expect: see Sections
13.7.1 and 13.10.3.

16 For more on the links among these models, see Hofbauer and Sigmund (1988).
17 In the biology literature, the stochastic evolutionary process generated by this protocol is called

the frequency-dependent Moran process, after Moran (1962). See Nowak (2006) for references and
discussion.
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Example 13.10. (The imitative logit dynamic) If agents again employ imitation of
success with repeated sampling, using the exponential transformation w(π j) = exp(η−1π j) with
noise level η > 0, then [13.7] becomes

ẋi = xi exp(η−1Fi(x))∑
k∈S xk exp(η−1Fk(x))

− xi.

This is the imitative logit dynamic of Björnerstedt and Weibull (1996) and Weibull (1995).
When the noise level η is small, behavior under this dynamic resembles that under the best response
dynamic (Section 13.5.2), at least away from the boundary of the simplex.

13.5.1.3 Basic properties
We now consider some general properties of imitative dynamics. Later sections will
describe their behavior in various classes of games and interesting examples.

Theorem 13.3 showed that in general, Lipschitz continuous mean dynamics admit
unique forward solutions {xt}t≥0 from every initial condition in the simplex. For
imitative dynamics [13.7], under which ẋi is proportional to xi, more is true: solutions
{xt}t∈(−∞,∞) exist in both forward and backward time, and along any solution the
support of xt does not change.

Turning to payoff monotonicity properties, let us rewrite the dynamic [13.7] as

ẋi = Vi(x) = xiGi(x), where Gi(x) =
∑
k∈S

xk (rki(F(x), x) − rik(F(x), x)). [13.10]

If strategy i ∈ S is in use, thenGi(x) = Vi(x)/xi represents the percentage growth rate of the
number of agents using this strategy. Condition [13.6b] implies that strategies’ percentage
growth rates are ordered by their payoffs,

Gi(x) ≥ Gj(x) if and only if Fi(x) ≥ Fj(x), [13.11]

a property called monotonicity of percentage growth rates. This property, a strong restriction
on strategies’ percentage growth rates, can be shown to imply positive correlation (PC),
a weak restriction on strategies’ absolute growth rates.18

It is easy to show that the rest points of any imitative dynamic VF include the Nash
equilibria of F; in fact, this follows from the previous claim and Proposition 13.1. But
imitative dynamics may also have non-Nash rest points. For instance, any pure state ei
is a rest point under [13.7]: since everyone is playing the same strategy, imitation leads
to stasis. In fact, x is a rest point of [13.7] if and only if it is a restricted equilibrium of
F, meaning that it is a Nash equilibrium of a restricted version of F in which only
strategies in the support of x can be played. Non-Nash rest points of [13.7] are not
natural predictions of play: they cannot be locally stable, nor can they be approached

18 See Sandholm (2010c, Theorem 5.4.9).
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by any interior solution trajectory (Bomze, 1986; Nachbar, 1990). Even so, continuous
dynamics move slowly near rest points, so escape from the vicinity of non-Nash rest
points is necessarily slow.

13.5.1.4 Inflow-outflow symmetry
To introduce a final property, let us compare the general equation for mean dynamics
with that for imitative dynamics:

ẋi =
∑
j∈S

xjρ
F
ji (x) − xi

∑
j∈S

ρFij (x), [13.3]

ẋi = xi
∑
j∈S

xj
(
rji(F(x), x) − rij(F(x), x)

)
. [13.7]

In general, mean dynamics exhibit an asymmetry between their inflow and outflow
terms: the rate of switches from strategy j to strategy i is proportional to xj, while the
rate of switches from strategy i to strategy j is proportional to xi. But under imitative
dynamics, both of these rates are proportional to both xi and xj. This property, called
inflow-outflow symmetry, underlies a number of properties of imitative dynamics that fail
for other continuous dynamics. Figure 13.6 illustrates this point in the standard Rock-
Paper-Scissors game: while the other dynamics converge, the replicator dynamic exhibits
a continuum of closed orbits. A more surprising distinction concerns the behaviors of
the dynamics in games with dominated strategies: see Sections 13.8.1 and 13.9.2.

Another dynamic that satisfies inflow-outflow symmetry is the projection dynamic
(Nagurney and Zhang, 1997; Lahkar and Sandholm, 2008). On the interior of the
simplex, this dynamic is defined by

ẋ = �F(x), [13.12]

so that the direction of motion is given by the projected payoff vector.19 It can be
derived from revision protocols reflecting “revision driven by insecurity,” under which
the conditional switch rate ρ ij is inversely proportional to xi. The rate of switches from
strategy i to strategy j under [13.12] is proportional to neither xi nor xj. By virtue of
this inflow-outflow symmetry, the projection dynamic exhibits close connections to the
replicator dynamic, at least in the interior of the simplex (Sandholm et al., 2008). While
the projection dynamic is mathematically appealing, the discontinuities in the dynamic
and its protocols at the boundary of the simplex raise doubts about its appropriateness
for applications.

19 The dynamic is defined globally by ẋ = ProjTX(x)(F(x)), where the right hand side represents the closest
point projection of F(x) onto TX(x). This definition ensures that unique forward solution trajectories
exist from every initial condition in X .
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13.5.2 The best response dynamic and related dynamics
Traditionally, choice in game theory is based on optimization. The original evolu-
tionary dynamic embodying this paradigm is the best response dynamic of Gilboa
and Matsui (1991) (see also Matsui, 1992, and Hofbauer, 1995b). This dynamic can
also be derived as a continuous-time version of the well-known fictitious play process
of Brown (1949, 1951) (see Section 13.10.2). We now introduce the best response
dynamic and some interesting variations, most notably those defined by means of payoff
perturbations.

13.5.2.1 Target protocols and target dynamics
Under the revision protocol for the best response dynamic, an agent’s conditional switch
rates do not depend on his current strategy. Protocols with this feature have identical
rows: ρFij (x) = ρFı̂ j(x) for all x ∈ X and i, ı̂ , j ∈ S. In this case, we use τF ≡ ρFi· to refer

to the common row of ρF , and call τF a target protocol.
Substitution into equation [13.3] shows that target protocols generate mean dynamics

of the form

ẋi = τFi (x) − xi
∑
j∈S

τFj (x), [13.13]

which we call target dynamics. When λF(x) = ∑
j∈S τFj (x) is not zero, we can define

σF(x) ∈ X by σ Fj (x) = τFj (x)/λ
F(x) and express the target dynamic [13.13] as

ẋ = λF(x)(σ F(x) − x). [13.14]

Geometrically, equation [13.14] says that the population state moves from its current
position x toward the target state σ F(x) at rate λF(x).

A further simple property of the best response dynamic’s protocol is that its entries
sum to one,

∑
j∈S τFj (x) = 1 for all x ∈ X, so that the conditional switch rates τFj are

actually conditional switch probabilities (see Section 13.3.1). To highlight this property,
we denote the protocol by σ F(x), and express the target dynamic as

ẋ = σ F(x) − x. [13.15]

13.5.2.2 The best response dynamic
Under the best response protocol, agents receive revision opportunities at a unit rate,
and use these opportunities to switch to a current best response. This protocol is reactive
(ρF(x) = ρ(F(x), x)), and it is a target protocol with unit row sum (ρ i·(F(x), x) =
σ(F(x), x) ∈ X); moreover, it does not condition directly on the population state
(σ(F(x), x) = σ(F(x))). It is defined formally by
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σ(π) = M(π), [13.16a]

where the map M : Rn ⇒ X, defined by

M(π) = argmax
y∈X

y′π , [13.16b]

is the (mixed) maximizer correspondence. Substituting [13.16a] and [13.16b] into the mean
dynamic equation [13.15], we obtain the best response dynamic,

ẋ ∈ M(F(x)) − x. [13.17]

This dynamic can also be expressed as

ẋ ∈ BF(x) − x,

where BF = M ◦ F is the (mixed) best response correspondence for F.
Since the maximizer correspondence M is set-valued and discontinuous, the best

response dynamic is a differential inclusion, and lies outside the framework developed
in Section 13.3. Thus, the basic results on existence and uniqueness of solutions
(Theorem 13.3) and on deterministic approximation (Theorem 13.4) do not apply here.
Fortunately, versions of both of these results are available for the current setting. SinceM
is a convex-valued and upper hemicontinuous correspondence, results from the theory
of differential inclusions imply the existence of a Carathéodory solution from every initial
condition: a Lipschitz continuous trajectory {xt}t≥0 that satisfies ẋt ∈ V (xt) at all but a
measure zero set of times.20 But solutions are generally not unique: for instance, starting
from a mixed equilibrium of a coordination game, there is not only a stationary solution,
but also solutions that head immediately toward a pure equilibrium, as well as solutions
that do so after an initial delay. Regarding deterministic approximation, one can define
versions of the stochastic evolutionary process {XN

t } that account for the multivaluedness
of M , and whose sample paths are approximated by solutions of [13.17].21

Despite these technical complications, most solutions of the best response dynamic
take a very simple form. To draw a phase diagram of [13.17] for a given game F, one
divides the state space X into the best response regions for each strategy. When the state
is in the best response region for strategy i, solutions of [13.17] move directly toward
pure state ei. At states admitting multiple best responses, more than one direction of
motion is possible in principle, though not always in practice.

Example 13.11. (The best response dynamic for standard RPS) The best response
dynamic for standard Rock-Paper-Scissors (Example 13.5) is illustrated in Figure 13.6ii. Within

20 The formulation of the best response dynamic as a differential inclusion is due to Hofbauer (1995b). For
an introduction to differential inclusions, see Smirnov (2002).

21 See Roth and Sandholm (2013).
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each best response region, solutions proceed toward the relevant vertex. At the boundaries of these
regions, the only continuation path consistent with [13.17] turns instantly toward the next vertex in
the best response cycle. In the limit, the process converges to the mixed equilibrium x∗ = (1

3 ,
1
3 ,

1
3

)
after an infinite number of turns.22

Despite its absence in this example, multiplicity of solutions under the best response
dynamic is quite common. We noted earlier that there are always multiple solutions
emanating from mixed equilibria of coordination games. In other cases, multiplicity of
solutions can lead to complicated dynamics, including solutions that cycle in and out of
equilibrium in perpetuity (Hofbauer, 1995b).

It is easy to verify that the best response dynamic satisfies versions of positive
correlation (PC) and Nash stationarity (NS) suitable for differential inclusions.
For the former, note that if y ∈ M(F(x)) = BF(x) is any best response to x,
we have

(y− x)′F(x) = max
j∈S Fj(x) − F̄(x) = max

j∈S F̂j(x) ≥ 0,

with equality only when x is a Nash equilibrium (see Proposition 13.2 below). And it
is clear from [13.17] that stationary solutions coincide with Nash equilibria.

While the best response dynamic is the simplest dynamic based on the idea of exact
optimization, it is not the only such dynamic. Balkenborg et al. (2013) consider the
refined best response dynamic, under which agents only switch to best responses that are
robust, in the sense that they are unique best responses at some nearby state. Under the
tempered best response dynamics of Zusai (2011), all revising agents switch to best responses,
but the rate at which an agent revises declines with the payoff of his current strategy. A
third alternative, the sampling best response dynamics of Oyama et al. (2012), is introduced
in Section 13.8.3.

13.5.2.3 Perturbed best response dynamics
For both technical convenience and realism, it is natural to consider variants of the
best response dynamic that define smooth dynamical systems. The most important
alternative, introduced by Fudenberg and Levine (1998) (see also Fudenberg and
Kreps, 1993), supposes that agents optimize after their payoffs have been subject to
perturbations. The perturbations ensure that agents’ choice probabilities vary smoothly
with payoffs, and so lead to differentiable dynamics. This allows us to avail ourselves
of the full toolkit for analyzing smooth dynamics, including both linearization around
rest points and the theory of cooperative differential equations (Section 13.8.2). The
resulting perturbed best response dynamics have important connections with work
in stochastic stability theory (Section 13.10.1) and models of heuristic learning in

22 For a detailed analysis, see Gaunersdorfer and Hofbauer (1995).
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games (Section 13.10.2); they also describe the dynamics of aggregate behavior in
heterogeneous populations of exact optimizers (Ellison and Fudenberg, 2000; Ely and
Sandholm, 2005).

Perturbed best response protocols are target protocols of the form

σ(π) = M̃(π), [13.18]

where the perturbed best response function M̃ : Rn → int(X) is a smooth approximation
of the maximizer correspondence M . This function is defined most conveniently
in terms of a smooth deterministic perturbation v : int(X) → R of the payoff to each
mixed strategy:

M̃v(π) = argmax
y∈int(X)

(y′π − v(y)), where [13.19a]

z′∇2v(y)z > 0 for all z ∈ TX and y ∈ int(X), and [13.19b]

lim
k→∞ yk ∈ bd(X) ⇒ lim

k→∞
∣∣∇v(yk)∣∣ = ∞. [13.19c]

The convexity condition [13.19b] and the steepness condition [13.19c] ensure that the
optimal solution to [13.19a] is unique and lies in the interior of X. Indeed, taking the
first order condition for [13.19a] shows that

M̃v(π) = (∇v)−1(�π). [13.20]

From a game-theoretic point of view, it is more natural to define perturbed
maximization using stochastic perturbations of the payoff of each pure strategy:

M̃ε
i (π) = P

(
i = argmax

j∈S
π j + εj

)
, [13.21]

where ε is a random vector that admits a density function that is positive throughoutRn.
While the explicit expression for M̃ε is quite cumbersome, one can avoid working with
it directly: Hofbauer and Sandholm (2002) show that under appropriate smoothness
conditions, any maximizer function of form [13.21] can be represented using a
deterministic perturbation as in [13,19].

Example 13.12. (Logit choice) The best known perturbed maximizer function is the logit
choice function with noise level η > 0:

M̃i(π) = exp(η−1π i)∑
j∈S exp(η−1π j)

. [13.22]

When η is large, M̃(π) is close to a uniform probability vector. When η is close to 0, M̃(π) is
a close approximation to the maximizer M(π), but places positive probability on every strategy.
The logit choice function can be expressed in form [13.21] using stochastic perturbations that are
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i.i.d. with a double exponential distribution. It can also be expressed in form [13,19] by letting
the deterministic perturbation v be the negated entropy function v(y) = η

∑
j∈S yj log yj.

If agents revise using a perturbed best response protocol [13,18], then aggregate
behavior evolves according to the perturbed best response dynamic

ẋ = M̃v(F(x)) − x. [13.23]

When the perturbations that generate M̃v are small in a suitable sense, the dynamic
[13.23] is a smooth approximation of the best response dynamic [13.17].

Because its definition uses payoff perturbations, perturbed best response dynamics
cannot satisfy positive correlation (PC) and Nash stationarity (NS) exactly. They do,
however, satisfy perturbed versions of these conditions. Considering the latter first,
observe that the rest points of [13.23] are the fixed points of the perturbed best response
function B̃v = M̃v ◦ F. These perturbed equilibria approximate Nash equilibria when the
perturbations are small.23

To obtain a useful alternative characterization, define the virtual payoffs F̃v : X → R
n

associated with the pair (F, v) by F̃v(x) = F(x) − ∇v(x). By way of interpretation, note
that the convexity and steepness of v ensure that strategies played by few agents have
high virtual payoffs. Equation (13.20) implies that the perturbed equilibria for the pair
(F, v) are precisely those states for which F̃v(x) is a constant vector.

Virtual payoffs are also used to define the appropriate analog of positive correlation.
Hofbauer and Sandholm (2002, 2007) show that the perturbed best response dynamics
[13.23] satisfy virtual positive correlation

VF,v(x) �= 0 implies that VF,v(x)′F̃v(x) > 0. [13.24]

This condition is just what is needed to extend stability and convergence results for the
best response dynamic to perturbed best response dynamics—see Sections 13.6.5 and
13.7.5.

13.5.3 Excess payoff and pairwise comparison dynamics
A basic question addressed by evolutionary game dynamics is whether Nash equilibrium
can be interpreted as stationary behavior among agents who employ simple myopic
rules. Indeed, a version of this interpretation was offered by Nash himself in his doctoral
dissertation.24 Imitative dynamics fail to satisfy Nash stationarity, and so do not provide
an ideal basis for this interpretation. Best response dynamics are also not ideal for this
purpose: they are based on discontinuous revision protocols, which require more precise
information than simple agents should be expected to possess.

23 In the experimental literature, perturbed equilibria are known as quantal response equilibria; see McKelvey
and Palfrey (1995) and Goeree et al. (2008).

24 See Nash (1950) and Weibull (1996).
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In this section, we introduce two classes of continuous dynamics that satisfy Nash
stationarity, and so provide the interpretation of Nash equilibrium we seek.

13.5.3.1 Excess payoff dynamics
The excess payoff function F̂ : X → R

n for game F, defined by

F̂i(x) = Fi(x) − F̄(x) = Fi(x) −
∑
j∈S

xjFj(x)

describes the performance of each strategy relative to the population average. Clearly,
the excess payoff vector F̂(x) cannot lie in the interior of the negative orthant Rn−, as
this would mean that all strategies receive a worse-than-average payoff. In fact, it is not
difficult to establish that in this context, the boundary of the negative orthant plays a
special role:

Proposition 13.2. x ∈ NE(F) if and only if F̂(x) ∈ bd(Rn−).

To interpret this proposition, we let Rn∗ = R
n
� int(Rn−) denote the set of vectors

in R
n with at least one non-negative component. If the excess payoff vector lies on the

boundary of this set, bd(Rn∗) = bd(Rn−), then the maximal component of the excess
payoff vector is zero. Viewed in this light, Proposition 13.2 says that the Nash equilibria
are just those states at which no strategy receives an above-average payoff.

Excess payoff protocols are target protocols (Section 13.5.2.1) under which con-
ditional switch rates are expressed as functions of the excess payoff vector F̂(x).25

Specifically, we call a target protocol τ an excess payoff protocol if it is Lipschitz continuous
and satisfies

τ j(π , x) = τ j(π̂), where π̂ i = π i − x′π , and [13.25a]

π̂ ∈ int(Rn∗) ⇒ τ (π̂)′π̂ > 0. [13.25b]

Condition [13.25b], called acuteness, requires that away fromNash equilibrium, strategies
with higher growth rates tend to be those with higher excess payoffs.

Substituting equation [13.25a] into the mean dynamic [13.13] yields the correspond-
ing class of evolutionary dynamics, the excess payoff dynamics:

ẋi = τ i(F̂(x)) − xi
∑
j∈S

τ j(F̂(x)). [13.26]

Example 13.13. (The BNN dynamic) If the protocol τ takes the semilinear form

τ i(π̂) = [π̂ i]+, [13.27]

25 Best response protocols and perturbed best response protocols can also be expressed in this way—a point
we return to in Section 13.7.5.
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we obtain the Brown-von Neumann-Nash (BNN) dynamic:

ẋi = [F̂i(x)]+ − xi
∑
j∈S

[F̂j(x)]+. [13.28]

This dynamic was introduced in the early days of game theory by Brown and von Neumann
(1950) in the context of symmetric zero-sum games. Nash (1951) used a discrete-time analog of
this dynamic as the basis for a simple proof of existence of equilibrium via Brouwer’s theorem. The
dynamic was then forgotten for 40 years before being reintroduced by Skyrms (1990), Swinkels
(1993), Weibull (1996), and Hofbauer (2000).

It is not difficult to verify that the BNN dynamic satisfies both positive correlation
(PC) and Nash stationarity (NS). Sandholm (2005a) shows that these properties are
satisfied by all excess payoff dynamics.

13.5.3.2 Pairwise comparison dynamics
Excess payoffs dynamics are not completely satisfactory as a model of behavior in
population games. To use an excess payoff protocol, an agent needs to know the vector
of excess payoffs, and so, implicitly, the average payoff obtained in the population. Unless
this information were provided by a planner, it is not information that agents could easily
obtain.

As a more credible alternative, we consider dynamics based on pairwise comparisons.
When an agent receives a revision opportunity, he selects an alternative strategy at
random. He compares its payoff to that of his current strategy, and considers switching
only if the former exceeds the latter.

Formally, pairwise comparison protocols are Lipschitz continuous protocols ρ : Rn ×
X → R

n×n+ that satisfy sign preservation:

sgn(ρ ij(π , x)) = sgn([π j − π i]+) for all i, j ∈ S. [13.29]

The resulting evolutionary dynamics, described by equation [13.3], are called pairwise
comparison dynamics.

Example 13.14. (The Smith dynamic) Suppose the revision protocol ρ takes the semilinear
form

ρ ij(π , x) = [π j − π i]+, [13.30]

Inserting this formula into the mean dynamic [13.3], we obtain the Smith dynamic:

ẋi =
∑
j∈S

xj[Fi(x) − Fj(x)]+ − xi
∑
j∈S

[Fj(x) − Fi(x)]+. [13.31]
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Table 13.3 Families of revision protocols and evolutionary dynamics, and their properties.
Family Example Continuity Data Req. (PC) (NS)

Imitation Replicator Yes Weak Yes No
Optimization Best response No Moderate Yes Yes
Perturbed optimization Logit Yes Moderate Approx. Approx.
Excess payoff BNN Yes Strong Yes Yes
Pairwise comparison Smith Yes Weak Yes Yes

This dynamic was introduced by Smith (1984), who used it to model disequilibrium adjustment
by drivers in highway networks.

Protocol [13.30] is closely related to the pairwise proportional imitation protocol
from Example 13.6, ρ ij(π , x) = xj[π j − π i]+. Indeed, the protocols only differ in
how candidate strategies are chosen. Under the imitative protocol, a revising agent
obtains a candidate strategy by observing the choice of an opponent. Under protocol
[13.30], he obtains a candidate strategy by choosing uniformly from a list of all
strategies.

This difference between imitative and pairwise comparison protocols has clear
consequences for the dynamics of aggregate behavior. Under imitative dynamics, rare
strategies are unlikely to be chosen, and unused strategies, even optimal ones, are
never chosen. Pairwise comparison dynamics have neither of these properties, and as a
consequence satisfy not only positive correlation (PC), but also Nash stationarity (NS):
see Smith (1984) and Sandholm (2010b).

In fact, pairwise comparison protocols can be used in combination with imitative
protocols to improve the performance of the latter. Sandholm (2005a, 2010b) considers
hybrid protocols that combine imitation with consideration of unused strategies via
protocols of form [13.25] or [13.29]. The resulting hybrid dynamics satisfy both positive
correlation (PC) and Nash stationarity (NS). It is thus not imitation per se, but rather
the exclusive use of imitation, that allows non-Nash rest points to exist.

Our main conclusions about families of revision protocols and evolutionary dynamics
are summarized in Table 13.3. For each family, the table describes the continuity and
data requirements of the protocols, and the incentive properties of the corresponding
dynamics.

13.6. POTENTIAL GAMES

In this section and the following two, we consider classes of population games that have
attractive theoretical properties and are useful in applications. Games in these classes
admit simple characterizations of Nash equilibrium, and ensure global convergence
under various evolutionary dynamics.
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The most general convergence results are available for potential games, in which
all information about incentives can be captured by a scalar-valued function defined
on the set of population states. Dynamics satisfying positive correlation (PC) and Nash
stationarity (NS) ascend this function and converge to Nash equilibrium.

The first appearance of potential functions in game theory is in the work of
Beckmann et al. (1956), who use potential function arguments to analyze congestion
games. Rosenthal (1973) introduced congestion games with finite numbers of players,
motivating Monderer and Shapley’s (1996) definition of finite-player potential games.
Potential function arguments have long been used in models from population genetics
that are equivalent to the replicator dynamic in normal form potential games; see Kimura
(1958), Shahshahani (1979), Akin (1979), and Hofbauer and Sigmund (1988, 1998).
Our presentation of potential games played by continuous populations of agents follows
Sandholm (2001b, 2009b).

13.6.1 Population games and full population games
Some of the classes of games introduced in the coming sections can be characterized
in terms of the externalities that players of different strategies impose on one another.
In discussing these externalities, it is natural to consider the effect of adding new agents
playing strategy j on the payoffs of agents currently choosing strategy i. In principle,
this effect should be captured by the partial derivative ∂Fi

∂xj
. However, since payoffs in

population games are only defined on the simplex, this partial derivative does not exist.
This difficulty can circumvented by considering full population games, in which payoffs

are defined on the positive orthant Rn+. We can interpret the extended payoff functions
as describing the payoffs that would arise were the population size to change. Although
there are some subtleties involved in the use of these extensions, in the end they are
harmless, and we employ them here with little further comment.

13.6.2 Definition, characterization, and interpretation
Let F : Rn+ → R

n be a (full) population game. We call F a potential game if there exists a
continuously differentiable function f : Rn+ → R, called a potential function, satisfying

∇ f (x) = F(x) for all x ∈ R
n+, or equivalently

∂ f
∂xi

(x) = Fi(x) for all i ∈ S and x ∈ R
n+.

Thus the partial derivatives of the potential function are the payoff functions of the game.
If the payoff function F is continuously differentiable, then well-known results from

calculus tell us that F is a potential game if and only if

DF(x) is symmetric for all x ∈ R
n+, or equivalently
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∂Fi
∂xj

(x) = ∂Fj
∂xi

(x) for all i, j ∈ S and x ∈ R
n+.

This condition, which we call full externality symmetry, has a simple game-theoretic
interpretation: the effect on the payoffs to strategy i of introducing new agents choosing
strategy j always equals the effect on the payoffs to strategy j of introducing new agents
choosing strategy i.26

For intuition concerning the potential function itself, suppose that some members
of the population switch from strategy i to strategy j, so that the population state moves
in direction z = ej − ei. If these switches improve the payoffs of those who switch, then

∂ f

∂z
(x) = ∇ f (x)′z = F(x)′z = Fj(x) − Fi(x) > 0.

Thus profitable strategy revisions increase potential.
For more general sorts of adjustment, we have the following simple lemma:

Lemma 13.1. Let F be a potential game with potential function f , and suppose the dynamic VF

satisfies positive correlation (PC). Then along any solution trajectory {xt}, we have d
dt f (xt) > 0

whenever ẋt �= 0.

The proof follows directly from the chain rule:

d

dt
f (xt) = ∇f (xt)′ẋt = F(xt)′VF(xt) ≥ 0,

where equality holds only if VF(xt) = 0.

13.6.3 Examples
Potential games admit a number of important applications, three of which are described
next.

Example 13.15. (Matching in games with common interests) Example 13.1
considered matching in the two-player symmetric normal form game A ∈ R

n×n, which generates
the population game F(x) = Ax. The game A is said to exhibit common interests if A is
a symmetric matrix (Aij = Aji), so that two matched players always receive the same payoffs.
Matching in two-player games with common interests defines a fundamental model from population
genetics; the common interest assumption reflects the shared fate of two genes that inhabit the same
organism.27

26 If we only defined payoffs on the simplex, the corresponding condition would be externality symmetry,
which requires that DF(x) be symmetric with respect to TX × TX (in other words, that z′DF(x)ẑ =
ẑ′DF(x)z for all z, ẑ ∈ TX and x ∈ X .)

27 See Hofbauer and Sigmund (1988, 1998).
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Since DF(x) = A, the population game derived from a game with common interests is a
potential game. Its potential function, f (x) = 1

2x
′Ax = 1

2 F̄(x), is one-half of the average payoff
function. Thus Lemma 13.1 implies that in common interest games, evolutionary dynamics
satisfying positive correlation (PC) improve social outcomes.

Example 13.16. (Congestion games) Example 13.2 introduced congestion games, whose
payoff functions are of the form

Fi(x) = −
∑
�∈Li

c� (u�(x)) .

In the context of highway congestion, each � represents a link in the highway network, and Li is
the set of links that make up path i.

In a congestion game, the marginal effect of adding an agent to path i on the payoffs to
drivers on path j is due to the marginal increases in congestion on the links the two paths have in
common. The marginal effect of adding an agent to path j on the payoffs to drivers on path i is
the same:

∂Fi
∂xj

(x) = −
∑

�∈Li∩Lj

c′�(u�(x)) = ∂Fj
∂xi

(x).

Thus congestion games satisfy externality symmetry, and so are potential games. Their potential
functions are of the form

f (x) = −
∑
�∈L

∫ u�(x)

0
c�(z) dz. [13.32]

The potential function [13.32] of a congestion game is generally unrelated to its
average payoff function,

F̄(x) = −
∑
�∈L

u�(x)c�(u�(x)).

Dafermos and Sparrow (1969) observed that if each cost function is a monomial of the
same degree η ≥ 0, so that c�(u) = a�uη, then the potential function is proportional to
average payoffs: f (x) = 1

η+1 F̄(x). For general full potential games, it follows from Euler’s
theorem that the potential function f is proportional to aggregate payoffs if and only if F
is a homogeneous function of degree k > −1 (Hofbauer and Sigmund, 1988; Sandholm,
2001b).

Congestion games have received considerable attention in the computer science lit-
erature. Much of this work focuses on so-called “price of anarchy” results, which bound
the ratio of the total delay in the network in Nash equilibrium to the minimal feasible
delay. The most basic and best-known result in this literature, due to Roughgarden and
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Tardos (2002, 2004) (see also Correa et al. 2004, 2008), shows that in congestion games
with non-negative, increasing, affine cost functions, total delays in Nash equilibrium
must be within a factor of 4

3 of the minimal feasible delay. In fact, tight bounds can be
obtained for quite general classes of cost functions.

Example 13.17. (Games generated by variable pricing schemes) Population games
can be viewed as models of externalities for environments with many agents. One way to force agents
to internalize the externalities they impose upon others is to introduce pricing schemes. Given an
arbitrary population game F with average payoff function F̄, we define a new game F̃ by

F̃i(x) = Fi(x) +
∑
j∈S

xj
∂Fj
∂xi

(x).

We interpret the second term as a price (either subsidy or tax) imposed by a planner. It represents
the marginal effect that a strategy i player has on the payoffs of his opponents.

Observe that

∂F̄
∂xi

(x) = ∂

∂xi

∑
j∈S

xjFj(x) = Fi(x) +
∑
j∈S

xj
∂Fj
∂xi

(x) = F̃i(x).

In words, the augmented game F̃ is a full potential game, and its full potential function is the
average payoff function of the original game F. Thus when individual agents switch strategies in
response to the combination of original payoffs and prices, average payoffs in the population increase.
Sandholm (2002, 2005b, 2007b) uses this construction as the basis for an evolutionary approach
to implementation theory.

13.6.4 Characterization of equilibrium
The fact that evolutionary processes increase potential suggests a connection between
local maximization of potential and Nash equilibrium. We therefore consider the
problem of maximizing potential over the set of population states:

max f (x) subject to
∑
j∈S

xj = 1 and xi ≥ 0 for all i ∈ S.

The Lagrangian for this maximization problem is

L(x,μ, λ) = f (x) + μ

(
1 −

∑
i∈S

xi

)
+
∑
i∈S

λixi ,

so the Kuhn-Tucker first-order necessary conditions for maximization are

∂ f
∂xi

(x) = μ − λi for all i ∈ S, [13.33a]
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λixi = 0, for all i ∈ S, and [13.33b]

λi ≥ 0 for all i ∈ S. [13.33c]

These conditions characterize the Nash equilibria of a potential game.

Theorem 13.5. Let F be a potential game with potential function f . Then x is a Nash
equilibrium of F if and only if (x,μ, λ) satisfies [13.33a]–[13.33c] for some λ ∈ R

n andμ ∈ R.

The proof is simple: the multiplier μ is the maximal payoff, and the multiplier λi is
the payoff deficit of strategy i relative to the optimal strategy.

Theorem 13.5 provides a simple proof of existence of equilibrium in potential games.
Since f is continuous and X is compact, the former attains its maximum on the latter,
and the theorem implies that any maximizer is a Nash equilibrium.

Example 13.18. (Nash equilibria in a potential game) The coordination game FC3

from Example 13.5 is generated by a common interest game, and so is a potential game. Its potential
function is the convex function f C3(x) = 1

2 ((x1)
2 + 2(x2)2 + 3(x3)2). Figure 13.7 presents a

graph and a contour plot of this function. The three pure states locally maximize potential, and
so are Nash equilibria. There are four additional states that do not maximize potential, but that
satisfy the Kuhn-Tucker first-order conditions. Geometrically, this means that if we linearize the
potential function at these states, the linearized functions admit no feasible direction of increase from
these states. By Theorem 13.5, these points too are Nash equilibria, although Theorem 13.7 will
show they are not locally stable under typical evolutionary dynamics.

Figure 13.7 Graph and contour plot of the potential function f C3(x) = 1
2 ((x1)

2 + 2(x2)2 + 3(x3)2),
with Nash equilibria of game FC3 marked.



740 Handbook of game theory

The potential function in the previous example was convex. If instead a game’s
potential function is concave—as is true, for instance, in congestion games with
increasing cost functions—then only the global maximizers of potential are Nash
equilibria.

13.6.5 Global convergence and local stability
Lemma 13.1 tells us that evolutionary dynamics satisfying positive correlation (PC)
will ascend the potential function whenever they are not at rest. In dynamical systems
terminology, the potential function is a strict (global) Lyapunov function for all such
dynamics.

Stating the consequences of this fact for the global behavior of the dynamics requires
a formal definition. Let ẋ = V (x) be a Lipschitz continuous differential equation that
is forward invariant on X. For each initial condition ξ ∈ X, we define the ω-limit set
ω(ξ) to be the set of all points that the solution trajectory {xt}t≥0 starting from x0 = ξ

approaches arbitrarily closely infinitely often:

ω(ξ) =
{
y ∈ X : there exists {tk}∞k=1 with lim

k→∞ tk = ∞ such that lim
k→∞ xtk = y

}
.

In general, ω-limit points include rest points, periodic orbits, and chaotic attractors.
However, standard results from dynamical systems theory show that the existence of a
strict global Lyapunov function rules out the latter possibilities. We therefore have:

Theorem 13.6. Let F be a potential game, and let VF be an Lipschitz continuous evolutionary
dynamic that satisfies positive correlation (PC). Then all ω-limit points of VF are rest points. If in
addition VF satisfies Nash stationarity (NS), then all ω-limit points of VF are Nash equilibria.

Lemma 13.1 also suggests that only local maximizers of f should be locally stable.
To present such a result, we introduce some formal definitions of local stability for the
differential equation ẋ = V (x) above. These definitions are provided for a single state
y ∈ X; replacing y with a closed set Y ⊂ X yields the definitions for closed sets of states.

State y is Lyapunov stable if for every neighborhoodO of y, there exists a neighborhood
O′ of y such that every solution {xt}t≥0 that starts inO′ is contained inO: that is, x0 ∈ O′
implies that xt ∈ O for all t ≥ 0. State y is attracting if there is a neighborhoodO of y such
that every solution that starts in O converges to y; if we can choose O = X, y is globally
attracting. Finally, state y is asymptotically stable if it is Lyapunov stable and attracting, and
it is globally asymptotically stable if it is Lyapunov stable and globally attracting.

With these definitions, we have:

Theorem 13.7. Let F be a potential game with potential function f , and let VF be an
evolutionary dynamic that satisfies positive correlation (PC) and Nash stationarity (NS). Then
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state x ∈ X is asymptotically stable under VF if and only if it is a local maximizer of f and is
isolated in NE(F).

Versions of Theorem 13.7 remain true if Nash stationarity is not assumed, or if we
consider local maximizer sets instead of points.28

The results above are stated for Lipschitz continuous dynamics that satisfy positive
correlation (PC). Analogous results hold for the best response dynamic, and also for
perturbed best response dynamics. For the analysis of the latter case, one introduces
the perturbed potential function f̃ (x) = f (x) − v(x). Since the gradient of this function
is the virtual payoff function F̃(x) = F(x) − ∇v(x), condition [13.24] implies that
perturbed best response dynamics ascend this function and converge to perturbed
equilibria.

13.6.6 Local stability of strict equilibria
The existence of a potential function allows one to establish convergence and stability
results for all dynamics satisfying positive correlation (PC). Similar reasoning can be
used to establish local stability of any strict equilibrium: that is, any pure state ek such that
Fk(ek) > Fj(ek) for all j �= k.

This result requires a slightly stronger restriction on the dynamics. We say that a
dynamic VF for game F satisfies strong positive correlation in Y ⊆ X if

There exists a c > 0 such that for all x ∈ Y ,

VF(x) �= 0 implies that Corr(VF(x),F(x)) = VF(x)′�F(x)∣∣VF(x)
∣∣ ∣∣�F(x)

∣∣ ≥ c.

That is, the correlation between strategies’ growth rates and payoffs, or equivalently,
the cosine of the angle between the growth rate and projected payoff vectors, must be
bounded away from zero on Y . This condition is satisfied by imitative dynamics, excess
payoff dynamics, and pairwise comparison dynamics in a neighborhood of any strict
equilibrium.

Sandholm (2014) shows that the function

L(x) = (ek − x)′F(ek),

representing the payoff deficit of mixed strategy x at the strict equilibrium ek, is a strict local
Lyapunov function for state ek: its value decreases along solutions of VF in a neighborhood
of ek, and it is non-negative in this neighborhood, equaling zero only when x = ek. It
thus follows from standard results that if ek is an isolated rest point of VF , then it is
asymptotically stable under VF .

28 See Sandholm (2001b).
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The next section introduces a more general criterion for local stability. This criterion
is defined for states throughout the simplex, but it requires more structure on the
dynamics for stability to be assured.

13.7. ESS AND CONTRACTIVE GAMES
13.7.1 Evolutionarily stable states
The birth of evolutionary game theory can be dated to the definition of an evolutionarily
stable strategy (ESS) by Maynard Smith and Price (1973). Their model is one of
monomorphic populations, whose members all choose the same mixed strategy in a
symmetric normal form game. The notion of an evolutionarily stable strategy is meant to
capture the capacity of a monomorphic population to resist invasion by a monomorphic
mutant group whose members play some alternative mixed strategy.

This framework is quite different from the polymorphic, pure-strategist model
we consider here. Nevertheless, if we reinterpret Maynard Smith and Price’s (1973)
conditions as constraints on population states—and call a point that satisfies these
conditions an evolutionarily stable state—we obtain a sufficient condition for local stability
under a variety of evolutionary dynamics.29,30

There are three equivalent ways of defining ESS. The simplest one, and the most
useful for our purposes, was introduced by Hofbauer et al. (1979).31 It defines an ESS
to be an (infinitesimal) local invader:

There is a neighborhood O of x such that (y− x)′F(y) < 0 for all y ∈ O� {x}.
[13.34]

To interpret this condition, fix the candidate state x, and consider some nearby state y.
Condition [13.34] says that if the current population state is y, and an infinitesimal
group of agents with strategy distribution x joins the population, then the average
payoff of the agents in this group, x′F(y) = ∑

j∈S xjFj(y), exceeds the average payoff
in the population as a whole, y′F(y). Of course, forming predictions based on group
average payoffs runs counter to the individualistic approach that defines noncooperative
game theory. Thus in the present context, the definition of ESS is not of interest
directly, but only instrumentally, as a sufficient condition for stability under evolutionary
dynamics.

29 The distinction between evolutionarily stable strategies and ESS is emphasized by Thomas (1984).
General references on ESS theory include the survey of Hines (1987) and the monographs of Bomze
and Pötscher (1989) and Cressman (1992).

30 How one ought to extend the ESS definition to multipopulation settings depends on which of the
interpretations above one has in mind. For the mixed-strategist environment, the appropriate extension
is Cressman ESS (Cressman, 1992, 2006; Cressman et al., 2001), while for population games, it is Taylor
ESS (Taylor, 1979). See Sandholm (2010c, Chapter 8) for further discussion.

31 See also Pohley and Thomas (1983) and Thomas (1985).
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The second definition, introduced by Taylor and Jonker (1978) and Bomze (1991),
defines an ESS as a state that possesses uniform invasion barrier:

There is an ε̄ > 0 such that (y− x)′F(εy+ (1 − ε)x) < 0

for all y ∈ X � {x} and ε ∈ (0, ε̄). [13.35]

In contrast to condition [13.34], definition [13.35] looks at invasions by groups with
positive mass, and compares the average payoffs of the incumbent and invading groups
in the postentry population.

The third definition, the original one of Maynard Smith and Price (1973), shows
what restrictions ESS adds to Nash equilibrium.

x is a Nash equilibrium: (y− x)′F(x) ≤ 0 for all y ∈ X. [13.36a]

There is a neighborhood O of x such that for all y ∈ O � {x},
(y− x)′F(x) = 0 implies that (y− x)′F(y) < 0.

[13.36b]

The stability condition [13.36b] says that if a state y near x is an alternative best response
to x, then an incumbent population with strategy distribution y obtains a lower average
payoff against itself than an infinitesimal group of invaders with strategy distribution x
obtains against the incumbents.

The following theorem confirms the equivalence of these definitions.

Theorem 13.8. The following are equivalent:
(i) x satisfies condition [13.34].
(ii) x satisfies condition [13.35].
(iii) x satisfies conditions [13.36a] and [13.36b].
A state that satisfies these conditions is called an evolutionary stable state (ESS).

For certain local stability results, we need a slightly stronger condition than ESS. We
call state x a regular ESS (Taylor and Jonker, 1978) if

x is a quasistrict equilibrium: Fi(x) = F̄(x) > Fj(x) whenever xi > 0 and xj = 0.
[13.37a]

z′DF(x)z < 0 for all z ∈ TX � {0} such that zi = 0 whenever xi = 0. [13.37b]

The quasistrictness condition [13.37a] strengthens the Nash equilibrium condition
[13.36a] by requiring unused strategies to be suboptimal. The first-order stability
condition [13.37b] strengthens the stability condition [13.36b] by requiring the strict
inequality to hold even at the level of a linear approximation. If x = ek is a pure state,
then condition [13.37a] requires x to be a strict equilibrium, and condition [13.37b]
is vacuous. At the other extreme, if x is in the interior of the simplex, then condition
[13.37a] is equivalent to Nash equilibrium [13.36a], and condition [13.37b] requires that
the derivative matrix DF(x) be negative definite with respect to the tangent space TX.
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This last requirement is the motivation for our next class of games.

13.7.2 Contractive games
The population game F : X → R

n is a (weakly) contractive game32 if

(y− x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X. [13.38]

If the inequality in condition [13.38] holds strictly whenever x �= y, F is strictly contractive,
while if this inequality always binds, F is conservative (or null contractive).

For a first intuition, notice that if F is a potential game, so that F ≡ ∇ f , then [13.38]
says that the potential function f is concave, ensuring the convexity and global stability
of the set of Nash equilibria.

For a more general intuition, consider again the projection dynamic [13.12], defined
on int(X) by ẋ = �F(x). Solutions to this dynamic “follow the payoff vectors” to the
greatest extent possible. If we run this dynamic from two initial states x0 and y0, the
squared distance between the states changes according to

d
dt

∣∣yt − xt
∣∣2 = 2(yt − xt)

′(ẏt − ẋt) = 2(yt − xt)
′(F(yt) − F(xt)). [13.39]

Thus, in a contractive game, following the payoff vectors brings states (weakly) closer
together.33

The connection between these games and the notion of ESS follows from the
characterization for the differentiable case. By the fundamental theorem of calculus,
if F is continuously differentiable, it is contractive if and only if it satisfies self-defeating
externalities:

DF(x) is negative semidefinite with respect to TX for all x ∈ X. [13.40]

This condition, which can be rewritten as∑
i∈S

zi
∂Fi
∂z

(x) ≤ 0 for all z ∈ TX and x ∈ X,

provides an economic interpretation of contractive games. The vector z ∈ TX represents
the aggregate effect of revisions by a group of agents on the population state. Condition
[13.40] requires that improvements in the payoffs of strategies to which revising agents
are switching are always exceeded by the improvements in the payoffs of strategies which
revising agents are abandoning. For instance, when z = ej − ei, this condition becomes

32 Also known as stable games (Hofbauer and Sandholm, 2009) or negative semidefinite games (Hopkins, 1999b).
In the convex analysis literature, an F satisfying condition [13.38] (sometimes with the inequality reversed)
is called a monotone operator—see Hiriart-Urruty and Lemaréchal (2001).

33 This remains true on the boundary of the simplex if the dynamic is defined there via closest-point
projection—see Lahkar and Sandholm (2008).
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∂Fj
∂(ej − ei)

(x) ≤ ∂Fi
∂(ej − ei)

(x).

According to this inequality, any gains that the switches create for the newly chosen
strategy j are dominated by gains for the abandoned strategy i.

13.7.3 Examples

Example 13.19. (Matching in symmetric zero-sum games) A symmetric two-player
normal form game A is symmetric zero-sum if A is skew-symmetric: Aji = −Aij for all i, j ∈ S.
If agents are matched to play this game, then the resulting population game F(x) = Ax satisfies
z′DF(x)z = z′Az = 0 for all vectors z ∈ R

n, and so is conservative.

Example 13.20. (Matching in Rock-Paper-Scissors) Let F(x) = Ax with

A =
⎛
⎝ 0 −l w
w 0 −l
−l w 0

⎞
⎠ .

Here, w > 0 and l > 0 represent the benefit from a win and the cost of a loss, respectively. When
w = l, we refer to A as ( standard) RPS; when w > l, we refer to A as good RPS, and when
w < l, we refer to A as bad RPS. In all cases, the unique Nash equilibrium of F(x) = Ax is
x∗ = (1

3 ,
1
3 ,

1
3

)
.

To evaluate condition [13.40] on the derivative matrix DF(x) = A, notice that the symmetric
matrix A+ A′ has eigenvalue l − w with geometric multiplicity 2, corresponding to the eigenspace
TX. It follows that F is conservative in standard RPS, and strictly contractive in good RPS. In
the latter case, Nash equilibrium x∗ is a regular ESS.

Example 13.21. ((Perturbed) concave potential games) A potential game F with
a strictly concave potential function satisfies condition [13.38] with a strict inequality, and so is
a strictly contractive game. If we slightly perturb F, then the new game is quite unlikely to be a
potential game. But [13.38]will continue to hold, so the new game is still a strictly contractive game.

13.7.4 Equilibrium in contractive games
The contraction condition [13.39] suggests that obedience of incentives will push the
population toward some “central” equilibrium state. To work toward a confirmation of
this idea, we say that x is a globally neutrally stable state of F, denoted x ∈ GNSS(F), if

(y− x)′F(y) ≤ 0 for all y ∈ X. [13.41]

GNSS is the global analog of Maynard Smith’s (1982) notion of a neutrally stable strategy,
which is obtained by replacing the strict inequality in definition [13.34] of ESS with
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a weak one. Rewriting inequality [13.41] as (x− y)′F(y) ≥ 0, we obtain a simple
geometric interpretation: proceeding from any state y an infinitesimal distance in the
direction specified by payoff vector F(y) moves the state (weakly) closer to the GNSS x.

Example 13.22. (GNSS in standard RPS) Starting from a selection of states y ∈ X,
Figure 13.8 presents projected payoff vectors�F(y) from standard RPS, along with vectors x∗ − y
leading to the Nash equilibrium x∗ = (13 ,

1
3 ,

1
3). All such pairs of vectors are orthogonal, so x

∗
is a GNSS.

The set GNSS(F) is an intersection of half spaces, and so is convex. A simple
geometric argument shows that it only contains Nash equilibria.

Proposition 13.3. GNSS(F) ⊆ NE(F).

To prove this inclusion, let x ∈ GNSS(F) and let y �= x. Define xε = εy+ (1 −
ε)x. Since x is a GNSS, (x− xε)

′F(xε) ≥ 0 for all ε ∈ (0, 1]: that is, motion from xε

in direction F(xε) is weakly toward x (see Figure 13.9). Taking ε to zero yields (y−
x)′F(x) ≤ 0 for all y ∈ X, which is definition [13.2] of Nash equilibrium.

While every GNSS is a Nash equilibrium, not every game has a GNSS. But the
next result shows that in contractive games, a GNSS must exist, because every Nash
equilibrium is a GNSS.

Figure 13.8 The GNSS of standard RPS.
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Figure 13.9 Why every GNSS is a Nash equilibrium.

Theorem 13.9. If F is a contractive game, then NE(F) ⊆ GNSS(F). Thus NE(F) =
GNSS(F), and so is a convex set.

To prove the theorem, add the definition [13.38] of contractive games to definition
[13.2] of Nash equilibrium; the sum is the definition [13.41] of GNSS.

If inequality [13.41] is strict whenever y �= x, we call x a globally evolutionarily stable
state. This condition is the global analog of ESS condition [13.34]. A variation on the
arguments above shows that in strictly contractive games, a Nash equilibrium is a GESS,
and that the Nash equilibrium is unique.

In light of Theorem 13.9 and the foregoing analysis, it is natural to ask whether
one can prove existence of Nash equilibrium in contractive games using tools from
convex analysis, avoiding an appeal to fixed point theory. Indeed, adapting an argument
of Minty (1967), one can provide a direct proof of existence of equilibrium using the
minmax theorem and a compactness argument.34

13.7.5 Global convergence and local stability
The discussions so far suggest that contractive games should admit global convergence
results under evolutionary dynamics, and that ESS should serve as a sufficient condition
for local stability. This section verifies these intuitions.

13.7.5.1 Imitative dynamics
The original global convergence result for strictly contractive games, due to Hofbauer
et al. (1979) and Zeeman (1980), is for the replicator dynamic [13.8]. The analysis
proceeds as follows: If F is a strictly contractive game, it admits a GESS x∗. We can
therefore consider the function

34 See Sandholm (2010c, Sec. 3.3.5).
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Hx∗(x) =
∑

i∈supp(x∗)

x∗i log
x∗i
xi

,

which is defined on the set of states Xx∗ = {
x ∈ X : supp(x∗) ⊆ supp(x)

}
whose

supports contain the support of x∗. Jensen’s inequality implies that Hx∗ is non-negative,
and equals 0 precisely when x = x∗. Moreover, the time derivative of this function under
the replicator dynamic [13.8] is

Ḣx∗(x) = ∇Hx∗(x)′ẋ = −
∑

i∈supp(x∗)

x∗i
xi

· xi F̂i(x) = −
∑
i∈S

x∗i F̂i(x) = −(x∗ − x)′F(x).

Thus, since x∗ is a GESS, the value of Hx∗ falls over time. Standard results on
Lyapunov functions then imply that x∗ is asymptotically stable, attracting solutions
from every initial condition in Xx∗ . Whether it is possible to prove global con-
vergence results for contractive games under other imitative dynamics is an open
question.

The only property of the game F used in this calculation was the fact that x∗
is a GESS. Therefore, virtually the same argument implies that any ESS is locally
asymptotically stable under the replicator dynamic.

One can obtain more general conclusions about local stability using linearization.
Taylor and Jonker (1978) show that when the derivative matrixDV (x∗) of the replicator
dynamic is evaluated at a regular ESS x∗, its eigenvalues corresponding to directions in
TX have negative real part, implying that solutions starting near the ESS converge to it
at an exponential rate. Remarkably, Cressman (1997b) shows that in hyperbolic cases,35

the linearizations of all imitative dynamics at a given restricted equilibrium are positive
multiples of one another, and consequently have the same stability properties. Among
other things, this implies the local stability of any regular ESS under typical imitative
dynamics.

13.7.5.2 Target and pairwise comparison dynamics: global convergence
in contractive games
We saw earlier that in potential games, the potential function serves as a Lyapunov
function for any evolutionary dynamic satisfying positive correlation (PC). Contractive
games, by contrast, do not come equipped with candidate Lyapunov functions. In order
to construct Lyapunov functions for dynamics in these games, we must look to the
dynamics themselves to obtain the necessary structure, following Smith (1984), Hofbauer
(1995b, 2000), and Hofbauer and Sandholm (2007, 2009).

35 A rest point x∗ is hyperbolic if the eigenvalues of the derivative matrix DV (x∗) have nonzero real part.
The Hartman-Grobman theorem (see Robinson, 1995) shows that near a hyperbolic rest point, the flow
of a nonlinear dynamic is topologically conjugate to the flow of its linearization.
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The best response dynamic, perturbed best response dynamics, and excess payoff
dynamics all can be derived from target protocols τ : Rn → R

n+ that condition on the
excess payoff vector F̂(x). Since target protocols are maps from R

n into itself, it makes
sense to ask whether a target protocol is integrable: that is, whether there exists a revision
potential γ : Rn → R satisfying τ(π̂ ) = ∇γ (π̂) for all π̂ ∈ R

n. In this case, the revision
potential provides a building block for constructing a Lyapunov function to analyze the
dynamic at hand.36

For example, it is easy to verify that the revision protocol [13.27] for the BNN
dynamic is integrable:

τ i(π̂) = [π̂ i]+ =⇒ γ (π̂) = 1
2

∑
i∈S

[π̂ i]
2+.

To make use of the revision potential γ , we introduce the Lyapunov function � : X →
R, defined by

�(x) = γ (F̂(x)). [13.42]

This function is non-negative, and by Proposition 13.2, it equals zero precisely at the
Nash equilibria of F. A computation shows that along solutions to the BNN dynamic,
the value of � obeys

�̇(x) = ẋ′DF(x)ẋ− (τ(F̂(x))′1)(F(x)′ẋ).

If x is not a rest point, then the contribution of the second term here is negative by
positive correlation (PC), and if F is contractive, the contribution of the first term
is nonpositive by condition [13.40]. Thus � is a (decreasing) strict global Lyapunov
function, and so standard results imply that the setNE(F) is globally asymptotically stable
under the BNN dynamic. The specific functional form of τ is not too important here: as
long as the protocol is acute [13.25b] and integrable, all solutions to the corresponding
excess payoff dynamic converge to the set of Nash equilibria.

Similar results hold for the best response dynamic and all perturbed best response
dynamics, as they too can be derived from integrable target protocols:37

M(π̂) = argmax
y∈X

y′π̂ =⇒ μ(π̂) = max
y∈X y

′π̂ ,

M̃(π̂) = argmax
y∈int(X)

y′π̂ − v(y) =⇒ μ̃(π̂ ) = max
y∈int(X)

y′π̂ − v(y).

36 For a game-theoretic interpretation of this integrability condition, see Sandholm (2014b).
37 We can replace actual payoffs with excess payoffs as the arguments of M and M̃ , since maximizers of

actual payoffs are also maximizers of excess payoffs. Also, since M is a correspondence, the function μ is
not a potential function in the usual calculus sense, but in the sense of convex analysis: we have ∂μ ≡ M ,
where the correspondence ∂μ : Rn ⇒ R

n is the subdifferential of μ.
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Table 13.4 Lyapunov functions for five basic deterministic dynamics
in contractive games.
Dynamic Lyapunov function for contractive games

Replicator Hx∗(x) = ∑
i∈supp(x∗) x

∗
i log

x∗i
xi

Best response G(x) = max
i∈S F̂i(x)

Logit G̃(x) = max
y∈int(X)

(
y′F̂(x) − η

∑
i∈S yi log yi

)
+ η

∑
i∈S xi log xi

BNN �(x) = 1
2

∑
i∈S[F̂i(x)]2+

Smith �(x) = 1
2

∑
i∈S
∑
j∈S

xi[Fj(x)−Fi(x)]2+

Therefore, Lyapunov functions analogous to [13.42] can be constructed in these cases as
well.

Pairwise comparison dynamics cannot be derived from target protocols. Even so,
Smith (1984) constructs a more complicated Lyapunov function for his dynamics for
contractive games, and Hofbauer and Sandholm (2009) show that a similar construction
can be used for a broader class of pairwise comparison dynamics.38

The Lyapunov functions for the five basic dynamics in contractive games are
summarized in Table 13.4.

13.7.5.3 Target and pairwise comparison dynamics: local stability of regular ESS
These Lyapunov functions for target and pairwise comparison dynamics can also be used
to establish local stability of regular ESS. In the case of an interior ESS, the contractive
game condition [13.40] holds in a neighborhood of the ESS, so local stability follows
immediately from the previous analysis.

The analysis is trickier for a regular ESS on the boundary of the simplex. The relevant
contraction condition, [13.37b], only applies in directions tangent to the face on
which the ESS lies, reflecting switches among strategies currently in use. For its part,
quasistrictness [13.37a] requires that the strategies in use are strictly better than those
that are not. Intuitively, one expects that quasistrictness should drive the state toward
the face of the simplex, and that once the state is close enough to the face, the
contraction condition should be enough to ensure stability. To formalize this argument,
Sandholm (2010a) augments the Lyapunov functions introduced above by a term
that penalizes mass on strategies outside the support of the ESS. The values of these
augmented functions decrease over time, establishing local stability of regular ESS in
each case.

38 The condition that is needed, impartiality, requires that the function of the payoff difference π j − π i that
describes the conditional switch rate from i to j does not depend on an agent’s current strategy i.
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13.8. ITERATIVE SOLUTION CONCEPTS, SUPERMODULAR GAMES,
AND EQUILIBRIUM SELECTION

This section considers connections between evolutionary game dynamics and traditional
iterative solution concepts. In some cases iteration is used directly to study the dynamics,
but in the case of supermodular games a rather different tool, the theory of cooperative
differential equations, is employed. This section also introduces a new class of dynamics,
sampling best response dynamics, which select unique equilibria in certain games with
multiple strict equilibria.

13.8.1 Iterated strict dominance and never-a-best-response
To begin, we show that traditional iterative solution concepts are respected by imitative
dynamics and the best response dynamic. Although these dynamics are the most
commonly studied, the properties described here do not extend to other dynamics,
as Section 13.9.2 will show.

For imitative dynamics, we consider strict dominance, following Akin (1980) and
Nachbar (1990). Strategy i is strictly dominated by strategy j if Fj(x) > Fi(x) for all x ∈
X.39

Theorem 13.10. Let {xt} be an interior solution trajectory of an imitative dynamic in game F.
If strategy i ∈ S is strictly dominated in F, then lim

t→∞(xt)i = 0.

To prove this result, suppose that strategy i is strictly dominated by strategy j, and write
r = xi/xj. If we express the imitative dynamic in the percentage growth rate form ẋi =
xiGi(x) as in [13.10], then monotonicity condition [13.11] and a compactness argument
imply that Gj(x) −Gi(x) ≥ c > 0 for all x ∈ X. Applying the quotient rule yields

d

dt
r = d

dt

xi
xj

= ẋixj − ẋjxi
(xj)2

= xiGi(x)xj − xjGj(x)xi
(xj)2

= r(Gi(x) −Gj(x)) ≤ −cr,

and so xi vanishes.
Of course, once we remove a dominated strategy from a game, other strategies may

become dominated in turn. A simple continuity argument shows that the conclusion of
Theorem 13.10 extends to strategies eliminated via iterated dominance.

It is easy to see that under the best response dynamic, not only does any strictly
dominated strategy vanish; so too does any strategy i that is never a best response, in
the sense that for every x ∈ X there is a j ∈ S such that Fj(x) > Fi(x).40 In fact, such

39 For results on strict dominance by mixed strategies, see Samuelson and Zhang (1992), Hofbauer and
Weibull (1996), and Viossat (2011).

40 Any strategy that is strictly dominated by a pure strategy is never a best response, but because we only
consider pure strategies here, the converse statement is false, even when F(x) = Ax is linear.
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a strategy must vanish at an exponential rate: (xt)i = (x0)ie−t for any x0 ∈ X, so that
elimination occurs not just from interior initial conditions, but from all initial conditions.
And by an argument based on continuity of payoffs, any strategy eliminated by
iterative removal of never-a-best-response strategies eventually vanishes at an exponential
rate.

It follows that at each stage of this elimination, the face of the simplex corresponding
to the surviving strategies is asymptotically stable under the best response dynamic. The
next example shows that the corresponding claim for imitative dynamics is false.

Example 13.23. (Dominated strategies and local instability under imitative
dynamics) Consider the game F(x) = Ax with

A =
⎛
⎝1 1 1
2 2 2
0 4 0

⎞
⎠ .

Since strategy 1 is strictly dominated in this game, Theorem 13.10 implies that under any imitative
dynamic, x1 vanishes along any interior solution trajectory. However, if strategy 2 is omitted,
strategy 1 strictly dominates strategy 3, so on the interior of the e1e3 face, solutions of imitative
dynamics converge to e1. We therefore conclude that the e2e3 face is neither Lyapunov stable nor
attracting.

However, if a game is dominance solvable, with only strategy k surviving, then state
ek is a strict equilibrium, and hence asymptotically stable—see Section 13.6.6.

13.8.2 Supermodular games and perturbed best response dynamics
Supermodular games, introduced in finite player contexts by Topkis (1979), Vives (1990),
and Milgrom and Roberts (1990), are defined by the property that higher choices
by one’s opponents make one’s own higher strategies look relatively more desirable.
This implies the monotonicity of the best response correspondence, which in turn
implies the existence of minimal and maximal Nash equilibria. We consider the large
population version of these games. Following Hofbauer and Sandholm (2002, 2007),
we use techniques from the theory of cooperative dynamical systems to establish almost
global convergence results for perturbed best response dynamics.

To define supermodular games, we introduce the stochastic dominance matrix
� ∈ R

(n−1)×n, defined by �ij = 1j>i. Then (�x)i = ∑n
j=i+1 xj equals the total mass on

actions greater than i at population state x, and �y ≥ �x if and only if y stochastically
dominates x.

We call F a supermodular game if

�y ≥ �x implies that Fi+1(y) − Fi(y) ≥ Fi+1(x) − Fi(x) for all i < n. [13.43]
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That is, if y stochastically dominates x, then for any action i < n, the payoff advantage
of i+ 1 over i is greater at y than at x. If F is continuously differentiable, then it is
supermodular if and only if

∂(Fi+1 − Fi)

∂(ej+1 − ej)
(x) ≥ 0 for all i < n, j < n, and x ∈ X. [13.44]

In words, if some agents switch from strategy j to strategy j+ 1, the performance of
strategy i+ 1 improves relative to that of strategy i. Conditions [13.43] and [13.44] are
both called strategic complementarity.

Example 13.24. (Search with positive externalities) Example 13.3 introduced a
population game model of search: Fi(x) = mi b(a(x)) − ci, where a(x) = ∑n

k=1 kxk represents
aggregate search effort, the increasing function b represents the benefits of search as a function of
aggregate effort, the increasing function m is the benefit multiplier, and the arbitrary function c
captures search costs. Since

∂(Fi+1 − Fi)

∂(ej+1 − ej)
(x) = (mi+1 − mi) b

′(a(x)) ≥ 0,

F is a supermodular game.

It is intuitively clear that supermodular games must have increasing best response
correspondences: when opponents choose higher strategies, an agent’s own higher
strategies look relatively better, so his best strategies must be higher as well. The next
result makes this observation precise, and presents its implications for the structure of the
Nash equilibrium set.

Let B : X → X and B̄ : X → X, defined by B(x) = minB(x) and B̄(x) = maxB(x),
be theminimal andmaximal best response functions, where the minimum andmaximum
are defined with respect to the stochastic dominance order. Evidently, these functions
always evaluate to pure states. For states x, x̄ ∈ X satisfying �x ≤ �x̄, we define the
interval [x, x̄] as the set of states lying between x and x̄ in the stochastic dominance
order: [x, x̄] = {x ∈ X : �x ≤ �x ≤ �x̄}.

Theorem 13.11. Suppose F is a supermodular game. Then
(i) B and B̄ are increasing in the stochastic dominance order: if �x ≤ �y, then �B(x) ≤

�B(y) and �B̄(x) ≤ �B̄(y).
(ii) The sequences of iterates {Bk(e1)}k≥0 and {B̄k(en)}k≥0 are monotone sequences of pure

states, and so converge within n steps to their limits, x∗ and x̄∗.
(iii) x∗ = B(x∗) and x̄∗ = B̄(x̄∗), so x∗ and x̄∗ are pure Nash equilibria of F.
(iv) NE(F) ⊆ [x∗, x̄∗]. Thus if x∗ = x̄∗, then this state is the unique Nash equilibrium

of F.



754 Handbook of game theory

Given the monotonicity of the best response correspondence in supermodular
games, it is natural to look for convergence results under the best response dynamic.
It follows from the results in the previous section that this dynamic must converge to the
interval [x∗, x̄∗] whose endpoints are the minimal and maximal Nash equilibria. But to
prove convergence to Nash equilibrium, one must impose additional structure on the
game.41

General convergence results can be proved using the theory of (strongly) cooperative
differential equations. These are continuously differentiable differential equations Ẋ =
V (X ) whose derivative matrices have positive off-diagonal elements, so that increases
in any component of increase the growth rates of other components.

Since cooperative differential equations must be smooth, this theory cannot be
applied to the best response dynamic. However, Hofbauer and Sandholm (2002, 2007)
show that the needed monotonicity is preserved by perturbed best response dynamics,
although only those derived from stochastic perturbations.

Specifically, they consider the perturbed best response dynamic

ẋ = M̃ε(F(x)) − x, [13.45]

where the perturbed best response function M̃ε is defined in terms of the stochastic
perturbation ε, as in equation [13.21]. Equation (13.45) is transformed into a cooperative
differential equation using the change of variable defined by the stochastic dominance
operator �. Let X = �X ⊂ R

n−1 denote the image of X under �, and let �̄ : X →
X denote the (affine) inverse of the map �. Then the change of variable � converts
[13.45] into the dynamic

Ẋ = �M̃ε(F(�̄X )) − X , [13.46]

on X .
Combining strategic complementarity [13.44] with properties of the derivative

matrix DM̃ε(π), Hofbauer and Sandholm (2002, 2007) show that equation [13.46]
is strongly cooperative. Results from the theory of cooperative differential equations
(Hirsch, 1988; Smith, 1995) then yield the following result.

Theorem 13.12. Let F be a C1 strictly supermodular game, and let ẋ = VF,ε(x) be a
stochastically perturbed best response dynamic for F. Then
(i) States x∗ ≡ ω(x) and x̄∗ ≡ ω(x̄) exist and are the minimal and maximal elements of the

set of perturbed equilibria. Moreover, [x∗, x̄∗] contains all ω-limit points of VF,ε and is
globally asymptotically stable.

41 For instance, Berger (2007) proves that in two-population games generated by two-player normal form
games that are supermodular and satisfy a diminishing returns condition, most solution trajectories of the
best response dynamic converge to pure Nash equilibria.
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(ii) Solutions to ẋ = VF,ε(x) from an open, dense, full measure set of initial conditions in X
converge to perturbed equilibria.

13.8.3 Iterated p-dominance and equilibrium selection
The evolutionary dynamics we have studied so far have been based on reactive protocols
ρF(x) = ρ(F(x), x), with switch rates depending on the game only through current
payoffs. This formulation leads naturally to dynamics satisfying positive correlation (PC)
and Nash stationarity (NS). While this approach has many advantages, it also imposes
restrictions on what the dynamics can achieve. For instance, in coordination games, all
pure equilibria are locally stable, implying that predictions of play must depend on initial
conditions.

Following Oyama et al. (2012) (see also Sandholm, 2001a), we now argue that
dynamics based on prospective revision protocols may have quite different properties,
and in particular may lead to unique predictions in certain games with multiple strict
equilibria.42

We consider an analog of the best response dynamic in which agents do not know
the population state, and so base their decisions on information from samples. A revising
agent obtains information by drawing a sample of size k from the population. The agent
then plays a best response to the empirical distribution of strategies in his sample. This is a
prospective revision protocol: agents are not reacting to current payoffs, but to the payoffs
that would obtain if their sample were representative of behavior in the population at
large.

Let Zn,k+ = {z ∈ Z
n+ :

∑
i∈S zi = k} be the set of possible outcomes of samples of size

k. The k-sampling best response protocol is the target protocol

σ F(x) = BF,k(x), where [13.47a]

BF,k(x) =
∑
z∈Zn,k+

(
k

z1 . . . zn

) (
xz11 · · · xznn

)
BF
(
1
k
z
)
. [13.47b]

is the k-sampling best response correspondence.43 The mean dynamic of this protocol is the
k-sampling best response dynamic

ẋ ∈ BF,k(x) − x. [13.48]

Sampling best response dynamics agree with standard dynamics in one basic respect:
strict equilibria of F are rest points of [13.48]. However, while strict equilibria are locally

42 Dynamics based on reactive protocols with a moderate amount of noise can have similar properties—see
Oyama et al. (2012) and Kreindler and Young (2013).

43 While in general BF,k is multivalued, it is single valued when every possible sample of size k generates a
unique best response in F. For linear games F(x) = Ax, this is true for generic choices of the matrix A.
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stable under standard dynamics (Section 13.6.6), this need not be true under sampling
best response dynamics.

For p ∈ [0, 1], we call strategy i ∈ S a p-dominant equilibrium of F (Morris et al.,
1995) if it is the unique optimal strategy at any state x satisfying xi ≥ p. Thus 1-
dominant equilibria are strict equilibria, while 0-dominant equilibria correspond to
strictly dominant strategies. The basic selection result for sampling best response
dynamics is:

Theorem 13.13. Suppose that strategy i is 1
k -dominant in game F, and let V

F be the k-
sampling best response dynamic. Then state ei is asymptotically stable, and attracts solutions from
all initial conditions with xi > 0.

To explain this result, it is sufficient to consider a coordination game with strategy set
S = {0, 1} and in which strategy 1 is 1

k -dominant but not 1
k+1 -dominant. An example

is the game F(x) = Ax with

A =
(
1 0
0 k− 1 + ε

)
and ε ∈ (0, 1).

Since strategy 1 is 1
k -dominant and the sample size is k, an agent will only choose strategy

0 if all of the agents he samples choose strategy 0. Thus if x1 ∈ (0, 1),

ẋ1 = BF,k1 (x) − x1 =
(
1 − (1 − x1)

k
)

− x1 = (1 − x1) − (1 − x1)
k.

Since this expression is positive whenever x1 ∈ (0, 1), state x1 = 1 attracts all interior
initial conditions.

The use of a fixed sample size is not essential: the same result holds so long as enough
probability is placed on sample sizes no greater than k. Moreover, the selection result
extends to iterated versions of p-dominance (Tercieux, 2006; Oyama and Tercieux,
2009), as we illustrate through an example.

Example 13.25. (Selection of iterated 1
2-dominant equilibrium) Consider the

following 3 × 3 coordination game of Young (1993):

F(x) = Ax, where A =
⎛
⎝6 0 0
5 7 5
0 5 8

⎞
⎠ .

The phase diagram of the best response dynamic for this game, presented in Figure 13.10i, shows
that each of the three strict equilibria of F has a non-negligible basin of attraction.
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Figure 13.10 Phase diagrams for dynamics in Young’s game.

Examining the best response regions of F as depicted in Figure 13.10i, it is clear that no
strategy in this game is 1

2 -dominant. However, the set {2, 3} is a 1
2 -best response set: if at least

half the population plays strategies from this set, then all pure best responses are elements of the
set. Moreover, once strategy 1 is removed, strategy 3 is 1

2 -dominant in the game that remains. As
Figure 13.10ii shows, state e3 is asymptotically stable under the 2-sampling best response dynamic
in the original game, and attracts solutions from all states x with x3 > 0.

To establish asymptotic stability in Example 13.25, one uses a transitivity theorem for
asymptotic stability due to Conley (1978). In the present context, this theorem says that
if edge e2e3 is an asymptotically stable invariant set in X, and state e3 is asymptotically
stable with respect to the dynamic restricted to edge e2e3, then state e3 is asymptotically
stable in X. This theorem may prove useful elsewhere for transferring the logic of
iteration from the analysis of a game to the analysis of a corresponding evolutionary
dynamic.

13.9. NONCONVERGENCE OF EVOLUTIONARY DYNAMICS

The analyses in the previous sections have highlighted combinations of classes of games
and dynamics for which convergence to equilibrium can be assured. Beyond these
combinations, there are few general guarantees of convergence. Indeed, a key reason
for studying evolutionary game dynamics is to understand when equilibrium analysis
should be augmented or supplanted by an analysis of persistent disequilibrium behavior.
In this section, we offer a selection of examples in which convergence to equilibrium
fails, and present an implication of this possibility for the survival of strictly dominated
strategies.
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13.9.1 Examples

Example 13.26. (Bad RPS) Example 13.20 introduced Rock-Paper-Scissors:

F(x) = Ax, where A =
⎛
⎝ 0 −l w
w 0 −l
−l w 0

⎞
⎠ .

In bad Rock-Paper-Scissors, l > w > 0, so that the cost of a loss is higher than the benefit of
a win. Figure 13.11 presents phase diagrams of the five basic evolutionary dynamics for bad RPS
with l = 2 and w = 1. Under the replicator dynamic, interior solutions approach a heteroclinic
cycle along the three edges of the simplex. Under the other four dynamics, solutions approach interior
limit cycles, with the position of the cycle depending on the dynamic in question.

Gaunersdorfer and Hofbauer (1995) provide a full analysis of the replicator and best response
dynamics in Rock-Paper-Scissors games. They dub the triangular closed orbit of the best response
dynamic in bad RPS a Shapley polygon, after Shapley (1964), who constructed the first example
of cycling under the fictitious play process (Section 13.10.2). Benaïm et al. (2009) establish
the existence of attracting Shapley polygons in higher dimensional examples with a similar cyclic
structure.

Since the state space for bad RPS is two-dimensional, the existence of limit cycles for the
remaining dynamics can be proved using the Poincaré-Bendixson theorem, which states that in
planar systems, forward invariant regions containing no rest points must contain closed orbits; see
Berger and Hofbauer (2006), Sandholm (2007a), and Hofbauer and Sandholm (2011).

Example 13.27. (Mismatching Pennies) Mismatching Pennies (Jordan, 1993) is a
three-player normal form game in which each player has two strategies, Heads and Tails. Player p
receives a payoff of 1 for choosing a different strategy than player p+ 1 and a payoff of 0 otherwise,
where players are indexed modulo 3. The unique Nash equilibrium of this game has each player
play each of his strategies with equal probability.

Figure 13.12 presents phase diagrams of the replicator dynamic and the best response dynamic
for the three-population game obtained by matching triples of agents to play Mismatching Pennies.
Almost all solutions of the replicator dynamic (Figure 13.12i) converge to a six-sided heteroclinic
cycle on the boundary of the state space; this cycle follows the best response cycle of the normal form
game. Almost all solutions of the best response dynamic (Figure 13.12ii) converge to a Shapley
polygon, here a six-sided closed orbit in the interior of the state space. The behaviors of the two
dynamics are intimately related: Gaunersdorfer and Hofbauer (1995) show that the time averages
of interior solutions of the replicator dynamic approach the Shapley polygon of the best response
dynamic. This link is not accidental: quite general connections between the time-averaged replicator
dynamic and the best response dynamic are established by Hofbauer et al. (2009b).

Hart and Mas-Colell (2003) show that the failures of convergence exhibited in Figure 13.12
are not exceptional. They consider three-population games based on normal form games whose
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Figure 13.11 Five basic deterministic dynamics in bad Rock-Paper-Scissors.

unique Nash equilibrium is completely mixed. Under the weak assumption that each population’s
revision protocol does not condition on other populations’ payoffs, they prove that any hyperbolic
rest point of the resulting evolutionary dynamic must be unstable. It follows that if the corresponding
dynamics satisfy Nash stationarity (NS), solutions from almost all initial conditions do not converge.

Example 13.28. (The hypnodisk game) Hypnodisk (Hofbauer and Sandholm (2011))
is a three-strategy population game with nonlinear payoffs. In a small circle centered at x∗ =
(13 ,

1
3 ,

1
3), the payoffs are those of the coordination game
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Figure 13.12 Evolutionary dynamics in mismatchingpennies.

FC(x) = Cx =
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠
⎛
⎝x1x2
x3

⎞
⎠ =

⎛
⎝x1x2
x3

⎞
⎠ ,

a potential game with convex potential function f C(x) = 1
2((x1)

2 + (x2)2 + (x3)2). Outside
a larger circle centered at x∗, the payoffs are those of the anticoordination game F−C(x) = −Cx,
a potential game with concave potential function f −C(x) = −1

2 ((x1)
2 + (x2)2 + (x3)2). In

between, payoffs are defined so that F is continuous, and so that x∗ is the game’s unique Nash
equilibrium. Geometrically, this is accomplished by starting with the vector field for FC, and then
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Figure 13.13 Projected payoffs in the hypnodisk game.

twisting the portion of the vector field outside the inner circle in a clockwise direction, excluding
larger and larger circles as the twisting proceeds, so that the outer circle is reached when the total
twist is 180◦. The projected payoffs of the resulting game are illustrated in Figure 13.13.

Now consider evolution under an evolutionary dynamic satisfying positive correlation (PC) and
Nash stationarity (NS). By the analysis in Section 13.6, solutions starting at states besides x∗ in
the inner disk must leave the inner disk. Similarly, solutions from states outside the outer disk must
enter the outer disk. Since there are no Nash equilibria, and hence no rest points, in the annulus
bounded by the circles, the Poincaré-Bendixson theorem implies that every solution other than the
one at x∗ must converge to a limit cycle in the annulus.

Example 13.29. (Chaotic dynamics) In population games with four or more strategies,
and hence state spaces with three or more dimensions, solution trajectories of game dynamics can
converge to complicated sets called chaotic attractors. Central to most definitions of chaos is
sensitive dependence on initial conditions: solution trajectories starting from close together
points on the attractor move apart at an exponential rate. Chaotic attractors can also be recognized
in phase diagrams by their intricate appearance.

Following Arneodo et al. (1980) and Skyrms (1992), we consider evolution in the game

F(x) = Ax =

⎛
⎜⎜⎝

0 −12 0 22
20 0 0 −10

−21 −4 0 35
10 −2 2 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠ ,

whose lone interior Nash equilibrium is x∗ = (1
4 ,

1
4 ,

1
4 ,

1
4

)
. Figure 13.14 presents a solution to

the replicator dynamic for this game from initial condition x0 = (0.24, 0.26, 0.25, 0.25). This
solution spirals clockwise about x∗. Near the rightmost point of each circuit, where the value of
x3 gets close to zero, solutions sometimes proceed along an “outside” path on which the value of
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Figure 13.14 A chaotic attractor under the replicator dynamic.

x3 surpasses 0.6. But they sometimes follow an “inside” path on which x3 remains below 0.4,
and at other times do something in between. Which of these alternatives occurs is difficult to predict
from approximate information about the previous behavior of the system. While this game has a
complicated payoff structure, in multipopulation contexts one can find chaotic evolutionary dynamics
in simple games with three strategies per player.44

13.9.2 Survival of strictly dominated strategies
In Section 13.8.1, we argued that that the best response dynamic and all imitative
dynamics eliminate dominated strategies, at least along solutions starting from most
initial conditions. These conclusions may seem unsurprising given the fundamental role
played by dominance arguments in traditional game-theoretic analyses. In fact, these
conclusions are quite special, as the following example illustrates.

Example 13.30. (Survival of strictly dominated strategies) Following Berger and
Hofbauer (2006) and Hofbauer and Sandholm (2011), we first consider the Smith dynamic for
“bad RPS with a twin” (Figure 13.15i):

F(x) = Ax =

⎛
⎜⎜⎝

0 −2 1 1
1 0 −2 −2

−2 1 0 0
−2 1 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
xR
xP
xS
xT

⎞
⎟⎟⎠ .

The Nash equilibria of F are the states on line segment {x∗ ∈ X : x∗ = (13 ,
1
3 , c,

1
3 − c)}, which

is a repellor under the Smith dynamic. Away from Nash equilibrium, strategies gain players at

44 See Sato et al. (2002) for examples of chaos under the replicator dynamic, and Cowan (1992), Sparrow
et al. (2008), and van Strien and Sparrow (2011) for analyses of chaos under the best response dynamic.
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rates that depend on their payoffs, but lose players at rates proportional to their current usage
levels. The proportions of players choosing the twin strategies are therefore equalized, with the state
approaching the plane P = {x ∈ X : xS = xT }. Since F is based on bad RPS, solutions on
plane P approach a closed orbit away from any Nash equilibrium.45

Figure 13.15ii presents the Smith dynamic in “bad RPS with a feeble twin,”

Fd(x) = Adx =

⎛
⎜⎜⎝

0 −2 1 1
1 0 −2 −2

−2 1 0 0
−2 − d 1 − d −d −d

⎞
⎟⎟⎠
⎛
⎜⎜⎝
xR
xP
xS
xT

⎞
⎟⎟⎠

Figure 13.15 Survival of strictly dominated strategies: the Smith dynamic in two games.

45 Under the replicator dynamic in this game, the state space X foliates into a continuum of invariant
planes on which the ratio xS/xT is constant. This foliation, which is in part a consequence of inflow-
outflow symmetry (Section 13.5.1.4), is structurally unstable, helping to explain why elimination results
for imitative dynamics (Theorem 13.10) should be viewed as knife-edge cases.
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with d = 1
10 . Evidently, the attractor from Figure 13.15i moves slightly to the left, reflecting the

fact that the payoff to Twin has gone down. But since the new attractor is in the interior of X, the
strictly dominated strategy Twin is always played by fractions of players bounded away from zero.
These fractions need not be small: Twin is recurrently played by at least 10% of the population
when d ≤ 0.31, by at least 5% of the population when d ≤ 0.47, and by at least 1% of the
population when d ≤ 0.66.

Using the Poincaré-Bendixson theorem and results on continuation of attractors,
Hofbauer and Sandholm (2011) show that the phenomenon illustrated in Example
13.30 is quite general. They consider continuous evolutionary game dynamics satisfying
positive correlation (PC), Nash stationarity (NS), and a third condition, innovation, which
requires that away fromNash equilibrium, unused optimal strategies have positive growth
rates. They show that for any such dynamic, there are games in which strictly dominated
strategies survive in perpetuity.

We should emphasize two features of the evolutionary process that underlie this
result. First, it is important that agents base their decisions on the strategies’ present
performances. If agents were able to compare different strategies’ payoff functions in their
entirety, they could recognize strictly dominated strategies and avoid them. While the
knowledge needed to make such global comparisons is assumed implicitly in traditional
analyses, this assumption is quite demanding in a large game. Without it, dominated
strategies need not disappear from use.

Second, the possibility that dynamics do not converge is crucial to the survival result.
Under dynamics satisfying Nash stationarity (NS), any solution trajectory that converges
must converge to a Nash equilibrium, implying that dominated strategies eventually go
unplayed. Example 13.30 illustrates that when solutions do not converge, so that payoffs
remain in flux, evolutionary dynamics need not eliminate strategies that often perform
well, but are never optimal.

13.10. CONNECTIONS AND FURTHER DEVELOPMENTS
13.10.1 Connections with stochastic stability theory
Theorem 13.4 showed that deterministic dynamics can be used to approximate the
stochastic evolutionary process {XN

t } in a particular limit, one that fixes a finite time
horizon T and takes the population size N to infinity. To focus on very long run
behavior, one can consider the opposite order of limits, fixing the population sizeN and
taking the time horizon T to infinity. If the revision protocol is such that all strategies
are always chosen with positive probability, then over an infinite time horizon, the
process {XN

t } will visit each state in the finite grid X N infinitely often. The very long
run behavior of the process is summarized by its unique stationary distribution, μN ,
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which describes the limiting distribution of the process, as well as its limiting empirical
distribution on almost every sample path.

Pioneering work by Foster and Young (1990), Kandori et al. (1993), and Young
(1993) showed that over very long time spans, stochastic evolutionary processes often
admit unique predictions of play, even in games with multiple strict equilibria. While
the stationary distribution μN places positive mass on every state in X N , it typically
concentrates its mass on a particular subset of states, often just a single state. To obtain
clean results, certain limits are taken to make this concentration as stark as possible. The
population states selected in this fashion are said to be stochastically stable.

The most common approach to stochastic stability considers revision protocols
parameterized by a noise level, whether a fixed mistake probability, or a parameter
reflecting the size of payoff perturbations, as in the logit choice rule (Example 13.12).
States that retain mass in the stationary distribution as the noise level approaches zero are
said to be stochastically stable in the small noise limit. This approach to stochastic stability
theory is described in the chapter by Wallace and Young in this volume.

Another approach to stochastic stability, introduced by Binmore et al. (1995) and
Binmore and Samuelson (1997), considers the limiting behavior of the stationary
distributions μN as the population size N approaches infinity. This analysis of stochastic
stability in the large population limit can be viewed as the infinite horizon analog of the
finite horizon analysis of {XN

t } provided by deterministic dynamics.
In view of this connection, it is natural to expect the behavior of deterministic evo-

lutionary dynamics to have consequences for stochastic stability in the large population
limit. Connections of this sort can be established using tools from (constant step size)
stochastic approximation theory. Benaïm and Weibull (2003) show that states retaining mass
in the stationary distributionsμN in the large population limit must satisfy a basic notion
of recurrence for the mean dynamic [13.3]: they must be elements of its Birkhoff center,
which contains rest points, closed orbits, and more complicated limit sets.46 Some states
in the Birkhoff center—for instance, unstable rest points—seem unlikely candidates for
stochastic stability. Benaïm (1998) provides conditions of a global nature ensuring that
mass in μN does not accumulate near such states, implying that these states cannot be
stochastically stable. To go further than this—to actually identify the component of the
Birkhoff center containing the stochastically stable states—requires a detailed analysis of
large deviations properties of the stochastic process {XN

t }; for work in this direction, see
Benaïm et al. (2014).

13.10.2 Connections withmodels of heuristic learning
This chapter has considered disequilibrium dynamics in games played by large popula-
tions of agents. There are close connections between these evolutionary game dynamics

46 See also Benaïm (1998), Sandholm (2007c), and Roth and Sandholm (2013).
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and models of heuristic learning in games, which consider disequilibrium dynamics during
repeated play of games with small numbers of players—for instance, when there is one
individual in each player role of a recurring normal form game.47

The original model of disequilibrium dynamics in games is fictitious play, introduced
by Brown (1949, 1951) as a method of computing equilibria. During each period of
the fictitious play process, each agent plays a best response to the time average of his
opponents’ past choices. The state variable of this process, the time average of play,
has increments that become smaller over time, since choices late in the process have
small effects on the overall time average. After accounting for this reparameterization of
time, the fictitious play process is essentially a discrete-time version of the best response
dynamic [13.17]. Indeed, convergence results developed in one context often have
analogs in the other.48

Since best responses are generically pure, convergence of time averages in the
fictitious play process does not imply convergence of players’ period-by-period intended
play. To generate such a link, Fudenberg and Kreps (1993) introduced stochastic fictitious
play, in which players play best responses only after their payoffs have been subjected to
perturbations. The result is a stochastic process with decreasing step size whose expected
motion is described by perturbed best response dynamics [13.23]. By combining analyses
of these dynamics with tools from (decreasing step size) stochastic approximation theory
(Benaïm, 1999), one can establish global convergence results for stochastic fictitious
play.49

The decision rule used in stochastic fictitious play generates an ε-consistent strategy
for repeated play of a normal form game: a player using this rule could not have
improved his average payoff by more than ε by having played a single pure strategy in
all previous periods. There are other subtle links between consistency in repeated games
and evolutionary game dynamics. For instance, the convergence results for contractive
games in Section 13.7.5.2 are directly inspired by a class of consistent repeated game
strategies introduced by Hart and Mas-Colell (2001).

There are also connections between evolutionary game dynamics and models of
reinforcement learning, in which each player’s mixed strategy weights are determined by
his strategies’ aggregated past performances. Börgers and Sarin (1997) show that when
players’ choices are based on the reinforcement learning rule of Cross (1973), then in the
continuous-time limit, the players’ mixed strategies evolve according to the replicator
dynamic [13.8].50 Still other connections exist with hybrid models, in which large

47 For surveys of this literature, see Young (2004) and Hart (2005).
48 See Hofbauer (1995b), Harris (1998), Berger (2005, 2007, 2008, 2012), and Benaïm et al. (2005).
49 See Fudenberg and Kreps (1993), Kaniovski and Young (1995), Benaïm and Hirsch (1999), Hofbauer

and Sandholm (2002), Benaïm and Faure (2012), and Perkins and Leslie (2013).
50 Hopkins (2002) (see also Hofbauer et al., 2009b) uses surprising relations between the replicator and logit

dynamics to establish strong links between behavior under reinforcement learning and period-by-period
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populations of agents employ heuristic learning rules that condition on statistics of the
history of play.51

13.10.3 Games with continuous strategy sets
Many applications of game theory are naturally modeled using a continuous strategy
space. Population dynamics for this setting were first used by Hines (1980) and
Zeeman (1981) to study evolution in populations of agents playing mixed strategies,
a generalization of the environment in which Maynard Smith and Price (1973)
introduced the ESS concept (see Section 13.7.1). Bomze (1990, 1991) continued this
line of research by defining the replicator dynamic for general games with continuous
strategy sets.

Analyzing population dynamics in this setting introduces novel technical and con-
ceptual issues. If the strategy set is a convex subset of Rn, then a population state is
a probability measure on this space. Since the space of these probability measures is a
function space, defining evolutionary dynamics requires one not only to write down
an ordinary differential equation, but also to specify a norm with respect which to this
equation’s time derivative is defined.

Moreover, while the meaning of local stability is unambiguous when strategy sets are
finite, this is no longer the case with a continuous strategy sets, a point emphasized by
Oechssler and Riedel (2002). With finite strategy sets, population states are close to one
another if they assign similar probabilities to each pure strategy. With continuous strategy
sets, this notion of closeness is captured by using a variational norm on probability
measures. But in the latter context, there is a second sense in which population states
might be close. For instance, one might want to regard two pure population states as
close together if the strategies played in these states are close together in the Euclidean
metric on R

n.
Therefore, before studying local stability under evolutionary dynamics, one must

first choose the definition of a neighborhood in the space of population states. If one
hews closely to the finite case by defining neighborhoods in terms of the variational
norm, one can obtain sufficient conditions for local stability under the replicator dynamic
using suitable generalizations of the ESS concept.52 Alternatively, if the definition of a
neighborhood captures only the second sort of closeness, allowing large numbers of
agents to make small changes in strategy, then quite distinct conditions for local stability

choices under stochastic fictitious play. Kosfeld et al. (2002), Tsakas and Voorneveld (2009), and Laraki
and Mertikopoulos (2013) study mixed strategy dynamics for normal form games derived from other
heuristic principles.

51 See Hopkins (1999a), Ellison and Fudenberg (2000), Ramsza and Seymour (2010), Fudenberg and
Takahashi (2011), and Lahkar and Seymour (2013).

52 See Bomze (1990), Oechssler and Riedel (2001), and Norman (2008).
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based on comparisons to the performances of nearby strategies become relevant.53

Finally, one might want to define neighborhoods in a way that captures both sorts of
closeness. To accomplish this, Oechssler and Riedel (2002) introduce a condition called
evolutionary robustness, which uses neighborhoods derived from the weak topology on
probability measures, and show that it is sufficient for local stability under a class of
imitative dynamics.54

Once one allows that certain pairs of strategies are closer together than others, it
becomes natural to ask whether not only notions of stability, but also the very definition
of the dynamic, should take distances between strategies into account. Friedman and
Ostrov (2008, 2010, 2013) consider a framework in which each agent adjusts his strategy
continuously in response to the incentives he faces; the use of continuous adjustment
is justified as an optimal response to adjustment costs. Rather than obeying an ordinary
differential equation, the evolution of aggregate behavior in this framework follows a
partial differential equation. This formulation introduces a wide range of new dynamic
phenomena, and requires analytical techniques different from those considered in this
chapter, leaving many open questions for future research.

13.10.4 Extensive form games and set-valued solution concepts
To describe behavior in populations whose members are engaged in sequential inter-
actions, one can define population games via matching in extensive form games, and
evaluate the properties of evolutionary dynamics in these population games.

Even in the traditional theory, both the notion of a strategy for an extensive form
game and the modeling of beliefs about events off of the path of play raise conceptual
difficulties. Variations on these difficulties persist in large population contexts. But new
difficulties arise as well. For instance, it is well known that in extensive form games
with perfect recall, there is a many-to-one map between mixed strategies and outcome
equivalent behavior strategies, with equivalent mixed strategies exhibiting different
correlations among choices at temporally unordered information sets. Chamberland and
Cressman (2000) show that under evolutionary dynamics, statistical correlation among
choices at different information sets can interfere with the forces of selection, leading to
unexpected forms of dynamic instability.

Traditionally, a fundamental idea in the analysis of extensive form games is sequential
rationality: the requirement that players’ equilibrium strategies specify actions that are

53 Eshel and Motro (1981), Eshel (1983), and Apaloo (1997) introduce such conditions, and Eshel and
Sansone (2003), Cressman (2005), Cressman et al. (2006), and van Veelen and Spreij (2009) show them
to be sufficient for local stability under the replicator dynamic.

54 See Cressman and Hofbauer (2005) for further stability results for the replicator dynamic. For definitions
and stability analyses of the BNN, logit, and Smith dynamics with continuous strategy sets, see Hofbauer
et al. (2009a), Lahkar and Riedel (2013), and Cheung (2013), respectively.
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rational from the perspective of the moments the actions would be taken, even if these
moments should not occur during equilibrium play. It is a basic question whether
the predictions of evolutionary dynamics agree with solution concepts embodying
sequential rationality. The strongest agreements occur in games of (stagewise) perfect
information, for equilibria in which all information sets are reached: Cressman (1997a)
and Cressman and Schlag (1998) show that in such cases, asymptotic stability under the
replicator and best response dynamics agree with subgame perfection in the extensive
form. Although positive results are available for certain further instances,55 connections
between sequential rationality and asymptotic stability have not been established in great
generality.56

In extensive form games, the possibility of unreached information sets gives rise to
connected sets of outcome-equivalent equilibria, which differ only in the choices they
specify off the path of play. For this reason, it is natural to consider the stability of sets
of equilibria—for instance, by defining set-valued extensions of the notion of ESS. In
single-population contexts, Thomas’s (1985) notion of an evolutionarily stable set (or ES
set) provides a sufficient condition for asymptotic stability under the replicator dynamic.57

In multipopulation contexts, Balkenborg and Schlag (2007) show that Balkenborg’s
(1994) notion of a strict equilibrium set (or SE set) plays an analogous role.

Using ideas from differential topology, Demichelis and Ritzberger (2003) develop
a powerful approach to evaluating local stability of sets of Nash equilibria.58 They
assign each component of Nash equilibria an integer, the index of the component,
that is determined by the behavior of the payoff vector field in a neighborhood of the
component. For any evolutionary dynamic satisfying positive correlation (PC) and Nash
stationarity (NS), a necessary condition for the component to be asymptotically stable
is that its index agree with the component’s Euler characteristic. In typical (specifically,
contractible) cases, this means that a component can only be asymptotically stable if
its index is 1. Through this result, one can establish the instability of a component
of equilibria under a large class of evolutionary dynamics—the same class in which
convergence to Nash equilibrium is ensured in potential games—using only information
about the payoffs of the game.

13.10.5 Applications
Population games provide a formal framework for applications in which large numbers of
participants make interdependent decisions. As we argued at the start, such applications

55 See, e.g., Cressman (1996).
56 See Cressman (2003) for a comprehensive treatment of this literature.
57 See Balkenborg and Schlag (2001) and van Veelen (2012) for alternative characterizations and related

notions.
58 See also Ritzberger (1994) and Demichelis and Germano (2000, 2002).
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are precisely the ones in which traditional equilibrium assumptions seem questionable.
By taking evolutionary dynamics to applications, one can both justify equilibrium
predictions, and, more interestingly, call attention to settings in which disequilibrium
predictions are warranted.

This latter possibility is well illustrated by analyses of price dispersion. While in
idealized markets, homogeneous goods sell at a single price, in actual markets one often
observes a variety of prices for the same good. Research in information economics has
shown that with heterogeneously informed consumers, price dispersion can occur as
an equilibrium phenomenon: different sellers choose different prices, and each seller,
knowing the choices of the others, is content with his own choice.59

Using tools from evolutionary game theory, Hopkins and Seymour (2002), Lahkar
(2011), Hahn (2012), and Lahkar and Riedel (2013) argue that equilibrium is not the
best explanation for the price dispersion we see. They show that equilibria with price
dispersion are unstable, but that price dispersion can persist through disequilibrium
cycles. Indeed, empirical and experimental evidence supports the conclusion that
price dispersion may be a cyclical phenomenon rather than an equilibrium phe-
nomenon.60

Deterministic evolutionary dynamics have been used to study a variety of other topics
in economics and social science. A partial list includes auctions (Louge and Riedel,
2012); fiat money (Sethi, 1999); conspicuous consumption (Friedman and Ostrov,
2008); common resource use (Sethi and Somanathan, 1996); cultural evolution (Bisin
and Verdier, 2001; Sandholm, 2001c; Kuran and Sandholm, 2008; Montgomery, 2010);
the evolution of language (Pawlowitsch, 2008); implementation problems (Cabrales and
Ponti, 2000; Sandholm, 2002, 2005b; Fujishima, 2012); international trade (Friedman
and Fung, 1996); residential segregation (Dokumacı and Sandholm, 2007); preference
evolution (Sandholm, 2001c; Heifetz et al., 2007; Norman, 2012); and theories of mind
(Mohlin, 2012). Further applications of deterministic evolutionary game dynamics to
these topics and others offer fascinating directions for future research.
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