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Glossary

Deterministic evolutionary dynamic A deterministic
evolutionary dynamic is a rule for assigning popula-
tion games to ordinary differential equations describ-
ing the evolution of behavior in the game. Determin-
istic evolutionary dynamics can be derived from re-
vision protocols, which describe choices (in economic
settings) or births and deaths (in biological settings)
on an agent-by-agent basis.

Evolutionarily stable strategy (ESS) In a symmetric nor-
mal form game, an evolutionarily stable strategy is
a (possibly mixed) strategy with the following prop-
erty: a population in which all members play this strat-
egy is resistant to invasion by a small group of mutants
who play an alternative mixed strategy.

Normal form game Anormal form game is a strategic in-
teraction in which each of n players chooses a strat-
egy and then receives a payoff that depends on all
agents’ choices choices of strategy. In a symmetric two-
player normal form game, the two players choose from

the same set of strategies, and payoffs only depend
on own and opponent’s choices, not on a player’s
identity.

Population game A population game is a strategic inter-
action among one or more large populations of agents.
Each agent’s payoff depends on his own choice of strat-
egy and the distribution of others’ choices of strategies.
One can generate a population game from a normal
form game by introducing random matching; how-
ever, many population games of interest, including
congestion games, do not take this form.

Replicator dynamic The replicator dynamic is a funda-
mental deterministic evolutionary dynamic for games.
Under this dynamic, the percentage growth rate of the
mass of agents using each strategy is proportional to
the excess of the strategy’s payoff over the population’s
average payoff. The replicator dynamic can be inter-
preted biologically as a model of natural selection, and
economically as a model of imitation.

Revision protocol A revision protocol describes both the
timing and the results of agents’ decisions about how
to behave in a repeated strategic interaction. Revision
protocols are used to derive both deterministic and
stochastic evolutionary dynamics for games.

Stochastically stable state In Game-theoretic models of
stochastic evolution in games are often described by
irreducible Markov processes. In these models, a pop-
ulation state is stochastically stable if it retains positive
weight in the process’s stationary distribution as the
level of noise in agents’ choices approaches zero, or as
the population size approaches infinity.

Definition of the Subject

Evolutionary game theory studies the behavior of large
populations of agents who repeatedly engage in strategic
interactions. Changes in behavior in these populations are
driven either by natural selection via differences in birth
and death rates, or by the application of myopic decision
rules by individual agents.

The birth of evolutionary game theory is marked by
the publication of a series of papers by mathematical biol-
ogist John Maynard Smith [137,138,140]. Maynard Smith
adapted the methods of traditional game theory [151,215],
which were created to model the behavior of rational eco-
nomic agents, to the context of biological natural selection.
He proposed his notion of an evolutionarily stable strategy
(ESS) as a way of explaining the existence of ritualized an-
imal conflict.

Maynard Smith’s equilibrium concept was provided
with an explicit dynamic foundation through a differential
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equation model introduced by Taylor and Jonker [205].
Schuster and Sigmund [189], following Dawkins [58],
dubbed this model the replicator dynamic, and recog-
nized the close links between this game-theoretic dynamic
and dynamics studied much earlier in population ecol-
ogy [132,214] and population genetics [73]. By the 1980s,
evolutionary game theory was a well-developed and firmly
established modeling framework in biology [106].

Towards the end of this period, economists realized
the value of the evolutionary approach to game theory
in social science contexts, both as a method of provid-
ing foundations for the equilibrium concepts of traditional
game theory, and as a tool for selecting among equilibria
in games that admit more than one. Especially in its early
stages, work by economists in evolutionary game theory
hewed closely to the interpretation set out by biologists,
with the notion of ESS and the replicator dynamic un-
derstood as modeling natural selection in populations of
agents genetically programmed to behave in specific ways.
But it soon became clear that models of essentially the
same form could be used to study the behavior of popu-
lations of active decision makers [50,76,133,149,167,191].
Indeed, the two approaches sometimes lead to identical
models: the replicator dynamic itself can be understood
not only as a model of natural selection, but also as one
of imitation of successful opponents [35,188,216].

While the majority of work in evolutionary game the-
ory has been undertaken by biologists and economists,
closely related models have been applied to questions in
a variety of fields, including transportation science [143,
150,173,175,177,197], computer science [72,173,177], and
sociology [34,62,126,225,226]. Some paradigms from evo-
lutionary game theory are close relatives of certain models
from physics, and so have attracted the attention of work-
ers in this field [141,201,202,203]. All told, evolutionary
game theory provides a common ground for workers from
a wide range of disciplines.

Introduction

This article offers a broad survey of the theory of evolution
in games. Section “Normal Form Games” introduces nor-
mal form games, a simple and commonly studied model
of strategic interaction. Section “Static Notions of Evolu-
tionary Stability” presents the notion of an evolutionarily
stable strategy, a static definition of stability proposed for
this normal form context.

Section “Population Games” defines population
games, a general model of strategic interaction in large
populations. Section “Revision Protocols” offers the no-
tion of a revision protocol, an individual-level description

of behavior used to define the population-level processes
of central concern.

Most of the article concentrates on these popula-
tion-level processes: Section “Deterministic Dynamics”
considers deterministic differential equation models of
game dynamics; Section “Stochastic Dynamics” studies
stochastic models of evolution based onMarkov processes;
and Sect. “Local Interaction” presents deterministic and
stochastic models of local interaction. Section “Applica-
tions” records a range of applications of evolutionary game
theory, and Sect. “Future Directions” suggests directions
for future research. Finally, Sect. “Bibliography” offers an
extensive list of primary references.

Normal FormGames

In this section, we introduce a very simple model of strate-
gic interaction: the symmetric two-player normal form
game. We then define some of the standard solution con-
cepts used to analyze this model, and provide some exam-
ples of games and their equilibria. With this background
in place, we turn in subsequent sections to evolutionary
analysis of behavior in games.

In a symmetric two-player normal form game, each of
the two players chooses a (pure) strategy from the finite
set S, which we write generically as S D f1; : : : ; ng. The
game’s payoffs are described by the matrix A 2 Rn�n . En-
try Ai j is the payoff a player obtains when he chooses strat-
egy i and his opponent chooses strategy j; this payoff does
not depend on whether the player in question is called
player 1 or player 2.

The fundamental solution concept of noncooperative
game theory is Nash equilibrium [151]. We say that the
pure strategy i 2 S is a symmetric Nash equilibrium of A if

Aii � Aji for all j 2 S: (1)

Thus, if his opponent chooses a symmetric Nash equilib-
rium strategy i, a player can do no better than to choose i
himself.

A stronger requirement on strategy i demands that it
be superior to all other strategies regardless of the oppo-
nent’s choice:

Aik > Ajk for all j; k 2 S: (2)

When condition (2) holds, we say that strategy i is strictly
dominant in A.

Example 1 The game below, with strategies C (“coop-
erate”) and D (“defect”), is an instance of a Prisoner’s
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Dilemma:

C D
C 2 0
D 3 1 :

(To interpret this game, note that ACD D 0 is the payoff
to cooperating when one’s opponent defects.) Since 1 > 0,
defecting is a symmetric Nash equilibrium of this game.
In fact, since 3 > 2 and 1 > 0, defecting is even a strictly
dominant strategy. But since 2 > 1, both players are better
off when both cooperate than when both defect.

In many instances, it is natural to allow players to
choose mixed (or randomized) strategies. When a player
chooses mixed strategy from the simplex X D fx 2
Rn
C :

P
i2S xi D 1g, his behavior is stochastic: he commits

to playing pure strategy i 2 S with probability xi .
When either player makes a randomized choice, we

evaluate payoffs by taking expectations: a player choos-
ing mixed strategy x against an opponent choosing mixed
strategy y garners an expected payoff of

x0Ay D
X

i2S

X

j2S

xiAi j y j : (3)

In biological contexts, payoffs are fitnesses, and represent
levels of reproductive success relative to some baseline
level; Eq. (3) reflects the idea that in a large population, ex-
pected reproductive success is what matters. In economic
contexts, payoffs are utilities: a numerical representation
of players’ preferences under which Eq. (3) captures play-
ers’ choices between uncertain outcomes [215].

The notion of Nash equilibrium extends easily to allow
for mixed strategies. Mixed strategy x is a symmetric Nash
equilibrium of A if

x0Ax � y0Ax for all y 2 X: (4)

In words, x is a symmetric Nash equilibrium if its expected
payoff against itself is at least as high as the expected payoff
obtainable by any other strategy y against x. Note that we
can represent the pure strategy i 2 S using themixed strat-
egy ei 2 X, the ith standard basis vector in Rn . If we do so,
then definition (4) restricted to such strategies is equiva-
lent to definition (1).

We illustrate these ideas with a few examples.

Example 2 Consider the Stag Hunt game:

H S
H h h
S 0 s :

Each player in the Stag Hunt game chooses between
hunting hare (H) and hunting stag (S). A player who hunts
hare always catches one, obtaining a payoff of h > 0. But
hunting stag is only successful if both players do so, in
which case each obtains a payoff of s > h. Hunting stag is
potentially more profitable than hunting hare, but requires
a coordinated effort.

In the Stag Hunt game, H and S (or, equivalently, eH
and eS ) are symmetric pure Nash equilibria. This game
also has a symmetric mixed Nash equilibrium, namely
x� D (x�H ; x

�
S ) D ( s�hs ;

h
s ). If a player’s opponent chooses

this mixed strategy, the player’s expected payoff is h
whether he chooses H, S, or any mixture between the two;
in particular, x� is a best response against itself.

To distinguish between the two pure equilibria, we
might focus on the one that is payoff dominant, in
that it achieves the higher joint payoff. Alternatively, we
can concentrate on the risk dominant equilibrium [89],
which utilizes the strategy preferred by a player who
thinks his opponent is equally likely to choose either op-
tion (that is, against an opponent playing mixed strategy
(xH ; xS ) D ( 12 ;

1
2 )). In the present case, since s > h, equi-

librium S is payoff dominant. Which strategy is risk dom-
inant depends on further information about payoffs. If
s > 2h, then S is risk dominant. But if s < 2h, H is risk
dominant: evidently, payoff dominance and risk domi-
nance need not agree.

Example 3 In theHawk–Dove game [139], the two players
are animals contesting a resource of value v > 0. The play-
ers choose between two strategies: display (D) or escalate
(E). If both display, the resource is split; if one escalates
and the other displays, the escalator claims the entire re-
source; if both escalate, then each player is equally likely to
claim the entire resource or to be injured, suffering a cost
of c > v in the latter case.

The payoff matrix for the Hawk–Dove game is there-
fore

D E
D 1

2v 0
E v 1

2 (v � c) :

This game has no symmetric Nash equilibrium in pure
strategies. It does, however, admit the symmetric mixed
equilibrium x� D (x�D ; x

�
E ) D ( c�vc ;

v
c ). (In fact, it can be

shown that every symmetric normal form game admits at
least one symmetric mixed Nash equilibrium [151].)

In this example, our focus on symmetric behavior
may seem odd: rather than randomizing symmetrically,
it seems more natural for players to follow an asymmet-
ric Nash equilibrium in which one player escalates and the
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other displays. But the symmetric equilibrium is the most
relevant one for understanding natural selection in popu-
lations whose members are randomly matched in pairwise
contests –;see Sect. “Static Notions of Evolutionary Stabil-
ity”.

Example 4 Consider the class of Rock–Paper–Scissors
games:

R P S
R 0 �l w
P w 0 �l
S �l w 0 :

Here w > 0 is the benefit of winning the match and l > 0
the cost of losing; ties are worth 0 to both players. We call
this game good RPS if w > l , so that the benefit of win-
ning the match exceeds the cost of losing, standard RPS
if w D l , and bad RPS if w < l . Regardless of the val-
ues of w and l, the unique symmetric Nash equilibrium
of this game, x� D (x�R ; x

�
P ; x
�
S ) D ( 13 ;

1
3 ;

1
3 ), requires uni-

form randomization over the three strategies.

Static Notions of Evolutionary Stability

In introducing game-theoretic ideas to the study of ani-
mal behavior, Maynard Smith advanced this fundamental
principle: that the evolutionary success of (the genes un-
derlying) a given behavioral trait can depend on the preva-
lences of all traits. It follows that natural selection among
the traits can be modeled as random matching of animals
to play normal form games [137,138,139,140]. Working
in this vein, Maynard Smith offered a stability concept
for populations of animals sharing a common behavioral
trait – that of playing a particular mixed strategy in the
game at hand. Maynard Smith’s concept of evolutionary
stability, influenced by the work of Hamilton [87] on the
evolution of sex ratios, defines such a population as stable
if it is resistant to invasion by a small group of mutants
carrying a different trait.

Suppose that a large population of animals is randomly
matched to play the symmetric normal form game A. We
call mixed strategy x 2 X an evolutionarily stable strategy
(ESS) if

x0A((1 � ")x C "y) > y0A((1 � ")x C "y)
for all " � "̄(y) and y ¤ x : (5)

To interpret condition (5), imagine that a population of
animals programmed to play mixed strategy x is invaded
by a group of mutants programmed to play the alterna-
tive mixed strategy y. Equation (5) requires that regardless
of the choice of y, an incumbent’s expected payoff from

a randommatch in the post-entry population exceeds that
of a mutant so long as the size of the invading group is
sufficiently small.

The definition of ESS above can also be expressed as
a combination of two conditions:

x0Ax � y0Ax for all y 2 X; (4)

For all y ¤ x; [x0Ax D y0Ax]
implies that [x0Ay > y0Ay] : (6)

Condition (4) is familiar: it requires that the incumbent
strategy x be a best response to itself, and so is none other
than our definition of symmetric Nash equilibrium. Con-
dition (6) requires that if a mutant strategy y is an alterna-
tive best response against the incumbent strategy x, then
the incumbent earns a higher payoff against the mutant
than the mutant earns against itself.

A less demanding notion of stability can be obtained
by allowing the incumbent and themutant in condition (6)
to perform equally well against the mutant:

For all y 2 X; [x0Ax D y0Ax]
implies that [x0Ay � y0Ay] : (7)

If x satisfies conditions (4) and (7), it is called a neutrally
stable strategy (NSS) [139].

Let us apply these stability notions to the games in-
troduced in the previous section. Since every ESS and
NSS must be a Nash equilibrium, we need only consider
whether the Nash equilibria of these games satisfy the ad-
ditional stability conditions, (6) and (7).

Example 5 In the Prisoner’s Dilemma game (Example 1),
the dominant strategy D is an ESS.

Example 6 In the Stag Hunt game (Example 2), each pure
Nash equilibrium is an ESS. But the mixed equilibrium
(x�H ; x

�
S ) D ( s�hs ;

h
s ) is not an ESS: if mutants playing ei-

ther pure strategy enter the population, they earn a higher
payoff than the incumbents in the post-entry population.

Example 7 In the Hawk–Dove game (Example 3), the
mixed equilibrium (x�D ; x

�
E ) D ( c�vc ;

v
c ) is an ESS. May-

nard Smith used this and other examples to explain the ex-
istence of ritualized fighting in animals. While an animal
who escalates always obtains the resource when matched
with an animal who merely displays, a population of esca-
lators is unstable: it can be invaded by a group of mutants
who display, or who merely escalate less often.

Example 8 In Rock–Paper–Scissors games (Example 4),
whether the mixed equilibrium x� D ( 13 ;

1
3 ;

1
3 ) is evolu-

tionarily stable depends on the relative payoffs to winning
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and losing a match. In good RPS (w > l), x� is an ESS; in
standard RPS (w D l), x� is a NSS but not an ESS, while in
bad RPS (w < l), x� is neither an ESS nor an NSS. The last
case shows that neither evolutionary nor neutrally stable
strategies need exist in a given game.

The definition of an evolutionarily stable strategy has been
extended to cover a wide range of strategic settings, and
has been generalized in a variety of directions. Prominent
among these developments are set-valued versions of ESS:
in rough terms, these concepts consider a set of mixed
strategies Y � X to be stable if the no population play-
ing a strategy in the set can be invaded successfully by
a population of mutants playing a strategy outside the set.
[95] provides a thorough survey of the first 15 years of
research on ESS and related notions of stability; key ref-
erences on set-valued evolutionary solution concepts in-
clude [15,199,206].

Maynard Smith’s notion of ESS attempts to capture the
dynamic process of natural selection using a static defi-
nition. The advantage of this approach is that his defini-
tion is often easy to check in applications. Still, more con-
vincingmodels of natural selection should be explicitly dy-
namicmodels, building on techniques from the theories of
dynamical systems and stochastic processes. Indeed, this
thoroughgoing approach can help us understand whether
and when the ESS concept captures the notion of robust-
ness to invasion in a satisfactory way.

The remainder of this article concerns explicitly dy-
namic models of behavior. In addition to being dynamic
rather than static, these models will differ from the one
considered in this section in two other important ways as
well. First, rather than looking at populations whose mem-
bers all play a particular mixed strategy, the dynamicmod-
els consider populations in which different members play
different pure strategies. Second, instead of maintaining
a purely biological point of view, our dynamic models will
be equally well-suited to studying behavior in animal and
human populations.

PopulationGames

Population games provide a simple and general frame-
work for studying strategic interactions in large popula-
tions whose members play pure strategies. The simplest
population games are generated by random matching in
normal form games, but the population game framework
allows for interactions of a more intricate nature.

We focus here on games played by a single population
(i. e., games in which all agents play equivalent roles). We
suppose that there is a unit mass of agents, each of whom
chooses a pure strategy from the set S D f1; : : : ; ng. The

aggregate behavior of these agents is described by a pop-
ulation state x 2 X, with x j representing the proportion
of agents choosing pure strategy j. We identify a popula-
tion game with a continuous vector-valued payoff func-
tion F : X ! Rn . The scalar Fi(x) represents the payoff to
strategy i when the population state is x.

Population state x� is a Nash equilibrium of F if no
agent can improve his payoff by unilaterally switching
strategies. More explicitly, x� is a Nash equilibrium if

x�i > 0 implies that Fi(x) � Fj(x) for all j 2 S:
(8)

Example 9 Suppose that the unit mass of agents are
randomly matched to play the symmetric normal form
game A. At population state x, the (expected) payoff to
strategy i is the linear function Fi(x) D

P
j2S Ai jx j ; the

payoffs to all strategies can be expressed concisely as
F(x) D Ax. It is easy to verify that x� is a Nash equilib-
rium of the population game F if and only if x� is a sym-
metric Nash equilibrium of the symmetric normal form
game A.

While population games generated by random matching
are especially simple, many games that arise in applica-
tions are not of this form. In the biology literature, games
outside the random matching paradigm are known as
playing the fieldmodels [139].

Example 10 Consider the following model of highway
congestion [17,143,166,173]. A pair of towns, Home and
Work, are connected by a network of links. To commute
from Home to Work, an agent must choose a path i 2 S
connecting the two towns. The payoff the agent obtains
is the negation of the delay on the path he takes. The de-
lay on the path is the sum of the delays on its constituent
links, while the delay on a link is a function of the number
of agents who use that link.

Population games embodying this description are
known as a congestion games. To define a congestion game,
let ˚ be the collection of links in the highway network.
Each strategy i 2 S is a route from Home to Work, and
so is identified with a set of links ˚i � ˚ . Each link � is
assigned a cost function c� : RC ! R, whose argument is
link � ’s utilization level u� :

u�(x) D
X

i2�(�)

xi ; where �(�) D fi 2 S : � 2 ˚ig

The payoff of choosing route i is the negation of the total
delays on the links in this route:

Fi(x) D �
X

�2˚i

c�(u� (x)) :
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Since driving on a link increases the delays experienced
by other drivers on that link (i. e., since highway con-
gestion involves negative externalities), cost functions in
models of highway congestion are increasing; they are typ-
ically convex as well. Congestion games can also be used to
model positive externalities, like the choice between differ-
ent technological standards; in this case, the cost functions
are decreasing in the utilization levels.

Revision Protocols

We now introduce foundations for our models of evolu-
tionary dynamics. These foundations are built on the no-
tion of a revision protocol, which describes both the timing
and results of agents’ myopic decisions about how to con-
tinue playing the game at hand [24,35,96,175,217]. Revi-
sion protocols will be used to derive both the deterministic
dynamics studied in Sect. “Deterministic Dynamics” and
the stochastic dynamics studied in Sect. “Stochastic Dy-
namics”; similar ideas underlie the local interaction mod-
els introduced in Sect. “Local Interaction”.

Definition

Formally, a revision protocol is a map � : Rn � X ! Rn�n
C

that takes the payoff vectors � and population states x as
arguments, and returns nonnegative matrices as outputs.
For reasons to be made clear below, scalar �i j (�; x) is
called the conditional switch rate from strategy i to strat-
egy j.

To move from this notion to an explicit model of evo-
lution, let us consider a population consisting of N <1

members. (A number of the analyzes to follow will con-
sider the limit of the present model as the population
size N approaches infinity – see Sects. “Mean Dynamics”,
“Deterministic Approximation”, and “Stochastic Stability
via Large Population Limits”.) In this case, the set of feasi-
ble social states is the finite set XN D X \ 1

NZ
n D fx 2

X : Nx 2 Zng, a grid embedded in the simplex X.
A revision protocol �, a population game F, and a pop-

ulation size N define a continuous-time evolutionary pro-
cess – a Markov process fXN

t g – on the finite state space
XN . A one-size-fits-all description of this process is as fol-
lows. Each agent in the society is equipped with a “stochas-
tic alarm clock”. The times between rings of of an agent’s
clock are independent, each with a rate R exponential
distribution. The ringing of a clock signals the arrival
of a revision opportunity for the clock’s owner. If an
agent playing strategy i 2 S receives a revision opportu-
nity, he switches to strategy j ¤ i with probability �i j/R. If
a switch occurs, the population state changes accordingly,

from the old state x to a new state y that accounts for the
agent’s change in strategy.

While this interpretation of the evolutionary process
can be applied to any revision protocol, simpler interpreta-
tions are sometimes available for protocols with additional
structure. The examples to follow illustrate this point.

Examples

Imitation Protocols and Natural Selection Protocols
In economic contexts, revision protocols of the form

�i j(�; x) D x j �̂i j(�; x) (9)

are called imitation protocols [35,96,216]. These protocols
can be given a very simple interpretation: when an agent
receives a revision opportunity, he chooses an opponent at
random and observes her strategy. If our agent is playing
strategy i and the opponent strategy j, the agent switches
from i to jwith probability proportional to �̂i j . Notice that
the value of the population share xj is not something the
agent need know; this term in (9) accounts for the agent’s
observing a randomly chosen opponent.

Example 11 Suppose that after selecting an opponent, the
agent imitates the opponent only if the opponent’s payoff
is higher than his own, doing so in this case with probabil-
ity proportional to the payoff difference:

�i j(�; x) D x j[� j � �i ]C:

This protocol is known as pairwise proportional imita-
tion [188].

Protocols of form (9) also appear in biological con-
texts, [144], [153,158], where in these cases we refer to
them as natural selection protocols. The biological inter-
pretation of (9) supposes that each agent is programmed
to play a single pure strategy. An agent who receives a re-
vision opportunity dies, and is replaced through asexual
reproduction. The reproducing agent is a strategy j player
with probability �i j(�; x) D x j �̂i j(�; x), which is propor-
tional both to the number of strategy j players and to some
function of the prevalences and fitnesses of all strategies.
Note that this interpretation requires the restriction
X

j2S

�i j(�; x) � 1:

Example 12 Suppose that payoffs are always positive, and
let

�i j(�; x) D
x j � jP
k2S xk �k

: (10)
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Understood as a natural selection protocol, (10) says that
the probability that the reproducing agent is a strategy j
player is proportional to x j� j , the aggregate fitness of
strategy j players.

In economic contexts, we can interpret (10) as an im-
itative protocol based on repeated sampling. When an
agent’s clock rings he chooses an opponent at random. If
the opponent is playing strategy j, the agent imitates him
with probability proportional to � j . If the agent does not
imitate this opponent, he draws a new opponent at ran-
dom and repeats the procedure.

Direct Evaluation Protocols In the previous examples,
only strategies currently in use have any chance of being
chosen by a revising agent (or of being the programmed
strategy of the newborn agent). Under other protocols,
agents’ choices are not mediated through the population’s
current behavior, except indirectly via the effect of behav-
ior on payoffs. These direct evaluation protocols require
agents to directly evaluate the payoffs of the strategies they
consider, rather than to indirectly evaluate them as under
an imitative procedure.

Example 13 Suppose that choices are made according to
the logit choice rule:

�i j(�; x) D
exp(��1� j)P
k2S exp(��1�k)

: (11)

The interpretation of this protocol is simple. Revision op-
portunities arrive at unit rate. When an opportunity is re-
ceived by an i player, he switches to strategy j with prob-
ability �i j(�; x), which is proportional to an exponential
function of strategy j’s payoffs. The parameter � > 0 is
called the noise level. If � is large, choice probabilities un-
der the logit rule are nearly uniform. But if � is near zero,
choices are optimal with probability close to one, at least
when the difference between the best and second best pay-
off is not too small.

Additional examples of revision protocols can be found in
the next section, and one can construct new revision pro-
tocols by taking linear combinations of old ones; see [183]
for further discussion.

Deterministic Dynamics

Although antecedents of this approach date back to the
early work of Brown and von Neumann [45], the use of
differential equations to model evolution in games took
root with the introduction of the replicator dynamic by
Taylor and Jonker [205], and remains an vibrant area of re-

search; Hofbauer and Sigmund [108] and Sandholm [183]
offer recent surveys. In this section, we derive a determin-
istic model of evolution: the mean dynamic generated by
a revision protocol and a population game. We study this
deterministic model from various angles, focusing in par-
ticular on local stability of rest points, global convergence
to equilibrium, and nonconvergent limit behavior.

While the bulk of the literature on deterministic evo-
lutionary dynamics is consistent with the approach we
take here, we should mention that other specifications
exist, including discrete time dynamics [5,59,131,218],
and dynamics for games with continuous strategy
sets [41,42,77,100,159,160] and for Bayesian population
games [62,70,179]. Also, deterministic dynamics for ex-
tensive form games introduce new conceptual issues;
see [28,30,51,53,55] and the monograph of Cressman [54].

Mean Dynamics

As described earlier in Sect. “Definition”, a revision proto-
col �, a population game F, and a population sizeN define
a Markov process fXN

t g on the finite state space XN . We
now derive a deterministic process – the mean dynamic –
that describes the expected motion of fXN

t g. In Sect. “De-
terministic Approximation”, we will describe formally the
sense in which this deterministic process provides a very
good approximation of the behavior of the stochastic pro-
cess fXN

t g, at least over finite time horizons and for large
population sizes. But having noted this result, we will focus
in this section on the deterministic process itself.

To compute the expected increment of fXN
t g over the

next dt time units, recall first that each of the N agents
receives revision opportunities via a rate R exponential
distribution, and so expects to receive Rdt opportunities
during the next dt time units. If the current state is x,
the expected number of revision opportunities received
by agents currently playing strategy i is approximately
Nxi Rdt: Since an i player who receives a revision oppor-
tunity switches to strategy j with probability �i j/R, the ex-
pected number of such switches during the next dt time
units is approximately Nxi �i jdt: Therefore, the expected
change in the number of agents choosing strategy i during
the next dt time units is approximately

N

0

@
X

j2S

x j� ji (F(x); x) � xi
X

j2S

�i j(F(x); x)

1

A dt: (12)

Dividing expression (12) by N and eliminating the time
differential dt yields a differential equation for the rate of
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change in the proportion of agents choosing strategy i:

ẋi D
X

j2S

x j� ji (F(x); x)� xi
X

j2S

�i j(F(x); x): (M)

Equation (M) is themean dynamic (ormean field) gen-
erated by revision protocol � in population game F. The
first term in (M) captures the inflow of agents to strategy i
from other strategies, while the second captures the out-
flow of agents to other strategies from strategy i.

Examples

We now describe some examples of mean dynamics, start-
ing with ones generated by the revision protocols from
Sect. “Examples”. To do so, we let

F(x) D
X

i2S

xi Fi(x)

denote the average payoff obtained by the members of the
population, and define the excess payoff to strategy i,

F̂i(x) D Fi(x) � F(x) ;

to be the difference between strategy i’s payoff and the
population’s average payoff.

Example 14 In Example 11, we introduced the pairwise
proportional imitation protocol �i j(�; x) D x j[� j��i ]C.
This protocol generates the mean dynamic

ẋi D xi F̂i(x) : (13)

Equation (13) is the replicator dynamic [205], the best-
known dynamic in evolutionary game theory. Under this
dynamic, the percentage growth rate ẋi /xi of each strat-
egy currently in use is equal to that strategy’s current ex-
cess payoff; unused strategies always remain so. There are
a variety of revision protocols other than pairwise propor-
tional imitation that generate the replicator dynamic as
their mean dynamics; see [35,96,108,217].

Example 15 In Example 12, we assumed that payoffs are
always positive, and introduced the protocol �i j / x j � j;

which we interpreted both as a model of biological natural
selection and as a model of imitation with repeated sam-
pling. The resulting mean dynamic,

ẋi D
xiFi(x)P

k2S xkFk(x)
� xi D

xi F̂i(x)
F(x)

; (14)

is the Maynard Smith replicator dynamic [139]. This dy-
namic only differs from the standard replicator dynamic

(13) by a change of speed, with motion under (14) being
relatively fast when average payoffs are relatively low. (In
multipopulationmodels, the two dynamics are less similar,
and convergence under one does not imply convergence
under the other – see [183,216].)

Example 16 In Example 13 we introduced the logit choice
rule �i j(�; x) / exp(��1� j): The corresponding mean dy-
namic,

ẋi D
exp(��1Fi(x))P
k2S exp(��1Fk(x))

� xi ; (15)

is called the logit dynamic [82].
If we take the noise level � to zero, then the probabil-

ity with which a revising agent chooses the best response
approaches one whenever the best response is unique. At
such points, the logit dynamic approaches the best re-
sponse dynamic [84]:

ẋ 2 BF (x) � x; (16)

where

BF (x) D argmaxy2X y0F(x)

defines the (mixed) best response correspondence for
game F. Note that unlike the other dynamics we consider
here, (16) is defined not by an ordinary differential equa-
tion, but by a differential inclusion, a formulation pro-
posed in [97].

Example 17 Consider the protocol

�i j(�; x) D
h
� j �

X

k2S
xk�k

i

C
:

When an agent’s clock rings, he chooses a strategy at ran-
dom; if that strategy’s payoff is above average, the agent
switches to it with probability proportional to its excess
payoff. The resulting mean dynamic,

ẋi BM D [F̂i (x)]C � xi
X

k2S

[F̂k(x)]C;

is called the Brown–von Neumann–Nash (BNN) dy-
namic [45]; see also [98,176,194,200,217].

Example 18
Consider the revision protocol

�i j(�; x) D [� j � �i]C :

When an agent’s clock rings, he selects a strategy at ran-
dom. If the new strategy’s payoff is higher than his cur-
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Evolutionary Game Theory, Table 1
Five basic deterministic dynamics

Revision Protocol Mean Dynamic Name and source
�ij D xj[	j � 	i]C ẋi D xi F̂i(x) Replicator [205]

�ij D
exp(��1	j)P
k2S exp(��1	k)

ẋi D
exp(��1Fi(x))P
k2S exp(��1Fk(x))

� xi Logit [82]

�ij D 1f jDargmaxk2S
kg ẋ 2 BF (x)� x Best response [84]

�ij D
�
	j �

P
k2S xk	k

�
C

ẋi D [F̂i(x)]C � xi
P

j2S
[F̂j(x)]C BNN [45]

�ij D [	j � 	i]C

ẋi D
X

j2S

xj[Fi(x)� Fj(x)]C

� xi
X

j2S

[Fj(x)� Fi(x)]C
Smith [197]

rent strategy’s payoff, he switches strategies with probabil-
ity proportional to the difference between the two payoffs.
The resulting mean dynamic,

ẋi D
X

j2S

x j[Fi(x) � Fj(x)]C � xi
X

j2S

[Fj(x) � Fi(x)]C;

(17)

is called the Smith dynamic [197]; see also [178].

We summarize these examples of revision protocols and
mean dynamics in Table 1.

Figure 1 presents phase diagrams for the five basic dy-
namics when the population is randomly matched to play
standard Rock–Paper–Scissors (Example 4). In the phase
diagrams, colors represent speed of motion: within each
diagram, motion is fastest in the red regions and slowest
in the blue ones.

The phase diagram of the replicator dynamic re-
veals closed orbits around the unique Nash equilibrium
x� D ( 13 ;

1
3 ;

1
3 ). Since this dynamic is based on imitation

(or on reproduction), each face and each vertex of the sim-
plex X is an invariant set: a strategy initially absent from
the population will never subsequently appear.

The other four dynamics pictured are based on direct
ecaluation, allowing agents to select strategies that are cur-
rently unused. In these cases, the Nash equilibrium is the
sole rest point, and attracts solutions from all initial con-
ditions. (In the case of the logit dynamic, the rest point
happens to coincide with the Nash equilibrium only be-
cause of the symmetry of the game; see [101,104].) Under
the logit and best response dynamics, solution trajectories
quickly change direction and then accelerate when the best
response to the population state changes; under the BNN
and especially the Smith dynamic, solutions approach the
Nash equlibrium in a less angular fashion.

Evolutionary Justification of Nash Equilibrium

One of the goals of evolutionary game theory is to jus-
tify the prediction of Nash equilibrium play. For this jus-
tification to be convincing, it must be based on a model
that makes only mild assumptions about agents’ knowl-
edge about one another’s behavior. This sentiment can be
captured by introducing two desiderata for revision proto-
cols:

(C) Continuity: � is Lipschitz continuous.
(SD) Scarcity of data: �i j only depends on

�i ; � j ; and x j :

Continuity (C) asks that revision protocols depend con-
tinuously on their inputs, so that small changes in aggre-
gate behavior do not lead to large changes in players’ re-
sponses. Scarcity of data (SD) demands that the condi-
tional switch rate from strategy i to strategy j only depend
on the payoffs of these two strategies, so that agents need
only know those facts that are most germane to the de-
cision at hand [183]. (The dependence of �i j on x j is in-
cluded to allow for dynamics based on imitation.) Proto-
cols that respect these two properties do not make unreal-
istic demands on the amount of information that agents in
an evolutionary model possess.

Our two remaining desiderata impose restrictions on
mean dynamics ẋ D VF (x), linking the evolution of ag-
gregate behavior to incentives in the underlying game.

(NS) Nash stationarity:

VF (x) D 0 if and only if x 2 NE(F) :
(PC) Positive correlation:

VF (x) ¤ 0 implies that VF (x)0F(x) > 0:

Nash stationarity (NS) is a restriction on stationary states:
it asks that the rest points of the mean dynamic be pre-
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Evolutionary Game Theory, Figure 1
Five basic deterministic dynamics in standard Rock–Paper–Scissors. Colors represent speeds: red is fastest, blue is slowest

cisely the Nash equilibria of the game being played. Posi-
tive correlation (PC) is a restriction on disequilibrium ad-
justment: it requires that away from rest points, strate-
gies’ growth rates be positively correlated with their pay-

offs. Condition (PC) is among the weakest of the many
conditions linking growth rates of evolutionary dynam-
ics and payoffs in the underlying game; for alternatives,
see [76,110,149,162,170,173,200].
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Evolutionary Game Theory, Table 2
Families of deterministic evolutionary dynamics and their properties; yes� indicates that a weaker or alternate form of the property
is satisfied

Dynamic Family (C) (SD) (NS) (PC)
Replicator Imitation yes yes no yes
Best response no yes� yes� yes�

Logit Perturbed best response yes yes� no no
BNN Excess payoff yes no yes yes
Smith Pairwise comparison yes yes yes yes

In Table 2, we report how the the five basic dynam-
ics fare under the four criteria above. For the purposes of
justifying the Nash prediction, the most important row in
the table is the last one, which reveals that the Smith dy-
namic satisfies all four desiderata at once: while the revi-
sion protocol for the Smith dynamic (see Example 18) re-
quires only limited information on the part of the agents
who employ it, this information is enough to ensure that
rest points of the dynamic and Nash equilibria coincide.

In fact, the dynamics introduced above can be viewed
as members of families of dynamics that are based on sim-
ilar revision protocols and that have similar qualitative
properties. For instance, the Smith dynamic is a member
of the family of pairwise comparison dynamics [178], un-
der which agents only switch to strategies that outperform
their current choice. For this reason, the exact functional
forms of the previous examples are not essential to estab-
lishing the properties noted above.

In interpreting these results, it is important to re-
member that Nash stationarity only concerns the rest
points of a dynamic; it says nothing about whether a dy-
namic will converge to Nash equilibrium from an ar-
bitrary initial state. The question of convergence is ad-
dressed in Sects. “Global Convergence” and “Nonconver-
gence”. There we will see that in some classes of games,
general guarantees of convergence can be obtained, but
that there are some games in which no reasonable dynamic
converges to equilibrium.

Local Stability

Before turning to the global behavior of evolutionary dy-
namics, we address the question of local stability. As we
noted at the onset, an original motivation for introduc-
ing game dynamics was to provide an explicitly dynamic
foundation for Maynard Smith’s notion of ESS [205].
Some of the earliest papers on evolutionary game dynam-
ics [105,224] established that being an ESS is a sufficient
condition for asymptotically stablity under the replicator
dynamic, but that it is not a necessary condition. It is cu-

rious that this connection obtains despite the fact that ESS
is a stability condition for a population whose members
all play the same mixed strategy, while (the usual version
of) the replicator dynamic looks at populations of agents
choosing among different pure strategies.

In fact, the implications of ESS for local stability are
not limited to the replicator dynamic. Suppose that the
symmetric normal form gameA admits a symmetric Nash
equilibrium that places positive probability on each strat-
egy in S. One can show that this equilibrium is an ESS if
and only if the payoff matrix A is negative definite with
respect to the tangent space of the simplex:

z0Az < 0 for all z 2 TX D
n
ẑ 2 Rn :

X

i2S
ẑi D 0

o
: (18)

Condition (18) and its generalizations imply local stability
of equilibrium not only under the replicator dynamic, but
also under a wide range of other evolutionary dynamics:
see [52,98,99,102,111,179] for further details.

The papers cited above use linearization and Lyapunov
function arguments to establish local stability. An alterna-
tive approach to local stability analysis, via index theory,
allows one to establish restrictions on the stability proper-
ties of all rest points at once – see [60].

Global Convergence

While analyses of local stability reveal whether a popula-
tion will return to equilibrium after a small disturbance,
they do not tell us whether the population will approach
equilibrium from an arbitrary disequilibrium state. To es-
tablish such global convergence results, we must restrict
attention to classes of games defined by certain interesting
payoff structures. These structures appear in applications,
lending strong support for the Nash prediction in the set-
tings where they arise.

Potential Games A potential game [17,106,143,166,173,
181] is a game that admits a potential function: a scalar val-
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ued function whose gradient describes the game’s payoffs.
In a full potential game F : Rn

C ! Rn (see [181]), all infor-
mation about incentives is captured by the potential func-
tion f : Rn

C ! R, in the sense that

r f (x) D F(x) for all x 2 Rn
C: (19)

If F is smooth, then it is a full potential game if and only if
it satisfies full externality symmetry:

@Fi
@x j

(x) D
@Fj

@xi
(x) for all i; j 2 S and x 2 Rn

C: (20)

That is, the effect on the payoff to strategy i of adding new
strategy j players always equals the effect on the payoff to
strategy j of adding new strategy i players.

Example 19 Suppose a single population is randomly
matched to play the symmetric normal form game
A 2 Rn�n , generating the population game F(x) D Ax.
We say that A exhibits common interests if the two players
in a match always receive the same payoff. This means that
Ai j D Aji for all i and j, or, equivalently, that the matrix A
is symmetric. Since DF(x) D A, this is precisely what we
need for F to be a full potential game. The full potential
function for F is f (x) D 1

2 x
0Ax; which is one-half of the

average payoff function F̄(x) D
P

i2S xi Fi(x) D x0Ax.
The common interest assumption defines a fundamental
model from population genetics, this assumption reflects
the shared fate of two genes that inhabit the same organ-
ism [73,106,107].

Example 20 In Example 10, we introduced congestion
games, a basic model of network congestion. To see that
these games are potential games, observe that an agent tak-
ing path j 2 S affects the payoffs of agents choosing path
i 2 S through the marginal increases in congestion on the
links � 2 ˚i \˚ j that the two paths have in common. But
since the marginal effect of an agent taking path i on the
payoffs of agents choosing path j is identical, full external-
ity symmetry (20) holds:

@Fi
@x j

(x) D �
X

�2˚i\˚ j

c0�(u� (x)) D
@Fj

@xi
(x):

In congestion games, the potential function takes the form

f (x) D �
X

�2˚

Z u (x)

0
c�(z) dz;

and so is typically unrelated to aggregate payoffs,

F(x) D
X

i2S

xi Fi(x) D �
X

�2˚

u�(x) c� (u� (x)):

However, potential is proportional to aggregate payoffs if
the cost functions c� are all monomials of the same de-
gree [56,173].

Population state x is a Nash equilibrium of the potential
game F if and only if it satisfies the Kuhn–Tucker first or-
der conditions for maximizing the potential function f on
the simplex X [17,173]. Furthermore, it is simple to verify
that any dynamic ẋ D VF (x) satisfying positive correla-
tion (PC) ascends the potential function:

d
dt f (xt) D r f (xt)0 ẋt D F(xt)0VF (xt) � 0:

It then follows from classical results on Lyapunov func-
tions that any dynamic satisfying positive correlation (PC)
converges to a connected set of rest points. If the dynamic
also satisfies Nash stationarity (NS), these sets consist en-
tirely of Nash equilibria. Thus, in potential games, very
mild conditions on agents’ adjustment rules are sufficient
to justify the prediction of Nash equilibrium play.

In the case of the replicator dynamic, one can say
more. On the interior of the simplex X, the replicator dy-
namic for the potential game F is a gradient system for
the potential function f (i. e., it always ascends f in the
direction of maximum increase). However, this is only
true after one introduces an appropriate Riemannian met-
ric on X [123,192]. An equivalent statement of this re-
sult, due to [2], is that the replicator dynamic is the gra-
dient system for f under the usual Euclidean metric if we
stretch the state space X onto the radius 2 sphere. This
stretching is accomplished using the Akin transformation
Hi(x) D 2

p
xi , which emphasizes changes in the use of

rare strategies relative to changes in the use of common
ones [2,4,185]. (There is also a dynamic that generates the
gradient system for f on X under the usual metric: the so-
called projection dynamic [130,150,185].)

Example 21 Consider evolution in 123 Coordination:

1 2 3
1 1 0 0
2 0 2 0
3 0 0 3 :

Figure 2a presents a phase diagram of the replicator
dynamic on its natural state space X, drawn atop of a con-
tour plot of the potential function f (x) D 1

2 ((x1)
2 C

2(x2)2C3(x3)2). Evidently, all solution trajectories ascend
this function and converge to one of the seven symmetric
Nash equilibria, with trajectories from all but a measure
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Evolutionary Game Theory, Figure 2
The replicator dynamic in 123Coordination. Colors represent the
value of the game’s potential function

zero set of initial conditions converging to one of the three
pure equilibria.

Figure 2b presents another phase diagram for the repli-
cator dynamic, this time after the solution trajectories and
the potential function have been transported to the surface
of the radius 2 sphere using the Akin transformation. In
this case, solutions cross the level sets of the potential func-
tion orthogonally, moving in the direction that increases
potential most quickly.

Stable Games A population game F is a stable game
[102] if

(y � x)0(F(y)� F(x)) � 0 for all x; y 2 X: (21)

If the inequality in (21) always holds strictly, then F is
a strictly stable game.

If F is smooth, then F is a stable game if and only if it
satisfies self-defeating externalities:

z0DF(x)z � 0 for all z 2 TX and x 2 X; (22)

where DF(x) is the derivative of F : X ! Rn at x. This
condition requires that the improvements in the payoffs of
strategies to which revising agents are switching are always
exceeded by the improvements in the payoffs of strategies
which revising agents are abandoning.

Example 22 The symmetric normal form game A is sym-
metric zero-sum if A is skew-symmetric (i. e., if AD �A0),
so that the payoffs of the matched players always sum
to zero. (An example is provided by the standard Rock–
Paper–Scissors game (Example 4).) Under this assump-
tion, z0Az D 0 for all z 2 Rn ; thus, the population game
generated by random matching in A, F(x) D Ax, is a sta-
ble game that is not strictly stable.

Example 23 Suppose that A satisfies the interior ESS
condition (18). Then (22) holds strictly, so F(x) D Ax is
a strictly stable game. Examples satisfying this condition
include the Hawk–Dove game (Example 3) and any good
Rock–Paper–Scissors game (Example 4).

Example 24 A war of attrition [33] is a symmetric normal
form game in which strategies represent amounts of time
committed to waiting for a scarce resource. If the two play-
ers choose times i and j > i, then the j player obtains the
resource, worth v, while both players pay a cost of ci: once
the first player leaves, the other seizes the resource imme-
diately. If both players choose time i, the resource is split,
so payoffs are v

2 � ci each. It can be shown that for any re-
source value v 2 R and any increasing cost vector c 2 Rn ,
random matching in a war of attrition generates a stable
game [102].

The flavor of the self-defeating externalities condi-
tion (22) suggests that obedience of incentives will push
the population toward some “central” equilibrium state.
In fact, the set of Nash equilibria of a stable game is
always convex, and in the case of strictly stable games,
equilibrium is unique. Moreover, it can be shown that
the replicator dynamic converges to Nash equilibrium
from all interior initial conditions in any strictly stable
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Evolutionary Game Theory, Table 3
Lyapunov functions for five basic deterministic dynamics in stable games

Dynamic Lyapunov function for stable games

Replicator Hx� (x) D
P

i2S(x� ) x
�

i log
x�i
xi

Logit G̃(x) D max
y2int(X)

�
y0F̂(x)� �

P
i2S yi log yi


C �

P
i2S xi log xi

Best response G(x) D max
i2S

F̂i(x)

BNN � (x) D 1
2

P
i2S[F̂i(x)]

2
C

Smith � (x)D 1
2

P

i2S

P

j2S
xi[Fj(x)�Fi(x)]2C

game [4,105,224], and that the direct evaluation dynam-
ics introduced above converge to Nash equilibrium from
all initial conditions in all stable games, strictly stable or
not [98,102,104,197]. In each case, the proof of conver-
gence is based on the construction of a Lyapunov function
that solutions of the relevant dynamic descend. The Lya-
punov functions for the five basic dynamics are presented
in Table 3.

Interestingly, the convergence results for direct evalu-
ation dynamics are not restricted to the dynamics listed in
Table 3, but extend to other dynamics in the same families
(cf Table 2). But compared to the conditions for conver-
gence in potential games, the conditions for convergence
in stable games demand additional structure on the adjust-
ment process [102].

Perturbed Best Response Dynamics in Supermodular
Games Supermodular games are defined by the property
that higher choices by one’s opponents (with respect to
the natural ordering on S D f1; : : : ; ng) make one’s own
higher strategies look relatively more desirable. Let the
matrix˙ 2 R(n�1)�n satisfy˙i j D 1 if j > i and˙i j D 0
otherwise, so that˙x 2 Rn�1 is the “decumulative distri-
bution function” corresponding to the “density function”
x. The population game F is a supermodular game if it ex-
hibits strategic complementarities:

If˙ y � ˙x; then
FiC1(y) � Fi(y) � FiC1(x) � Fi(x)

for all i < n and x 2 X: (23)

If F is smooth, condition (23) is equivalent to

@(FiC1 � Fi)
@(e jC1 � e j)

(x) � 0 for all i; j < n and x 2 X: (24)

Example 25 Consider this model of search with positive
externalities. A population of agents choose levels of search
effort in S D f1; : : : ; ng. The payoff to choosing effort
i is

Fi(x) D m(i) b(a(x)) � c(i);

where a(x) D
P

k�n kxk is the aggregate search effort, b is
some increasing benefit function, m is an increasing mul-
tiplier function, and c is an arbitrary cost function. Notice
that the benefits from searching are increasing in both own
search effort and in the aggregate search effort. It is easy to
check that F is a supermodular game.

Complementarity condition (23) implies that the agents’
best response correspondence is monotone in the stochas-
tic dominance order, which in turn ensures the existence
of minimal and maximal Nash equilibria [207]. One can
take advantage of the monotoncity of best responses in
studying evolutionary dynamics by appealing to the the-
ory of monotone dynamical systems [196]. To do so, one
needs to focus on dynamics that respect the monotonic-
ity of best responses and that also are smooth, so that the
the theory of monotone dynamics can be applied. It turns
out that the logit dynamic satisfies these criteria; so does
any perturbed best response dynamic defined in terms of
stochastic payoff perturbations. In supermodular games,
these dynamics define cooperative differential equations;
consequently, solutions of these dynamics from almost
every initial condition converge to an approximate Nash
equilibrium [104].

Imitation Dynamics in Dominance Solvable Games
Suppose that in the population game F, strategy i is
a strictly dominated by strategy j: Fi(x) < Fj(x) for all
x 2 X. Consider the evolution of behavior under the repli-
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cator dynamic (13). Since for this dynamic we have

d
dt

xi
x j
D

ẋi x j � ẋ jxi
(x j)2

D
xi F̂i(x)x j � x j F̂ j(x)xi

(x j)2

D
xi
x j

�
F̂i(x) � F̂ j(x)


;

solutions from every interior initial condition converge to
the face of the simplex where the dominated strategy is un-
played [3]. It follows that the replicator dynamic converges
in games with a strictly dominant strategy, and by iterat-
ing this argument, one can show that this dynamic con-
verges to equilibrium in any game that can be solved by
iterative deletion of strictly dominated strategies. In fact,
this argument is not specific to the replicator dynamic, but
can be shown to apply to a range of dynamics based on
imitation [110,170]. Even in games which are not domi-
nance solvable, arguments of a similar flavor can be used
to restrict the long run behavior of imitative dynamics to
better-reply closed sets [162]; see Sect. “Convergence to
Equilibria and to Better–Reply Closed Sets” for a related
discussion.

While the analysis here has focused on imitative dy-
namics, it is natural to expect that elimination of domi-
nated strategies will extend to any reasonable evolutionary
dynamic. But we will see in Sect. “Survival of Dominated
Strategies” that this is not the case: the elimination of dom-
inated strategies that obtains under imitative dynamics is
the exception, not the rule.

Nonconvergence

The previous section revealed that when certain global
structural conditions on payoffs are satisfied, one can es-
tablish global convergence to equilibrium under various
classes of evolutionary dynamics. Of course, if these con-
ditions are not met, convergence cannot be guaranteed.
In this section, we offer examples to illustrate some of the
possibilities for nonconvergent limit behavior.

Conservative Properties of the Replicator Dynamic in
Zero-Sum Games In Sect. “Stable Games”, we noted
that in strictly stable games, the replicator dynamic con-
verges to Nash equilibrium from all interior initial con-
ditions. To prove this, one shows that interior solutions
descend the function

Hx� (x) D
X

i2S(x�)

x�i log
x�i
x i ;

until converging to its minimizer, the unique Nash equi-
librium x�.

Now, random matching in a symmetric zero-sum
game generates a population game that is stable, but not
strictly stable (Example 22). In this case, for each interior
Nash equilibrium x�, the function Hx� is a constant of
motion for the replicator dynamic: its value is fixed along
every interior solution trajectory.

Example 26 Suppose that agents are randomly matched
to play the symmetric zero-sum game A, given by

1 2 3 4
1 0 �1 0 1
2 1 0 �1 0
3 0 1 0 �1
4 �1 0 1 0 :

The Nash equilibria of F(x) D Ax are the points on
the line segment NE connecting states ( 12 ; 0;

1
2 ; 0) and

(0; 12 ; 0;
1
2 ), a segment that passes through the barycenter

x� D ( 14 ;
1
4 ;

1
4 ;

1
4 ). Figure 3 shows solutions to the repli-

cator dynamic that lie on the level set Hx� (x) D :58. Ev-
idently, each of these solutions forms a closed orbit.

Although solution trajectories of the replicator dy-
namic do not converge in zero-sum games, it can be
proved that the the time average of each solution trajec-
tory converges to Nash equilibrium [190].

The existence of a constant of motion is not the only
conservative property enjoyed by replicator dynamics for
symmetric zero-sum games: these dynamics are also vol-

Evolutionary Game Theory, Figure 3
Solutions of the replicator dynamic in a zero-sum game. The so-
lutions pictured lie on the level set Hx� (x) D :58



Evolutionary Game Theory E 3191

ume preserving after an appropriate change of speed or
change of measure [5,96].

Games with Nonconvergent Dynamics The conserva-
tive properties described in the previous section have been
established only for the replicator dynamic (and its dis-
tant relative, the projection dynamic [185]). Inspired by
Shapley [193], many researchers have sought to construct
games in which large classes of evolutionary dynamics fail
to converge to equilibrium.

Example 27 Suppose that players are randomly
matched to play the following symmetric normal form
game [107,109]:

1 2 3 4
1 0 0 �1 "

2 " 0 0 �1
3 �1 " 0 0
4 0 �1 " 0 :

When" D 0, the payoff matrix A" D A0 is symmet-
ric, so F0 is a potential game with potential func-
tion f (x) D 1

2 x
0A0x D �x1x3 � x2x4. The function f at-

tains its minimum of � 1
4 at states v D ( 12 ; 0;

1
2 ; 0) and

w D (0; 12 ; 0;
1
2 ), has a saddle point with value � 1

8 at the
Nash equilibrium x� D ( 14 ;

1
4 ;

1
4 ;

1
4 ), and attains its maxi-

mum of 0 along the closed path of Nash equilibria � con-
sisting of edges e1e2, e2e3, e3e4, and e4e1.

Let ẋ D VF (x) be an evolutionary dynamic that satis-
fies Nash stationarity (NS) and positive correlation (PC),
and that is based on a revision protocol that is continuous
(C). If we apply this dynamic to game F0, then the fore-
going discussion implies that all solutions to ẋ D VF0 (x)
whose initial conditions � satisfy f (�) > � 1

8 converge to
� . The Smith dynamic for F0 is illustrated in Fig. 4a.

Now consider the same dynamic for the game F",
where " > 0. By continuity (C), the attractor � ofVF0 con-
tinues to an attractor �" of VF" whose basin of attraction
approximates that of � under ẋ D VF0 (x) (Fig. 4b). But
since the unique Nash equilibrium of F" is the barycenter
x�, it follows that solutions from most initial conditions
converge to an attractor far from any Nash equilibrium.

Other examples of games in which many dynam-
ics fail to converge include monocyclic games [22,83,97,
106], Mismatching Pennies [91,116], and the hypnodisk
game [103]. These examples demonstrate that there is no
evolutionary dynamic that converges to Nash equilibrium
regardless of the game at hand. This suggests that in gen-
eral, analyses of long run behavior should not restrict at-
tention to equilibria alone.

Evolutionary Game Theory, Figure 4
Solutions of the Smith dynamic in a the potential game F0; b the
perturbed potential game F", "D 1

10

Chaotic Dynamics Wehave seen that deterministic evo-
lutionary game dynamics can follow closed orbits and ap-
proach limit cycles. We now show that they also can be-
have chaotically.

Example 28 Consider evolution under the replicator dy-
namic when agents are randomlymatched to play the sym-
metric normal form game below [13,195], whose lone inte-
rior Nash equilibrium is the barycenter x� D ( 14 ;

1
4 ;

1
4 ;

1
4 ):

1 2 3 4
1 0 �12 0 22
2 20 0 0 �10
3 �21 �4 0 35
4 10 �2 2 0 :
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Evolutionary Game Theory, Figure 5
Chaotic behavior under the replicator dynamic

Figure 5 presents a solution to the replicator dynamic for
this game from initial condition x0 D (:24; :26; :25; :25).
This solution spirals clockwise about x�. Near the right-
most point of each circuit, where the value of x3 gets close
to zero, solutions sometimes proceed along an “outside”
path on which the value of x3 surpasses .6. But they some-
times follow an “inside” path on which x3 remains be-
low .4, and at other times do something in between.Which
of these alternatives occurs is difficult to predict from ap-
proximate information about the previous behavior of the
system.

While the game in Example 28 has a complicated pay-
off structure, in multipopulation contexts one can find
chaotic evolutionary dynamics in very simple games [187].

Survival of Dominated Strategies In Sect. “Imitation
Dynamics in Dominance Solvable Games”, we saw that
dynamics based on imitation eliminate strictly dominated
strategies along solutions from interior initial conditions.
While this result seems unsurprising, it is actually ex-
tremely fragile: [25,103] prove that dynamics that satisfy
continuity (C), Nash stationarity (NS), and positive corre-
lation (PC) and that are not based exclusively on imitation
must fail to eliminate strictly dominated strategies in some
games. Thus, evolutionary support for a basic rationality
criterion is more tenuous than the results for imitative dy-
namics suggest.

Example 29 Figure 6a presents the Smith dynamic for
“bad RPS with a twin”:

Evolutionary Game Theory, Figure 6
The Smith dynamic in two games

R P S T
R 0 �2 1 1
P 1 0 �2 �2
S �2 1 0 0
T �2 1 0 0 :

The Nash equilibria of this game are the states on line
segment NE D fx� 2 X : x� D ( 13 ;

1
3 ; c;

1
3 � c)g, which is

a repellor under the Smith dynamic. Under this dynamic,
strategies gain players at rates that depend on their pay-
offs, but lose players at rates proportional to their current
usage levels. It follows that when the dynamics are not at
rest, the proportions of players choosing strategies 3 and
4 become equal, so that the dynamic approaches the plane
P D fx 2 X : x3 D x4g on which the twins receive equal



Evolutionary Game Theory E 3193

weight. Since the usual three-strategy version of bad RPS,
exhibits cycling solutions here on the plane P approach
a closed orbit away from any Nash equilibrium.

Figure 6b presents the Smith dynamic in “bad RPS
with a feeble twin”,

R P S T
R 0 �2 1 1
P 1 0 �2 �2
S �2 1 0 0
T �2 � � 1 � � �� �� :

with " D 1
10 . Evidently, the attractor from Fig. 6a moves

slightly to the left, reflecting the fact that the payoff to
Twin has gone down. But since the new attractor is in
the interior of X, the strictly dominated strategy Twin is
always played with probabilities bounded far away from
zero.

Stochastic Dynamics

In Sect. “Revision Protocols” we defined the stochastic
evolutionary process fXN

t g in terms of a simple model of
myopic individual choice. We then turned to the study of
deterministic dynamics, which we claimed could be used
to approximate the stochastic process fXN

t g over finite
time spans and for large population sizes. In this section,
we turn our attention to the stochastic process fXN

t g it-
self. After offering a formal version of the deterministic
approximation result, we investigate the long run behav-
ior of fXN

t g, focusing on the questions of convergence to
equilibrium and selection among multiple stable equilib-
ria.

Deterministic Approximation

In Sect. “Revision Protocols”, we defined the Markovian
evolutionary process fXN

t g from a revision protocol �,
a population game F, and a finite population size N. In
Sect. “Mean Dynamics”, we argued that the expected mo-
tion of this process is captured by the mean dynamic

ẋi D VF
i (x) D

X

j2S

x j� ji (F(x); x)� xi
X

j2S

�i j(F(x); x):

(M)

The basic link between the Markov process fXN
t g and

its mean dynamic (M) is provided by Kurtz’s Theo-
rem [127], variations and extensions of which have been
offered in a number of game-theoretic contexts [24,29,43,
44,175,204]. Consider the sequence of Markov processes
ffXN

t gt�0g
1
NDN0

, supposing that the initial conditions XN
0

Evolutionary Game Theory, Figure 7
Deterministic approximation of the Markov process fXN

t g

converge to x0 2 X. Let fxtgt�0 be the solution to the
mean dynamic (M) starting from x0. Kurtz’s Theorem
tells us that for each finite time horizon T <1 and error
bound " > 0, we have that

lim
N!1

P

 

sup
t2[0;T]

ˇ
ˇXN

t � xt
ˇ
ˇ < "

!

D 1: (25)

Thus, when the population sizeN is large, nearly all sample
paths of the Markov process fXN

t g stay within " of a solu-
tion of the mean dynamic (M) through time T. By choos-
ing N large enough, we can ensure that with probability
close to one, XN

t and xt differ by no more than " for all
times t between 0 and T (Fig. 7).

The intuition for this result comes from the law of large
numbers. At each revision opportunity, the increment
in the process fXN

t g is stochastic. Still, at most popula-
tion states the expected number of revision opportunities
that arrive during the brief time interval I D [t; t C dt]
is large – in particular, of order Ndt. Since each oppor-
tunity leads to an increment of the state of size 1

N , the
size of the overall change in the state during time inter-
val I is of order dt. Thus, during this interval there are
a large number of revision opportunities, each following
nearly the same transition probabilities, and hence hav-
ing nearly the same expected increments. The law of large
numbers therefore suggests that the change in fXN

t g dur-
ing this interval should be almost completely determined
by the expected motion of fXN

t g, as described by the mean
dynamic (M).
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Convergence to Equilibria
and to Better–Reply Closed Sets

Stochastic models of evolution can also be used to ad-
dress directly the question of convergence to equilib-
rium [61,78,117,118,125,143,172,219]. Suppose that a so-
ciety of agents is randomly matched to play an (asym-
metric) normal form game that is weakly acyclic in better
replies: from each strategy profile, there exists a sequence
of profitable unilateral deviations leading to a Nash equi-
librium. If agents switch to strategies that do at least as well
as their current one against the choices of random sam-
ples of opponents, then the society will eventually escape
any better-response cycle, ultimately settling upon a Nash
equilibrium.

Importantly, many classes of normal form games
are weakly acyclic in better replies: these include po-
tential games, dominance solvable games, certain super-
modular games, and certain aggregative games, in which
each agent’s payoffs only depend on opponents’ behavior
through a scalar aggregate statistic. Thus, in all of these
cases, simple stochastic better-reply procedures are certain
to lead to Nash equilibrium play.

Outside these classes of games, one can narrow down
the possibilities for long run behavior by looking at bet-
ter-reply closed sets: that is, subsets of the set of strategy
profiles that cannot be escaped without a player switching
to an inferior strategy (cf. [16,162]). Stochastic better-re-
ply procedures must lead to a cluster of population states
corresponding to a better-reply closed set; once the society
enters such a cluster, it never departs.

Stochastic Stability and Equilibirum Selection

To this point, we used stochastic evolutionary dynamics
to provide foundations for deterministic dynamics and
to address the question of convergence to equilibrium.
But stochastic evolutionary dynamics introduce an en-
tirely new possibility: that of obtaining unique long-run
predictions of play, even in games with multiple locally
stable equilibria. This form of analysis, which we con-
sider next, was pioneered by Foster and Young [74], Kan-
dori, Mailath, and Rob [119], and Young [219], build-
ing on mathematical techniques due to Freidlin and
Wentzell [75].

Stochastic Stability To minimize notation, let us de-
scribe the evolution of behavior using a discrete-time
Markov chain fXN;"

k g
1
kD0 on XN , where the parameter

" > 0 represents the level of “noise” in agents’ decision
procedures. The noise ensures that the Markov chain is ir-
reducible and aperiodic: any state in XN can be reached

from any other, and there is positive probability that a pe-
riod passes without a change in the state.

Under these conditions, the Markov chain fXN;"
k g ad-

mits a unique stationary distribution, �N;", a measure on
the state space XN that is invariant under the Markov
chain:

X

x2XN

�N;"(x) P
�
XN;"
kC1 D y

ˇ̌
XN;"
k D x


D �N;"(y)

for all y 2 XN :

The stationary distribution describes the long run behav-
ior of the process fXN;"

t g in two distinct ways. First, �N;"

is the limiting distribution of fXN;"
t g:

lim
k!1

P
�
XN;"
k D y

ˇ̌
XN;"
0 D x


D �N;"(y)

for all x; y 2 XN :

Second,�N;" almost surely describes the limiting empirical
distribution of fXN;"

t g:

P
�

lim
K!1

1
K

K�1X

kD0

1
fXN;"

k 2Ag
D �N;"(A)


D 1

for any A � XN :

Thus, if most of the mass in the stationary distribution
�N;" were placed on a single state, then this state would
provide a unique prediction of long run behavior.

With this motivation, consider a sequence of Markov
chains ffXN;"

k g
1
kD0g"2(0;"̄) parametrized by noise levels "

that approach zero. Population state x 2 XN is said to be
stochastically stable if it retains positive weight in the sta-
tionary distributions of these Markov chains as " becomes
arbitrarily small:

lim
"!0

�N;"(x) > 0:

When the stochastically stable state is unique, it offers
a unique prediction of play that is relevant over sufficiently
long time spans.

Bernoulli Arrivals and Mutations Following the ap-
proach of many early contributors to the literature, let
us consider a model of stochastic evolution based on
Bernoulli arrivals of revision opportunities and best re-
sponses with mutations. The former assumption means
that during each discrete time period, each agent has prob-
ability � 2 (0; 1] of receiving an opportunity to update his
strategy. This assumption differs than the one we proposed
in Sect. “Revision Protocols”; the key new implication is
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that all agents may receive revision opportunities simulta-
neously. (Models that assume this directly generate similar
results.) The latter assumption posits that when an agent
receives a revision opportunity, he plays a best response
to the current strategy distribution with probability 1 � ",
and chooses a strategy at random with probability ".

Example 30 Suppose that a population ofN agents is ran-
domly matched to play the Stag Hunt game (Example 2):

H S
H h h
S 0 s :

Since s > h > 0, hunting hare and hunting stag are both
symmetric pure equilibria; the game also admits the sym-
metric mixed equilibrium x� D (x�H ; x

�
S ) D ( s�hs ;

h
s ).

If more than fraction x�H of the agents hunt hare, then
hare is the unique best response, while if more than frac-
tion x�S of the agents hunt stag, then stag is the unique best
response. Thus, under any deterministic dynamic that re-
spects payoffs, the mixed equilibrium x� divides the state
space into two basins of attraction, one for each of the two
pure equilibria.

Now consider our stochastic evolutionary process. If
the noise level " is small, this process typically behaves like
a deterministic process, moving quickly toward one of the
two pure states, eH D (1; 0) or eS D (0; 1), and remaining
there for some time. But since the process is ergodic, it will
eventually leave the pure state it reaches first, and in fact
will switch from one pure state to the other infinitely often.

To determine the stochastically stable state, we must
compute and compare the “improbabilities” of these tran-
sitions. If the current state is eH , a transition to eS re-

Evolutionary Game Theory, Figure 8
Equilibrium selection via mutation counting in Stag Hunt games

quires mutations to cause roughly Nx�S agents to switch to
the suboptimal strategy S, sending the population into the
basin of attraction of eS ; the probability of this event is of
order "Nx�S . Similarly, to transit from eS to eH , mutations
must cause roughly Nx�H D N(1 � x�S ) to switch from S to
H; this probability of this event is of order "N(1�x�S ).

Which of these rare events is more likely ones de-
pends on whether x�S is greater than or less than 1

2 . If
s > 2h, so that x�S <

1
2 , then "

Nx�S is much smaller than
"N(1�x�S ) when " is small; thus, state eS is stochastically
stable (Fig. 8a). If instead s < 2h, so that x�S >

1
2 , then

"N(1�x�S ) < "Nx�S , so eH is stochastically stable (Fig. 8b).
These calculations show that risk dominance – being

the optimal response against a uniformly randomizing op-
ponent – drives stochastic stability 2 � 2 games. In par-
ticular, when s < 2h, so that risk dominance and payoff
dominance disagree, stochastic stability favors the former
over the latter.

This example illustrates how under Bernoulli arrivals and
mutations, stochastic stability analysis is based on muta-
tion counting: that is, on determining how many simulta-
neous mutations are required to move from each equilib-
rium into the basin of attraction of each other equilibrium.
In games with more than two strategies, completing the
argument becomes more complicated than in the exam-
ple above: the analysis, typically based on the tree-analysis
techniques of [75,219], requires one to account for the rel-
ative difficulties of transitions between all pairs of equilib-
ria. [68] develops a streamlined method of computing the
stochastically stable state based on radius-coradius calcu-
lations; while this approach is not always sufficiently fine
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to yield a complete analysis, in the cases where it works it
can be considerably simpler to apply than the tree-analysis
method.

These techniques have been employed successfully
to variety of classes of games, including pure coordina-
tion games, supermodular games, games satisfying “band-
wagon” properties, and games with equilibria that sat-
isfy generalizations of risk dominance [68,120,121,134].
A closely related literature uses stochastic stability as a ba-
sis for evaluating traditional solution concepts for exten-
sive form games [90,115,122,128,152,168,169].

A number of authors have shown that variations on the
Bernoulli arrivals and mutations model can lead to differ-
ent equilibrium selection results. For instance, [165,211]
show that if choices are determined from the payoffs from
a single round of matching (rather than from expected
payoffs), the payoff dominant equilibrium rather than the
risk dominant equilibrium is selected. If choices depend
on strategies’ relative performances rather than their ab-
solute performances, then long run behavior need not
resemble a Nash equilibrium at all [26,161,171,198]. Fi-
nally, if the probability of mutation depends on the cur-
rent population state, then any recurrent set of the unper-
turbed process (e. g., any pure equilibrium of a coordina-
tion game) can be selected in the long run if the mutation
rates are specified in an appropriate way [27]. This last
result suggests that mistake probabilities should be pro-
vided with an explicit foundation, a topic we take up in
Sect. “Poisson Arrivals and Payoff Noise”.

Another important criticism of the stochastic stability
literature concerns the length of time needed for its predic-
tions to become relevant [31,67]. If the population size N
is large and the mutation rate " is small, then the probabil-
ity "cN that a transition between equilibria occurs during
given period is miniscule; the waiting time between tran-
sitions is thus enormous. Indeed, if the mutation rate falls
over time, or if the population size grows over time, then
ergodicity may fail, abrogating equilibrium selection en-
tirely [163,186]. These analyses suggest that except in ap-
plications with very long time horizons, the unique predic-
tions generated by analyses of stochastic stability may be
inappropriate, and that modelers would do better to focus
on history-dependent predictions of the sort provided by
deterministic models. At the same time, there are frame-
works in which stochastic stability becomes relevantmuch
more quickly. The most important of these are local inter-
action models, which we discuss in Sect. “Local Interac-
tion”.

Poisson Arrivals and Payoff Noise Combining the as-
sumption of Bernoulli arrivals of revision opportunities

with that of best responses with mutations creates a model
in which the probabilities of transitions between equilib-
ria are easy to compute: one can focus on events in which
large numbers of agents switch to a suboptimal strategy at
once, each doing so with the same probability. But the sim-
plicity of this argument also highlights the potency of the
assumptions behind it.

An appealing alternative approach is to model stochas-
tic evolution using Poisson arrivals of revision opportuni-
ties and payoff noise [29,31,38,39,63,135,145,209,210,222].
(One can achieve similar effects by looking at mod-
els defined in terms of stochastic differential equations;
see [18,48,74,79,113].) By allowing revision opportunities
to arrive in continuous time, as we did in Sect. “Revision
Protocols”, we ensure that agents do not receive oppor-
tunities simultaneously, ruling out the simultaneous mass
revisions that drive the Bernoulli arrival model. (One can
accomplish the same end using a discrete time model by
assuming that one agent updates during each period; the
resulting process is a random time change away from the
Poisson arrivals model.)

Under Poisson arrivals, transitions between equilibria
occur gradually, as the population works its way out of
basins of attraction one agent at a time. In this context,
the mutation assumption becomes particularly potent, en-
suring that the probabilities of suboptimal choices do not
vary with their payoff consequences. Under the alternative
assumption of payoff noise, one supposes that agents play
best responses to payoffs that are subject to random per-
turbations drawn from a fixed multivariate distribution.
In this case, suboptimal choices are much more likely near
basin boundaries, where the payoffs of second-best strate-
gies are not much less than those of optimal ones, than
they are at stable equilibria, where payoff differences are
larger.

Evidently, assuming Poisson arrivals and payoff noise
means that stochastic stability cannot be assessed by way of
mutation counting. To determine the unlikelihood of es-
caping from an equilibrium’s basin of attraction, one must
not only account for the “width” of the basin of attraction
(i. e., the number of suboptimal choices needed to escape
it), but also for its “depth” (the unlikelihood of each of
these choices). In two-strategy games this is not difficult to
accomplish: in this case the evolutionary process is a birth-
and-death chain, and its stationary distribution can be ex-
pressed using an explicit formula. Beyond this case, one
can employ the Freidlin and Wentzell [75] machinery, al-
though doing so tends to be computationally demanding.

This computational burden is less in models that re-
tain Poisson arrivals, but replace perturbed optimization
with decision rules based on imitation and mutation [80].
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Because agents imitate successful opponents, the popula-
tion spends the vast majority of periods on the edges of
the simplex, implying that the probabilities of transitions
between vertices can be determined using birth-and-death
chain methods [158]. As a consequence, one can reduce
the problem of finding the stochastically stable state in an
n strategy coordination game to that of computing the lim-
iting stationary distribution of an n state Markov chain.

Stochastic Stability via Large Population Limits The
approach to stochastic stability followed thus far relies
on small noise limits: that is, on evaluating the limit of
the stationary distributions �N;" as the noise level " ap-
proaches zero. Binmore and Samuelson [29] argue that in
the contexts where evolutionary models are appropriate,
the amount of noise in agents decisions is not negligible,
so that taking the low noise limit may not be desirable.
At the same time, evolutionary models are intended to de-
scribe behavior in large populations, suggesting an alterna-
tive approach: that of evaluating the limit of the stationary
distributions �N;" as the population size N grows large.

In one respect, this approach complicates the analysis.
When N is fixed and " varies, each stationary distribution
�N;" is a measure on the fixed state space XN D fx 2
X : Nx 2 Zng. But when " is fixed and N varies, the state
space XN varies as well, and one must introduce notions
of weak convergence of probability measures in order to
define stochastic stability.

But in other respects taking large population limits can
make analysis simpler.We saw in Sect. “Deterministic Ap-
proximation” that by taking the large population limit, we
can approximate the finite-horizon sample paths of the
stochastic evolutionary process fXN;"

t g by solutions to the
mean dynamic (M). Now we are concerned with infinite
horizon behavior, but it is still reasonable to hope that the
large population limit will again reduce some of our com-
putations to a calculus problems.

As one might expect, this approach is easiest to fol-
low in the two-strategy case, where for each fixed popu-
lation size N, the evolutionary process fXN;"

t g is a birth-
and-death chain. When one takes the large population
limit, the formulas for waiting times and for the station-
ary distribution can be evaluated using integral approxi-
mations [24,29,39,222]. Indeed, the approximations so ob-
tained take an appealing simple form [182].

The analysis becomes more complicated beyond
the two-strategy case, but certain models have proved
amenable to analysis. For instance [80], characterizes large
population stochastic stability in models based on imita-
tion and mutation. Imitation ensures that the population
spends nearly all periods on the edges of the simplex X,

and the large population limit makes evaluating the prob-
abilities of transitions along these edges relatively simple.

If one supposes that agents play best responses to noisy
payoffs, then one must account directly for the behav-
ior of the process fXN;"

t g in the interior of the simplex.
One possibility is to combine the deterministic approxi-
mation results from Sect. “Deterministic Approximation”
with techniques from the theory of stochastic approxima-
tion [20,21] to show that the large N limiting stationary
distribution is concentrated on attractors of the mean dy-
namic. By combining this idea with convergence results
for deterministic dynamics from Sect. “Global Conver-
gence”, Ref. [104] shows that the limiting stationary distri-
bution must be concentrated around equilibrium states in
potential games, stable games, and supermodular games.

The results in [104] do not address the question of
equilibrium selection. However, for the specific case of
logit evolution in potential games, a complete character-
ization of the large population limit of the process fXN;"

t g

has been obtained [23]. By combining deterministic ap-
proximation results, which describe the usual behavior of
the process within basins of attraction, with a large devi-
ations analysis, which characterizes the rare escapes from
basins of attraction, one can obtain a precise asymptotic
formula for the large N limiting stationary distribution.
This formula accounts both for the typical procession of
the process along solutions of the mean dynamic, and for
the rare sojourns of the process against this deterministic
flow.

Local Interaction

All of the game dynamics considered so far have been
based implicitly on the assumption of global interaction:
each agent’s payoffs depend directly on all agents’ actions.
In many contexts, one expects to the contrary that inter-
actions will be local in nature: for instance, agents may
live in fixed locations and interact only with neighbors.
In addition to providing a natural fit for these applica-
tions, local interactionmodels respond to some of the crit-
icisms of the stochastic stability literature. At the same
time, once one moves beyond relatively simple cases, lo-
cal interaction models become exceptionally complicated,
and so lend themselves to methods of analysis very differ-
ent from those considered thus far.

Stochastic Stability and Equilibrium Selection Revisited

In Sect. “Stochastic Stability and Equilibirum Selection”,
we saw the prediction of risk dominant equilibrium play
provided by stochastic stability models is subverted by the
waiting-time critique: namely, that the length of time re-
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quired before this equilibrium is reachedmay be extremely
long. Ellison [67,68] shows that if interactions are local,
then selection of the risk dominant equilibrium persists,
and waiting times are no longer an issue.

Example 31 In the simplest local interaction model,
a population ofN agents are located atN distinct positions
around a circle. During each period of play, each agent
plays the Stag Hunt game (Examples 2 and 30) with his
two nearest neighbors, following the same action against
both of his opponents. If we suppose that s 2 (h; 2h), so
that hunting hare is the risk dominant strategy, then by
definition, an agent whose neighbors play different strate-
gies finds it optimal to choose H himself.

Now suppose that there are Bernoulli arrivals of revi-
sion opportunities, and that decisions are based on best
responses and rare mutations. To move from the all S state
to the allH state, it is enough that a single agent mutates S
to H. This one mutation begins a chain reaction: the mu-
tating agent’s neighbors respond optimally by switching to
H themselves; they are followed in this by their own neigh-
bors; and the contagion continues until all agents choose
H. Since a single mutation is always enough to spur the
transition from all S to all H, the expected wait before this
transition is small, even when the population is large.

In contrast, the transition back from all H to all S is
extremely unlikely. Even if all but one of the agents si-
multaneouslymutate to S, the contagion process described
above will return the population to the all-H state. Thus,
while the transition from all-S to all-H occurs quickly, the
reverse transition takes even longer than in the global in-
teraction setting.

The local interaction approach to equilibrium selection
has been advanced in a variety of directions: by al-
lowing agents to choose their locations [69], or to pay
a cost to choose different strategies against different oppo-
nents [86], and by basing agents’ decisions on the attain-
ment of aspiration levels [11], or on imitation of success-
ful opponents [9,10]. A portion of this literature initiated
by Blume develops connections between local interaction
models in evolutionary game theory withmodels from sta-
tistical mechanics [36,37,38,124,141]. These models pro-
vide a point of departure for research on complex spatial
dynamics in games, which we consider next.

Complex Spatial Dynamics

The local interaction models described above address the
questions of convergence to equilibrium and selection
amongmultiple equilibria. In the cases where convergence
and selection results obtain, behavior in these models is

relatively simple, as most periods are spent with most
agents coordinating on a single strategy. A distinct branch
of the literature on evolution and local interaction focuses
on cases with complex dynamics, where instead of settling
quickly into a homogeneous, static configuration, behav-
ior remains in flux, with multiple strategies coexisting for
long periods of time.

Example 32 Cooperating is a dominated strategy in the
Prisoner’s Dilemma, and is not played in equilibrium in
finitely repeated versions of this game. Nevertheless, a pair
of Prisoner’s Dilemma tournaments conducted by Axel-
rod [14] were won by the strategy Tit-for-Tat, which coop-
erates against cooperative opponents and defects against
defectors. Axelrod’s work spawned a vast literature aiming
to understand the persistence of individually irrational but
socially beneficial behavior.

To address this question, Nowak and May [153,154,
155,156,157] consider a population of agents who are re-
peatedly matched to play the Prisoner’s Dilemma

C D
C 1 �"

D g 0 ;

where the greedy payoff g exceeds 1 and " > 0 is small. The
agents are positioned on a two-dimensional grid. During
each period, each agent plays the Prisoner’s Dilemma with
the eight agents in his (Moore) neighborhood. In the sim-
plest version of the model, all agents simultaneously up-
date their strategies at the end of each period. If an agent’s
total payoff that period is as high as that of any of neigh-
bor, he continues to play the same strategy; otherwise, he
switches to the strategy of the neighbor who obtained the
highest payoff.

Since defecting is a dominant strategy in the Prisoner’s
Dilemma, one might expect the local interaction process
to converge to a state at which all agents defect, as would
be the case in nearly any model of global interaction. But
while an agent is always better off defecting himself, he also
is better off the more of his neighbors cooperate; and since
evolution is based on imitation, cooperators tend to have
more cooperators as neighbors than do defectors.

In Figs. 9–11, we present snapshots of the local interac-
tion process for choices of the greedy payoff g from each of
three distinct parameter regions. If g > 5

3 (Fig. 9), the pro-
cess quickly converges to a configuration containing a few
rectangular islands of cooperators in a sea of defectors; the
exact configuration depending on the initial conditions. If
instead g < 8

5 (Fig. 10), the process moves towards a con-
figuration in which agents other than those in a “web” of
defectors cooperate. But for g 2 ( 85 ;

5
3 ) (Fig. 11), the sys-
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Evolutionary Game Theory, Figure 9
Local interaction in a Prisoner’s Dilemma; greedy payoff g D 1:7. In Figs. 9–11, agents are arrayed on a 100 × 100 grid with periodic
boundaries (i. e., a torus). Initial conditions are random with 75% cooperators and 25% defectors. Agents update simultaneously,
imitating the neighbor who earned the highest payoff. Blue cells represent cooperators who also cooperated last period, green cells
represent new cooperators; red cells represent defectors whoalso defected last period, yellow cells represent new defectors. (Figs. 9–
11 created using VirtualLabs [92])

Evolutionary Game Theory, Figure 10
Local interaction in a Prisoner’s Dilemma; greedy payoff g D 1:55

Evolutionary Game Theory, Figure 11
Local interaction in a Prisoner’s Dilemma; greedy payoff g D 1:65
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tem evolves in a complicated fashion, with clusters of co-
operators and of defectors forming, expanding, disappear-
ing, and reforming. But while the configuration of behav-
ior never stabilizes, the proportion of cooperators appears
to settle down to about .30.

The specification of the dynamics considered above,
based on simultaneous updating and certain imitation of
the most successful neighbor, presents a relatively favor-
able environment for cooperative behavior. Nevertheless,
under Poisson arrivals of revision opportunities, or proba-
bilistic decision rules, or both, cooperation can persist for
very long periods of time for values of g significantly larger
than 1 [154,155].

The literature on complex spatial dynamics in evolution-
ary game models is large and rapidly growing, with the
evolution of behavior in the spatial Prisoners’ Dilemma
being the single most-studied environment. While anal-
yses are typically based on simulations, analytical re-
sults have been obtained in some relatively simple set-
tings [71,94].

Recent work on complex spatial dynamics has consid-
ered games with three or more strategies, including Rock–
Paper–Scissors games, as well as public good contribution
games and Prisoner’s Dilemmas with voluntary partici-
pation. Introducing more than two strategies can lead to
qualitatively novel dynamic phenomena, including large-
scale spatial cycles and traveling waves [93,202,203]. In ad-
dition to simulations, the analysis of complex spatial dy-
namics is often based on approximation techniques from
non-equilibrium statistical physics, and much of the re-
search on these dynamics has appeared in the physics liter-
ature. [201] offers a comprehensive survey of work on this
topic.

Applications

Evolutionary game theory was created with biological
applications squarely in mind. In the prehistory of the
field, Fisher [73] and Hamilton [87] used game-theoretic
ideas to understand the evolution of sex ratios. Maynard
Smith [137,138,139,140] introduced his definition of ESS
as a way of understanding ritualized animal conflicts. Since
these early contributions, evolutionary game theory has
been used to study a diverse array of biological questions,
including mate choice, parental investment, parent-off-
spring conflict, social foraging, and predator-prey systems.
For overviews of research on these and other topics in bi-
ology, see [65,88].

The early development of evolutionary game theory
in economics was motivated primarily by theoretical con-
cerns: the justification of traditional game-theoretic solu-

tion concepts, and the development of methods for equi-
librium selection in games with multiple stable equilibria.
More recently, evolutionary game theory has been applied
to concrete economic environments, in some instances as
a means of contending with equilibrium selection prob-
lems, and in others to obtain an explicitly dynamic model
of the phenomena of interest. Of course, these applications
are most successful when the behavioral assumptions that
underlie the evolutionary approach are appropriate, and
when the time horizon needed for the results to become
relevant corresponds to the one germane to the applica-
tion at hand.

Topics in economics theoretical studied using the
methods of evolutionary game theory range from behav-
ior in markets [1,6,7,8,12,19,64,112,129,212], to bargain-
ing and hold-up problems [32,46,57,66,164,208,220,221,
222], to externality and implementation problems [47,49,
136,174,177,180], to questions of public good provision
and collective action [146,147,148]. The techniques de-
scribed here are being appliedwith increasing frequency to
problems of broader social science interest, including res-
idential segregation [40,62,142,222,223,225,226] and cul-
tural evolution [34,126], and to the study of behavior in
transportation and computer networks [72,143,150,173,
175,177,197]. A proliferating branch of research extends
the approaches described in this article to address the evo-
lution of structure and behavior in social networks; a num-
ber of recent books [85,114,213] offer detailed treatments
of work in this domain.

Future Directions

Evolutionary game theory is a maturing field; many basic
theoretical issues are well understood, but many difficult
questions remain. It is tempting to say that stochastic and
local interaction models offer the more open terrain for
further explorations. But while it is true that we know less
about these models than about deterministic evolution-
ary dynamics, even our knowledge of the latter is limited:
while dynamics on one and two dimensional state spaces,
and for games satisfying a few interesting structural as-
sumptions, are well-understood, the dynamics of behavior
in the vast majority of many-strategy games are not.

The prospects for further applications of the tools of
evolutionary game theory are brighter still. In economics,
and in other social sciences, the analysis of mathematical
models has too often been synonymous with the compu-
tation and evaluation of equilibrium behavior. The ques-
tions of whether and how equilibrium will come to be are
often ignored, and the possibility of long-term disequilib-
rium behavior left unmentioned. For settings in which its
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assumptions are tenable, evolutionary game theory offers
a host of techniques for modeling the dynamics of eco-
nomic behavior. The exploitation of the possibilities for
a deeper understanding of human social interactions has
hardly begun.
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