Corrections to *Population Games and Evolutionary Dynamics* (MIT Press, 2010)

Substantive corrections:

- p64 l16&17 this should say “...a potential game with a concave potential function, whose set of Nash equilibria is therefore convex.”
- p260 l-4 add “and solutions are continuous in initial conditions” [this condition on (D) is needed for Theorem 7.B.3—see p264]
- p264 l11 “Since solutions to (D) are unique, and hence continuous in...” \[\rightarrow\] “Since solutions to (D) are continuous in...” [see p260]
- p465 the last paragraph of the proof of Theorem 12.2.2 can be replaced by the observation that \(\log \mu_{N,\eta}^N\) is always nonpositive (since \(\mu_{N,\eta}^N\) is a probability)

Typos and other minor things:

- p xxi fig 1 “Sec. 12.5 only” \[\rightarrow\] “Sec. 12.6 only”
- p17 l16 “chapter 5” \[\rightarrow\] “chapter 4”
- p37 fig 2.9 the axis labels should be \(x_H\) and \(x_D\)
- p54 l17 \(\mathbb{R}^n \rightarrow \mathbb{R}^n_+\)
- p54 l19 \(x^p \rightarrow x^p\)
- p64 l18 \(\mathbb{R}^n_+ \rightarrow X\)
- p64 l11 \(m^p \rightarrow m^p\)
- p93 l6 omit “equation (3.20) from the previous proof shows that”
- p94 l-5 the line should end with \(x, y \in X\)
- p94 l-1 the first \(\Sigma\) should be \(\bar{\Sigma}\)
- p99 l2 \(j \min b(x) \rightarrow j = \min b(x)\)
- p116 l11 this should say \(x \in GESS(F) \iff x \in \bigcap_{y \in X - \{x\}} I_F(y)\)
- p123 l-2 \(F \rightarrow F\)
- p134 \(e \rightarrow e\) (twice)
- p141 l3 “interpretaion” \[\rightarrow\] “interpretation”
- p166 l10 \(\pi_i^p(x) \rightarrow \pi_i^p\)
- p172 l-14 \(p \rightarrow p\)
- p183 l4 this dynamic \[\rightarrow\] the best response dynamic
- p184 l7 omit “is globally stable and”
- p194 l-8 after the comma, add “let \(F(x)\) denote the distribution function of \(\varepsilon_i\) and”
- p208 l8 \(|y_s - x_s| \rightarrow |y_s - x_s|^2\)
omit “are”

“That \tilde{f}” \rightarrow “That \tilde{f}”

ded this with “dynamics with protocols of the form”

$G^{-1}(0) \rightarrow \tilde{G}^{-1}(0)$

end this with “for this dynamic with $\varepsilon = \frac{1}{10}$”

t \rightarrow t_k

$\sum_{j=1}^{k} t_i \rightarrow \sum_{j=1}^{k} t_i$; also, $x_j \rightarrow x_i$

replace this with “...embed this flow in the plane as an asymptotically stable homoclinic orbit whose rest point is attracting but not asymptotically stable.”

“also they” \rightarrow “they also”

“equilibrium” \rightarrow “equilibrium”

in the bottom row of the last matrix, ξ_1 should be ξ_2

“the real and imaginary parts”

“important” \rightarrow “importantly”

“sufficiently” \rightarrow “sufficiently”

$\hat{V}(y) = h(V(h^{-1}(y))) \rightarrow \hat{V}(y) = MV(h^{-1}(y))$

omit “and the Poincaré-Bendixson Theorem”

$X^N \rightarrow X^N_t$

“Sandholm” \rightarrow “Sandholm” (!)

$\Phi_i \rightarrow \Phi$

the summand should be $(P^N_1(i, N-j) - P^N_0(i, N-j+1))$

$f \rightarrow f^N$

$f \rightarrow f^N; \tilde{f} \rightarrow \tilde{f}^N$

“part (i)” \rightarrow “parts (i) and (ii)”

$I^\eta(x) \rightarrow I^\eta(x)$

$\Delta_F \rightarrow F_\Delta$

$+1 \rightarrow -1$

[0, ε] \rightarrow (0, ε) (twice)

for all $i, j, k \in S$ \rightarrow for all distinct $i, j, k \in S$ (and hence for all $i, j, k \in S$ with $i \neq j$ and $i \neq k$ (why?))

“Theory” \rightarrow “The Theory”

81–108 \rightarrow 667–689

“upperhemicontinuous” \rightarrow “upper-hemicontinuous”