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Introduction 

 
Our purpose in this chapter is to explain the value of mathematical modeling of social movement 
phenomena.  We have the daunting task of speaking to two very different audiences: those 
comfortable with mathematics who want to develop mathematical models relevant to social 
movements, and those uncomfortable with mathematics who want to learn helpful things about 
movements from the mathematics-based work of others.  We will try to speak to both audiences, 
and we ask the forbearance of each toward those sections that aimed at the other.    

For those who begin feeling that mathematics is an alien and even dehumanizing tool, we 
suggest that mathematical language can be understood in cultural terms, as a mode of 
communication that uses particular symbols and patterns to convey meaning.  Like any 
unfamiliar culture, the modes of expression seem alien at first, but when you know the language 
and its meanings, you can recognize its beauty and discover that some ideas can be expressed 
more clearly in that language than any other.  Mathematics is a language that permits thoughts 
and new ideas that simply cannot be expressed in other ways.  If you don’t speak the language of 
mathematics, it is like reading poetry in translation: you get some of the ideas, but never the full 
power and beauty of the original.   

To expand this point further, consider an example from statistics (not formal models), but 
one familiar to most sociologists: a table of multivariate regression coefficients.   Such a table 
summarizes information that would otherwise require several pages to explain and does so in a 
format that is easier to understand and evaluate than a verbal description ever could be.  You do 
need to learn the cultural practice or language of a regression table to understand it, but if you 
know the language, it is a very efficient and clear mode of communication.  Knowing the 
language of a regression table is essential for sociologists, and so is knowing enough 
mathematical notation to read basic algebraic equations, even if you do not want to do 
mathematical sociology yourself. 

The translation metaphor also has meaning for those who do “speak” mathematics.  There 
is value in carefully translating mathematics into words, so that those who do not readily grasp 
equations can appreciate the ideas they convey.  And, just as some have been inspired to learn 
Italian or Arabic to appreciate Dante or the Koran, some sociologists have been inspired to learn 
more mathematics from the interest sparked by verbal translations of mathematical sociology. 

In this spirit, we welcome all of you to a discussion of mathematical models in the study 
of collective behavior and social movements.  We approach this enterprise with an assumption 
that the full understanding of any social phenomenon requires many different approaches and 
methodologies, and that our task is to explain the value of mathematical models as one of them.  
Analogies to poetry notwithstanding, we still have the language problem.  All but the very 
simplest mathematical formulations cannot be explained without equations, and a full exposition 
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of any complex model can require twenty pages or more.  Just as the chapters about survey 
research or participant observation cannot actually let you experience the research method, we 
are reduced to writing about mathematical methods while only demonstrating them on a cursory 
level. 
 
The Problem of Collective Action  

Let's begin where math models in social movements began, with the problem of 
collective action.  Although "collective action" might refer to anything people do together, most 
social scientists have defined it as an action which provides a shared good, deriving their view 
from Mancur Olson's The Logic of Collective Action (1965).  Olson woke up social science by 
claiming that "rational, self-interested individuals will not act to achieve their common or group 
interests" (1965:2).  Prior to Olson, sociologists assumed a natural tendency led people to act on 
shared interests.  But economists had long argued that coercive taxation is necessary because 
rational individuals would not voluntarily contribute to public goods such as armies, public 
schools, or sewage systems which could not be withheld from those who did not pay.  Olson 
argued that all group interests were subject to the same dilemma because when benefits cannot 
be withheld from non-contributors, rational individuals are motivated to free ride on the 
contributions of others.  Olson influenced early resource mobilization theory by focusing 
attention on the problem of getting people to participate in collective action, and thus, the last 
thirty years of social movements theory.  

Olson accompanied his verbal arguments with equations.  By the 1970s, however, many 
had argued that Olson's equations were too limited for use in further theorizing and began to 
develop other ways of expressing the problem.  In the process, they stopped asking if collective 
action is rational and began identifying conditions where collective action was more or less 
likely (see Hardin 1982; and Oliver 1993 for reviews). 

One line connected Olson's problem to the Prisoners' Dilemma (PD).  The original 
"story" of the PD game is that two criminals are caught for committing a burglary together and 
interrogated separately.  If neither confesses (both cooperate), each will get a two year sentence.  
If both confess (both defect) each will get a 6 year sentence.  If one confesses (defects) while the 
other does not, the defector gets immunity while the cooperator gets ten years.  The PD game 
reflects Olson's problem because both players are tempted to "free ride" on the cooperation of the 
other given that each always benefit from defecting.  Hardin (1971) argued that collective action 
was a prisoners' dilemma between "self" and "the group," and the PD tradition continues to be a 
major framework for analysis.  However, others (e.g. Runge 1984, Cortazar 1997, Hamburger 
1979, Chong 1991, Heckathorn 1996) argued that collective action can also be an "assurance 
game" in which all benefit if all cooperate, but are hurt if someone defects.  Game theory 
provides a rich history of considering the strategies derived from various payoff structures, rules 
about repeating the game, and how players communicate.  But while this tradition is useful for 
analyzing strategic interaction in two-actor systems and certain small group situations, it is too 
cumbersome and intractable for modeling action in large heterogeneous groups. 

The approach that has proved more flexible in the long run begins with decision theory 
equations.  Decision equations are based on the idea that people will do things that bring them 
net benefits. Theorists have developed various ways of expressing an individual’s benefits as a 
function of his/her own actions and the actions of others in the group.  To translate this kind of 
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idea into mathematics, we will identify five important elements.  First, there is the outcome of 
the model we’ll call Gi, which is the net gain to any individual i.  The second element is the costs 
of contributions to the collective good.  We’ll allow individual contributions of different sizes 
and call a contribution size r, and call Ci the cost to the individual of making a contribution of 
size r.  In addition, we will represent the contributions of all others as R.  The third element, P, is 
the amount of the collective good that is provided (to everyone) based on the total contribution 
(R+r if i contributes, and R if i does not contribute).  Of course, levels of provision have different 
value to each individual, so we will call vi the value of P to an individual.  Finally, we allow for 
selective incentives, I, which is the value of any private incentives given to contributors.  
Following Oliver (1980) then, these elements are combined into a general model:  
 Gi(r) = vi[P(R + r) - P(R)] + I - Ci(r),  
in which the net gain to i is a function of the value vi accruing from their contribution level r plus 
selective incentives, minus the costs incurred. 

We then need a rule for how behavior is affected by the net payoff Gi(r).  A "determinate" 
decision rule common in economics says that a person will choose the action with the highest 
payoff, regardless of whether contributing versus not changes the payoff by 1 unit or 100 units.  
Psychologists predict behavior more probabilistically.  If the payoff difference between 
contributing and not is 51 vs. 49, they would predict that actors would contribute 51% of the 
time and not contribute 49% of the time, while if the payoff from contributing is 95 and of not 
contributing is 5, actors would contribute 95% of the time and withhold only 5%.  By contrast, a 
determinate model would predict contributing 100% of the time in both cases because it is the 
option with the highest payoff.  Determinate decision rules are easier represent and manipulate in 
equations, while probabilistic decision rules usually fit empirical data better. 

Using the simpler determinate decision model, we can predict cooperation if the net 
payoff is greater than zero, i.e. Gi(r)>0.  We can use elementary algebra to show that G>0 if 
[P(R+r)-P(R)] > (Ci(r) –I)/ vi.  The term [P(R+r)-P(R)] is a production function, which gives the 
difference in the payoff P produced by a contribution r.   If r makes no difference in P (as Olson 
argued), this term will be zero, and no level of contribution is ever rational unless 0 > (Ci(r) – I)/ 
vi which is true only if the selective incentive is greater than the cost (I > Ci(r)).  This is exactly 
the situation Olson had in mind; the collective good (P) makes no difference in the outcome, only 
the relation between the cost and the incentive.  However, if P(R+r)>P(R) then collective action 
might be rational without incentives, depending on the cost. 

There are several important aspects of this example that recur in models of collective 
action, and mathematical models more generally.  First, it lays out a clear way of talking about 
the problem and identifying what factors are to be considered.  Second, standard mathematical 
rules, in this case algebra, allow us to derive new relations from the given information.  Third, 
while the new derivations were completely present in the original equation, they may not have 
been obvious until we performed the manipulation.  Finally, and most importantly, we cannot 
“solve” this equation to determine if collective action is rational.  The most important factor is 
whether r makes a difference in P, and nothing in the equation tells us whether or not that is so.  
We will have to make some additional assumptions about the nature of that relationship to get an 
answer.  Theorists have had spirited arguments about which assumptions are reasonable and the 
conditions under which different assumptions are reasonable, but there is no mathematical proof 
that can resolve the matter.  These untested assumptions are called the “scope conditions” of a 
theory, and we will say more about them below. 
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Determinate individual decision models are also used as parts of more complex models of 
interdependent decisions involving many heterogeneous individuals.  Modeling multiple actors 
requires developing additional rules for how their actions affect each other.  Oliver et al (1985) 
assumed that people make decisions sequentially, and showed that heterogeneous groups would 
behave differently from single individuals or homogeneous groups, depending on the shape of 
the production function P.  They emphasized the "critical mass," the subset of actors with high 
interest in the collective good who play special roles in collective action.  In some cases, the 
production function is decelerating so that the difference P(R+r)-P(R) gets smaller as the total 
number of prior contributions increases: in this case, the critical mass provides the good while 
everyone else free rides.  In other cases, the production function is accelerating so that the 
difference P(R+r)-P(R) gets larger as the total number of prior contributions increases: in this 
case, the critical mass overcomes start-up costs and creates conditions which motivate the rest to 
participate.  They also argued (Oliver and Marwell 1988) that the relationship between a group's 
size and the rationality of collective action varies depending on the production function, 
critiquing Olson's (1965) claims that large groups could not provide collective goods. 

Many scholars have taken up the problem of collective action, and we can mention only a 
few examples here.  Macy (1990, 1991a, 1991b, 1993, 1997) has focused on changing the core 
decision rule from determinate to a probabilistic model of adaptive learning.  Macy assumes that 
the baseline is not a no-cost zero point, but an aversive situation that motivates actors to try other 
options.  Collective action happens when several actors probabilistically try cooperation 
together, and produce better outcomes.  Heckathorn (1988, 1990, 1993, 1996) has developed 
models in which actors can coerce each other into cooperating.  A wide variety of outcomes can 
occur depending on the configuration of payoffs and incentive systems.  In two interesting 
results, he shows that "hypocritical cooperation" (making others cooperate while you privately 
defect) can generate collective action, and that some situations create an "altruist's dilemma" in 
which those who do what is good for others cause worse overall outcomes compared to people 
who behave selfishly.  Kim and Bearman (1997) assume that interests can change, rather than 
remain fixed.  People will change their interests, and expect others to change as well, when they 
encounter cooperators who have higher interests and defector with lower interests. 
 Although collective action theory is often called "rational action" theory, theorists have 
often developed models which modify the assumption of self-interested egoism.  One example is 
Gould (1993), who assumes that individuals are motivated by fairness norms.  He assumes that 
people neither like being exploited nor wish to be viewed as exploiters, so they adjust their 
contributions to match others.  These fairness rules lead to cascades of adjustment until a steady-
state equilibrium is reached in which everyone's fairness norm is satisfied.  Although his model 
is too complex to completely explain here, the first step gives the core notion of the approach.  In 
the model, one person starts contributing independent of others and everyone else begins trying 
to “match” their contribution to the everyone else's average contribution.  As the contribution 
levels move away from zero, they are governed by this equation:  
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This equation says that i’s contribution at time t equals the average of everyone else’s 

contributions at time t-1 multiplied by λ, a parameter that ranges between 0 and 1, where 1 
means you match the average perfectly, and 0 means you stay at zero no matter what else others 
do.  Using this model, Gould examines the effects of network density and the position within the 
network of initial contributors by assuming that the fairness equation above considers only those 
people to whom an actor has network ties.  

Notice that we cannot directly test the model to see if Gould's "fairness maximizer" 
assumption is better than the "self-interested egoist" assumption.  Instead, different theorists 
make different assumptions about the core principal by which people make decisions, and then 
derive the consequences of those assumptions.  Most sociologists would agree that different 
people operate under different principles, and that the same people operate under different 
principles in different settings.  Thus theories with different core assumptions should not be 
evaluated as "right" or "wrong," but as more or less applicable to different situations.  
 

GENERATING AND ANALYZING MATHEMATICAL MODELS 
In the balance of this chapter, we talk about some of the fundamental principles in 

generating and analyzing a formal mathematical model.  We outline the steps to model building 
and discuss some of the issues involved in each.  In the process, we summarize some published 
works which illustrate the issues and give some brief examples from our own ongoing work in 
modeling the diffusion of protest and collective violence.  Readers who are more interested in 
reading and evaluating models than in writing them should find our discussion to serve as a solid 
pointer to issues to consider in evaluating others' models. 

1.  Acquire knowledge about the process you want to model.  Before developing a model 
of social process, it is critical to know as much as possible about the process.  You should 
understand both the prior theory that has been done in your area, as well as be familiar relevant 
empirical patterns and with previous theorizing (verbal or formal) related to the process.  For 
example, a growing body of published data shows counts of protest or collective violence events 
over time.  We note several empirical generalizations about these data plots: 1) they tend to be 
wave-like, that is they go up and then come down; 2) they tend to be fairly peaked or "spiky," 
rising and falling much more rapidly than most continuous mathematical functions; 3) they 
exhibit smaller waves within  larger waves.  Another example is that repression sometimes 
suppresses protest and other times spurs more protest.  Most scholars believe that the effect of 
repression on protest is curvilinear: moderate repression spurs protest while severe repression 
destroys it and zero repression makes it look unimportant.  Elegant mathematical models may be 
published in technical journals, but they will not have impact on sociology unless they are well 
linked to broader theoretical and empirical issues.  Knowing the literature will also help you 
avoid "reinventing the wheel" and produce a real advance by building on the work of others.   

Finally we want to emphasize the importance of looking to other disciplines and past 
work for mathematical forms that may be useful.  For example, Macy (1990) adapted a standard 
learning theory model for his analysis of collective action, while  Chong (1991) adapted an 
economics model of supply and demand.  Oliver and Myers (1998) suggest that the 
interdependent diffusion of collective action and regime responses might adapt biological models 
of the coevolution of species.  Having some familiar terrain in your models will make it easier to 
understand their behavior and make them more stable. As much as possible, build models using 
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standard mathematical forms with well-known properties.   
2.  Clearly specify the kind of problem you wish to solve.  Supposing that you want to 

explain the rise and fall of protest over time.  Conceptually, there are two general approaches.  
The first takes one or more well-defined empirical instances for which there is data and attempts 
to create a mathematical model that fits the data well.  Such models are widely used in 
engineering and physical sciences to represent specific physical systems such as manufacturing 
production processes or predator-prey relationships.  Once the model is constructed, it can be 
used to determine how the outcomes of the system would change if some elements in the system 
were altered.  Demographers use this approach to construct models of populations, showing how 
they change in response to a particular influence, such as an increase in contraceptive use or an 
increase in AIDS infection.  Once a model of one particular instance has been created, it can be 
modified to represent other similar processes.  Empirical models, therefore, can be aggregated to 
develop more abstract theory.  In our work modeling protest cycles, we have found that the best 
type of mathematic model for representing the basic "look" of empirical protest cycles starts with 
a set of actors who are assumed to emit protest with some relatively low probability.  This simple 
stochastic or probabilistic model generates some of the waves and spikes seen in empirical data 
(and also is a plausible representation of the underlying process producing protest events).  

The second kind of model seeks to represent a single abstracted process and is more 
squarely a theory development enterprise.  Rather than representing any empirical case, the 
model represents a unitary process involved in a wide variety of empirical instances, e.g. rational 
choice, adaptive learning, strategic interaction.   Instead of being tied to data, the mathematical 
model itself is taken as a given because it is a plausible representation of the process of interest 
and analysis focuses on following the model through to its logical conclusions to predict 
outcomes.  Tests of predictions are generally left to subsequent researchers, who may compare 
the predictions of competing theories.  In our work, we have developed a formal model which 
assumes that protest cycles are the net result of two diffusion processes in which ideas spread 
through a population, the first idea being the encouragement to protest and the second being the 
repression of protest; this model fits the data better than prior simpler models. 

In general, models should either represent a unitary process (or the interaction of a few 
well-studied unitary processes) or should be closely tied to empirical data.  Complex models 
which attempt to represent the interactions among many processes without empirical ties have 
too many degrees of freedom and are usually impossible to analyze or validate in any systematic 
way. 

3.  Select the basic modeling strategy.  There are many different approaches to 
constructing mathematical models and different kinds of mathematical representations will be 
more or less effective in capturing the process of interest.  First, there are the number of 
equations involved in representing the system.  Some processes can be modeled with a single 
equation that can manipulated by standard mathematical operations and transformed to produce 
predictions about the outcomes of the process.  In some cases, a series of equations representing 
sub-processes can be resolved into a single equation that predict outcomes.  On the other end of 
the spectrum are models in which there is a separate equation governing the behavior of each 
individual and these equations interact with each other to produce the outcomes of the system. 
Single equation or "analytic" models are much more prestigious in the esthetics of mathematics 
and are advantageous because they allow standard mathematical operations such as integration, 
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taking derivatives, solving for equilibria or optima, finding asymptotes, solving for thresholds, 
and so forth.  It is  much harder (if not impossible) to obtain straightforward "analytic" solutions 
to multi-equation systems, forcing the analyst to find numeric solutions or generate outcomes via 
simulation.   A single equation can sometimes summarize the behavior of a homogeneous group 
in which everyone is identical, but multiple equations are generally necessary to represent the 
interdependent actions of a heterogeneous group.  As we work on the problem of modeling 
protest waves, for example, we are finding that they are best represented as the accumulation of 
randomly-determined actions by a set of different actors whose actions affect each other.  Such 
models involve creating large arrays  in which each row represents an actor and each column 
represents actors' characteristics (e.g. interest, resources); models which include network ties 
among actors have another matrix representing the presence or absence of all possible ties.  Even 
if determinate individual decision models are used, such multi-actor systems can be very large 
and complex, and not amenable to elegant solutions.  Instead, the systems are represented in 
computer programs which perform large numbers of calculations to yield each result.  A multi-
equation approach which we do not have space to discuss is "cellular automata," in which 
equations are written to describe how individuals react probabilistically to those near to them, 
and then these relations predict large-scale phenomena: for example, equations describe how 
water molecules react to each other, and then can be aggregated into macro phenomena such as 
river flows.  (See Gaylord, D'Andria, and Dandria 1998) Such models may be appropriate for the 
spread of ideologies through populations. 

Multi-equation systems have been used to model the behavior of people in temporary 
gatherings or crowds.  McPhail's cybernetic control theory says collective action is coordinated 
by individuals adjusting their behavior to bring their perceptual signals in line with a reference 
signal; models based on this theory show how clusters, arcs, and rings form in crowds as a 
consequence of common orientations  (McPhail 1991, 1993).  Feinberg and Johnson (Johnson 
and Feinberg 1977, 1990; Feinberg and Johnson 1988, 1990a, 1990b) model  the well-
established empirical phenomenon of "milling" in a crowd, wherein people move around and talk 
with others near them.  Processes built into these models include the influence of other people 
nearby, the influence of a central agent who is trying to influence the crowd, and the backing 
away of those who disagree with the emerging consensus.  Johnson and Feinberg's insight, that 
consensus is a product of both influence and exit, is important for understanding the processes of 
action within a wide range of collectives and the construction and diffusion of a social movement 
ideology might work according to similar principles. 

Another type of modeling strategy specifies the general form of a model based on 
assumptions about a social process, but the exact shape of the function that represents it is not 
determined until the model is fit to data.  In such cases, there are one or more parameters in the 
model that are left unspecified until the function is matched to data and the values of the 
parameters are selected to provide the best fit between model and data.  This approach to 
modeling has been very popular in the diffusion literature and was used in particular to model 
collective violence diffusion by Pitcher, Hamblin, and Miller’s (1978).  The core assumption in 
the model was that the expression of collective violence is controlled by imitation and inhibition 
processes which are informed by vicarious learning from the outcomes of prior events.  For both 
imitation and inhibition effects, a scale parameter is introduced in the model which relates the 
relative impact of prior adoptions on later ones.   

Although the authors could have treated their model analytically and shown how it 
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responds to systematic variations in the parameters, they chose instead to estimate the parameters 
of their model by "fitting" it to empirical data.  The approach to has its strengths and weaknesses.  
One weakness is that the model cannot be tested empirically without first using the data to 
determine the final form of the model.  With enough free-floating parameters, models can fit 
extremely well to nearly any empirical situation.  On the other hand, if that model is well-
conceived and each parameter has clear substantive meaning, the parameters can be compared to 
tell something about a social situation that cannot be related by models that do not depend on the 
empirical data.  For example, a parameter conveys the infectiousness of an event within a 
diffusion process, comparing the estimated parameters across waves that differ in forms of action 
or occur in different historical or political contexts tell us something about how inter-actor 
influence responds to these different kinds of conditions.   

Further complexity is introduced into the modeling process when we consider the 
difference between determinate models and stochastic models.  Determinate models give a 
definite single result for each combination of inputs--no matter how many times predictions from 
the model are computed, the result will always be the same.  Rational action models are 
generally determinate models: at each decision point, the actor is assumed to choose the single 
action with the highest payoff.  A stochastic model is one in which some of the variables are 
probability distributions rather than single numbers.  Adaptive learning models (e.g. Macy 1990) 
are stochastic models, because at a given time, each actor's behavior is not determined but 
instead reflects a probability distribution.  Our work on modeling protest cycles indicates that 
stochastic models produce simulated event times series that most resemble empirical protest 
event time series.  Because of the random element involved in stochastic models, the predicted 
outcomes are considerably more complex--each time the model is run, a different prediction can 
be produced.  These kinds of models, therefore produce probability distributions of predicted 
outcomes for each combination of inputs, and the character of these distributions become central 
to understanding the model an assessing how well it models an empirical process.  

4.  Start simply and build carefully.  Before developing and testing a model with all the 
complexity you ultimately wish to capture, start by testing the behavior the simplest possible 
model for under very simple conditions to be sure that it is free of "glitches."  If your model 
produces the desired pattern, then begin to add factors or features parsimoniously--just enough to 
capture the process of interest.  If the model has sub-processes, validate each completely before 
allowing them to interact.  If you do not fully understand the behavior of simple constituent 
processes, the results of an elaborate model can be extremely misleading.  

Once you begin working with your full model, make certain you test it under the full 
range of possible conditions.  Consider the reasonable range of every variable, and check the 
behavior of the model under combinations of extremes, e.g., when one variable is zero, another is 
very large and another is very small.  You should also verify that the model is being calculated 
correctly by running tests of the model with simple "round" numbers and checking the results by 
hand (or at least through independent computations via a spreadsheet).  If there are relevant 
empirical data or published simulation results from others' work, put those values into the model 
to see if it generates the correct output.   

5.  Face the problem of metric.  Variables in mathematical models inherently are tied to 
some scale of measurement or metric.  Failure to recognize different metrics in a model can 
distort the results and even make parameters completely nonsensical.  Problems with metric 
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recently made big news when a Mars landing module malfunctioned because data had been 
entered in the English (inches, feet, miles) system instead of the metric system.  Unfortunately, 
there is almost no discussion of metric in social science, and many published mathematical 
models fail to treat metric properly.  It is all too common to see published models in which 
parameters have been chosen arbitrarily to give "interesting" numerical results with no attention 
at all to what those numbers might mean. 

There are two ways to handle metric correctly.  The first is to explicitly specify the metric 
for every variable in the model.  When all factors have the same metric, the metric can be 
ignored as it "cancels out."  More commonly, attention has to be paid to the translation between 
metrics.  For example, models of the interactions between movements and states (either state 
policies or state repression) require an explicit attention to metric that is not easily resolved.  
Mobilization is usually measured as numbers of events, or numbers of participants (although 
these only incompletely capture the disruptiveness and intensity of mobilization).  But in what 
units should repression or state policies be measured?  And what specifically is the relation 
between a unit of repression and a unit of protest?  These are not easy questions to answer, but 
they must be to produce a meaningful model. 

The second choice is to normalize or standardize the model so that every term in the 
model is either expressed in the same metric or is metric-free.  Physical scientists typically use 
the term "normalize," while social scientists generally use the term "standardize" for the same 
general concept.  Computing standard scores (subtracting the variable's mean and dividing by its 
standard deviation) is one example of standardization, although not commonly used in modeling.  
One common strategy is to express some variables as functions of others.  Another is to express 
variables as proportions reflecting their location between meaningful maximum and minimum 
values.  Complex normalizations usually require both strategies.  Marwell and Oliver (1993. pp. 
27-28), for example, standardize their model by assuming there is a maximum or high provision 
level that can be set equal to 1 (so that all other provision levels are expressed as proportions of 
this level), and carefully define contributions, costs, and benefits in terms of these standardized 
provision levels.  

6.  Explicitly identify the scope conditions and assumptions.  All theories, whether verbal 
or mathematical, positivist or constructionist, contain a variety of assumptions--suppositions 
taken to be true without proof.  Unfortunately, these assumptions are often unacknowledged in 
much verbal theorizing.  One advantage of formal mathematical theory is that the logic of the 
mathematics itself forces theorists to specify their assumptions, or at least makes make them 
manifest the mathematics of the model.  Three kinds of assumptions are important in 
mathematical models.  The first is that the mathematical form use is an adequate representation 
of a process of interest.  In empirical modeling, this assumption need not be taken as a given, but 
may be based on empirical data.  In theoretical modeling, the justification for form is grounded 
in a belief that it imitates the process of interest.  For example, rational action models express in 
an equation a conscious thought process of weighing cost and benefits that people are believed to 
use in decision making.  In other cases, theorists have written models in which they do not know 
how exactly the process works, but instead they suppose the process works a particular way and 
determine the consequences if their assumption were true.  

Writing a mathematical model therefore forces you to pin down just how you think things 
work.  Is the relation between protest and repression linear or nonlinear?  What kind of 
nonlinear?  Does the relation interact with other factors?  Exactly how?  As soon as you start 
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constructing equations or writing computer code, you are forced to become very specific about 
how you think the process works.  This is much harder than just writing a verbal theory that one 
thing "affects" another.  Even so, some assumptions are not always obvious and the theorist must 
take care to make them explicit.  For example, Oliver and Marwell's models permit "rich" people 
with high resources to make partial contributions, while Macy, Heckathorn, and Kim and 
Bearman's models assume that actors must contribute all their resources if they contribute 
anything; these embedded assumptions can make big differences in the outcomes of the models.  

The second kind of assumption is called a scope condition.  Scope conditions limit the 
context in which the theory is expected to operate.  This principle is all too often ignored in 
verbal theorizing.  For example, consider the classic resource mobilization claim that there are 
always enough grievances and the real predictor of protest is resources.  Not surprisingly, 
empirical researchers quickly demonstrated that aggrieved people protest more than non-
aggrieved people, a proposition that resource mobilization theorists would never have disputed in 
the first place.  And, in fact, the initial statement would have more fruitfully been initially stated 
as: “for those issues about which there is a grievance, the resources of the aggrieved groups 
determine which ones will be acted upon,” where the underlined clause is a scope condition.   If 
a scope condition is not true, the theory does not apply.  Finding examples of empirical instances 
which do not meet the scope conditions of a theory in no way disproves it.  Instead, the concern 
is whether there are some instances that do meet the assumptions, and whether the model's 
predictions are true when the assumptions are met.   
 The third important kind of assumption in mathematical theorizing is a simplifying 
assumption.  In this case, the theorist knows that the process is actually more complex than the 
model, but some factors are purposely ignored, or relationships are represented with 
approximations that are known not to be strictly correct.   Simplifying assumptions are made so 
that a model can be made tractable, that is, capable of being analyzed mathematically.  All 
models (and all theories) require simplifying assumptions.   For one, they have to ignore some 
factors that might influence the outcomes.  While in reality everything may have some 
connection to everything else, it is impossible to develop any kind of theory by considering 
everything at once.  Theorists must use boundaries and assume that the factors outside the 
boundary have insignificant effects.  Apart from bounding the model, other simplifying 
assumptions are often necessary, especially in the initial stages of development.  If a simplified 
model is shown to transcend the simplifying restrictions, then the model said to be "robust."  If, 
however, the results change dramatically when simplifying assumptions are relaxed, the 
assumptions must either become scope conditions for the model, or must be systematically 
varied and analyzed. 

7.  Analyze your model.  Determine its behavior under limiting conditions.   Identify the 
reduced forms of equations.  Conduct experiments and map the response surface.  Once your 
model is known to be working correctly, you need to analyze it.  It is not enough to tweak the 
parameters so that you can make it behave like one example or make it generate several different 
"interesting" patterns.  Instead you need systematically to determine how the model behaves with 
all the possible combinations of inputs and parameters.  The key ideas for doing this are the 
response surface and experimental design.  Although the term is rarely used by sociologists, the 
concept of a response surface is common in statistics and engineering, and is straightforward.  
You have an output or criterion variable whose behavior you are interested in, such as the 
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amount of protest.  This is just the dependent variable or "y" that sociologists are used to.  If you 
have only one independent variable or input ("x"), you can plot a standard two-dimensional 
graph of a line showing how y changes with x.  That is a two-dimensional response surface.  If 
there are two independent variables or inputs, you can plot the outcome or y variable as a 
function of the inputs on a three-dimensional graph, in which case the plot would be a surface, 
rather than a line.  The general concept of the response surface simply extends this idea into n-
dimensional space.  The goal of response surface analysis is to understand how the output 
variable changes as a function of multiple inputs.   

What can be difficult is to recognize that we are often  interested in treating parameters as 
variables.  To take a simple example, consider the linear equation Y = a + bX.  If a and b are 
given numbers (such as 3 and 5), the equation Y=3 + 5X yields a specific line relating Y and X.  
But in response surface analysis, we could interested in how the relation between Y and X varies 
as a and b vary, so we would imagine a 4-dimensional space in which the location of the line 
relating X and Y moves up and down the Y axis depending on a, and the slope of the line gets 
steeper or flatter and tips to the right or the left depending on b. 

We don't do a response surface analysis of a linear equation because we know that it is 
exactly the same for all possible values of a and b.  However, most collective action models are 
nonlinear systems in which the shape or form of the function changes with different 
combinations of the parameters.  It is common that the response surface is qualitatively different 
in different regions of the input space, that there are steep changes or discontinuities between 
regions, and that maximizing outputs involves optimizing rather than maximizing inputs.   In 
collective action models, there are often thresholds for combinations of inputs below which the 
output is constant, and above which the output changes with the inputs, often discontinuously.   
Once you understand the idea of a response surface, it is a straightforward extension to recognize 
that the output does not necessarily have to be a continuous quantitative number, but can be 
qualitatively different states. You may also be interested in multiple outputs.   

If possible, begin by analyzing your model symbolically using standard mathematical 
approaches such as algebra and differential or integral calculus to solve for maxima and minima, 
thresholds, limits, equilibrium states, reduced forms, and the like.  Obviously, the more 
mathematics you know, the more likely you are to be able to conduct these analyses, and it is 
always worthwhile to spend some time with appropriate texts learning or reviewing basic 
mathematical approaches to the class of equations you are working with.   Even for complex 
multi-equation models, you can often find analytic solutions for some variables when others are 
held constant. 

Experimental design is another powerful framework for analyzing complex response 
surfaces, and it is essential that you understand the basic principles of experimental design.  In an 
experiment, you hold some factors constant and systematically vary others.  Your research 
purpose or theory should tell you which elements of your model should be held entirely constant 
in your analysis.  These constants become scope conditions for the results of your analysis.   

Your analysis should involve a combination of exploration and focused comparison.  
First you explore the model, looking for thresholds, limits, equilibria and the like, guided as 
much as possible by your prior analysis.  Be sure to examine the model under the full range of 
extremes, including unrealistic ones.   It is easy to make false assumptions about the realistic 
ranges of variables, or falsely to extrapolate from too narrow a range of values.  Oliver (1993) 
found that one of the results Heckathorn (1988) reported about group size and social control 
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changed for very low probabilities of detection of deviance.   What extremes are realistic?   Try 
to consider the kinds of empirical situations to which they might apply and come up with some 
estimates.  For example, Oliver developed a model involving the degree of group heterogeneity, 
operationalized as the standard deviation of a standardized lognormal distribution (mean=1) of 
contribution levels.  Initial analyses were conducted with standard deviations in the .3 to 3 range.  
A little research revealed that (as of 1990) the US income distribution was roughly lognormal 
with a standard deviation of .8 of its mean, indicating that this initial range was plausible. 
However, some additional computation revealed that a standard deviation of 20 was well within 
the limits of empirical plausibility (e.g. a distribution in which the vast majority give almost 
nothing and 1 person in 5000 gives $300 or more, or in which the average time contribution is an 
hour a year but one in 5000 gives six hours a week).  It turned out that the response surface of the 
model changed dramatically for such high standard deviations.  Thus we presented results for 
standard deviations of .3, 1, 3, 10, and 20 (see Marwell and Oliver 1993, pp. 134-135). 

Group size often matters in collective action models.  Groups of size two and three have 
their own peculiar dynamics.  Real social groups often involve at least thousands of members, 
possibly millions.  Can a model with, say, 100 or even just 10 actors in it be trusted to give 
results that would apply to 1,000,000 actors?  Different theories would give different answers.  
What we can say is that you should give some theoretical attention to the group size question, not 
use very small groups unless your specifically interested in small groups, and probably run your 
model with at least two and preferably at least three different group sizes, so that you can get 
some information about whether group size affects the results.  If you are running a model in 
which group size is a parameter (N) instead of the number of interacting individuals in a model, 
test group sizes of different magnitudes (e.g. 10, 100, 1000, 10,000, 100,000) that are reasonable 
for the kinds of groups you are modeling.  

After sufficient exploration that you understand your models, design focused 
comparisons to test theoretical propositions, to compare your model to other models, or to assess 
the possible impact of some particular change.  Determine which elements should be held 
constant for this purpose, and which should be varied.  Design a systematic data collection 
procedure.  One approach is to select values at equal intervals from the full range for each 
variable.  If you have two inputs that are each sampled at six levels in a fully-crossed 
experimental design including all possible combinations, you would need to generate 62 or 36 
"cases," while for five inputs that are each sampled at six levels, a fully-crossed design would 
yield 65 or 7776 distinct data points, so sample sizes can increase rapidly as you systematically 
test a model.  If your model is determinate, you only need to run it once for each design cell, and 
if it can be calculated quickly on a computer, it may not be difficult to program a loop that 
generates all the input combinations and calculates and stores all the output combinations in a 
data base.  Another possibility is to use a random number generator to select a value for each 
input from its range, and repeat the experiment as many times as you can afford to.  The result of 
either procedure will be a data set of inputs and outputs that you can plot in various ways.   
However, whenever the relationships in your model are not linear, equal-spaced intervals will 
not necessarily give the best information about your response surface.  Your initial analysis may 
reveal that there are particular regions of the space that require more detailed analysis.  Because 
we are unable to convey n-dimensional spaces on two-dimensional paper, presentation of your 
results usually requires generating graphical cross-sections of different regions of the response 
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space.  You generate a cross-section by holding all but one or two inputs constant at a particular 
level and generating a two- or three-dimensional graph of the output as a function of the varying 
inputs. 

Even a complex determinate model might take too long to calculate to make it feasible to 
generate outputs adequately to represent the whole response surface.  If the model is stochastic, 
you need multiple cases per design cell so that you can identify the probability distribution of 
outcomes in that cell.  How many cases per cell?  The answer lies in sampling theory, and 
depends both upon how variable the outcome is for a given combination of input parameters and 
the degree of precision you desire for your estimate.   But even if you are willing to settle for 
small samples per design cell (and 10 is a very small sample by any criterion), if you multiply 
that by the large number of design cells you would have to fully represent a model with many 
inputs, it is obvious that the number of data points involved would quickly become enormous.  
And, since stochastic models by their nature require much more computation than determinate 
models, the amount of time necessary to generate those data points could become impossibly 
large.  It is at this point that a solid understanding of experimental design and the principles of 
mathematical analysis can guide you in designing a smaller more manageable experiment that 
will generate useful results by helping you to focus on  "interesting" regions of the response 
surface and generate focused comparisons between different regions.  If practical constraints 
force you to hold many potentially-variable factors of your model constant, you should either 
report these as scope conditions for your results, or be able to explain why these constant factors 
would not change the dynamics of the variables you are modeling. 

Random number generators play an important role in analyzing mathematical models and 
simulations.  Many statistical packages, mathematical programs, and spreadsheets have built-in 
procedures for generating random numbers from a number of distributions, and some also have 
built-in procedures or add-in procedures available to assist with simulation procedures.  You 
need to give serious attention to the particular statistical distribution you use in generating a 
random number, depending on its role in the model.  If you are generating random numbers for 
inputs to use in collecting data on a response surface, you would use a uniform distribution if you 
want to get equal coverage of all regions of the surface as the random analogue to equally-spaced 
intervals.  But if you know that the output changes more quickly in some regions than others, a 
more efficient design would use a random distribution that generates more data points near the 
critical area and fewer where the output changes more slowly.  When you are analyzing a 
determinate model, the choice of distribution just affects the efficiency of data collection.  But if 
there is a stochastic component to your model, the form of the distribution from which 
probabilities or other random elements is drawn can make a big difference in the outcomes, and 
you should not blindly use a uniform or normal distribution without considering theoretically 
what kind of process underlies the random element.  A serious discussion of statistical 
distributions is beyond the scope of this chapter.   (An advanced treatment of issues of 
experimental design and response surface analysis may be found in Myers and Montgomery 
1995; see Law and Kelton 2000 for an advanced treatment of principles of simulation modeling 
and experimental analysis.) 

8.  Assess the fit of your model to criterion data.  If the purpose of a model is to represent 
an empirical instance, testing the fit of the model is obviously required.  But even if the purpose 
is to develop theory, it is appropriate to determine of the theory seems to fit appropriate 
empirical instances and there is usually at least some data relevant to elements of the model.  Fit 
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can be assessed with respect to the assumptions and the predicted outcomes of a model.  The 
assumption that people seek to maximize their own payoffs can be assessed in bargaining 
experiments by asking players what factors they are considering (e.g. Michener and Myers 
1998a; b).  Opinion data can be used to assess whether people's interests remain relatively fixed, 
as Marwell and Oliver (1993) assumed, or change over time, as Kim and Bearman (1997) 
assumed, and so forth.  Finding some cases that do not fit a theory's assumptions do not disprove 
it, but if no cases fit the assumptions, the usefulness of a theory is called into question. 

Finding data relevant to a theoretical model can sometimes be difficult, but often some 
indirect evidence can be used.  For example, early resource mobilization theory argued that 
external resources cause protest.  But McAdam (1982) presented data on the civil rights 
movement showing that rises in mobilization preceded rises in external funding, thus sparking a 
reconsideration of the role of external resources in protest.  Models of protest mobilization 
should be compared to the basic patterns of protest data: wavelike, spiky, and having waves 
within waves.  Theoretical modeling is often useful precisely when relevant data are not readily 
accessible, but models should still be subjected to basic "reality checks" against what data are out 
there. 

<<FIGURE 1 ABOUT HERE >> 
Even when appropriate empirical data exist, "fitting" the model is not necessarily a 

straightforward process.  Among sociologists trained in regression approaches, our first 
inclination is to calculate a 2 or R2 test.  However, in some cases, these tests can be worse than 
useless.  If the data are cumulative event counts, for example, R2 tests are quite misleading.  
Consider the plots in figure 1 of the density and cumulative distributions for constant, 
exponential growth, and diffusion models over time.  The correlation between the cumulative 
logistic diffusion curve and a line with the same minimum and maximum yields an R2 of .94, 
even though the correlation between the density functions of the same curves is 0.  The 
correlation between a cumulative logistic diffusion curve and a cumulative exponential growth 
curve is +.78, yielding an R2 of .6, even though the correlation between the density functions is 
actually negative, -.47.    Pitcher, Hamblin, and Miller (1978) fit their diffusion model against 25 
data series and found R2 value generally exceeding .95.  As impressive as this seems, the results 
are misleading because the data are cumulative event counts, and any S-shaped function will 
necessarily have very high correlations with the data.  In short, models that produce the wrong 
basic shape should be readily discarded, but if the basic shape is correct, more rigorous and 
detailed assessments of fit are required.  

9.  Write about your model.  The final step in any research project is communicating the 
results.  Your goal is to contribute to sociology, not just to play with numbers and graphs.  
Clearly identifying the process(es) you are attempting to model and the scope conditions of the 
model, and tie these to ongoing issues in the relevant theoretical and empirical literatures.  
Report on its limits and response surface.  Report on its fit (if any) to empirical data.  Give a 
clear account of the theoretical and empirical implications of your model.  As much as possible, 
create a narrative line that explains the logic of the model, its assumptions, its results and its 
significance that can be followed even by a reader who is unable or unwilling to follow the 
mathematical reasoning.  This is easier to do if you have not cheated on step 1, and have actually 
read and thought about the broader literature to which your model can speak. 
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Strengths and weaknesses 
As we have indicated, the great strength of mathematical modeling and simulation 

approaches is the ability to express relationships in clear, unambiguous ways and derive 
previously-unrecognized results or predictions from them. These approaches are useful for 
developing abstract theory which may be applied across many instances, and are appropriately 
compared to abstract verbal theory approaches, rather than to empirical research. Any theoretical 
representation  is necessarily an abstraction that, by its nature, lacks content about particular 
historical events, ideologies, or personalities. The relationship between theory and empirical data 
is always a dialectic between the general and the particular. There are often proposed 
relationships from verbal theory that cannot be readily or clearly stated in mathematical terms, 
but this most commonly points to ambiguity in the verbal theory, or to the modeler's lack of 
knowledge of mathematical forms to represent particular kinds of relationships. Mathematical 
models in sociology are generally much more simple than complex empirical relationships, but 
so is any verbal theory. Physical and biological scientists building upon a more substantial base 
of well-confirmed simple relationships have, in fact, been able to build complex representations 
of complex empirical systems. Obviously, mathematical approaches need to be used in 
combination with other methods which provide either quantitative or qualitative information 
about empirical patterns and relationships. Modeling should be viewed as an important 
complement to empirical research, not a substitute for it. However, the researcher doing 
modeling will often draw on or inspire other scholars' empirical research, rather than combining 
modeling and empirical research in the same article or book. Knowledge accumulates when 
scholars build on each other's work, rather than expecting that any one research project can 
provide the one perfect definitive answer. 

 
Conclusion 

Both mathematical sociologists and postmodernists have been accused of trying to write 
in ways that others cannot understand, and are often assumed by others to have nothing useful to 
say if it cannot be said in "plain English."  We are not competent to comment on postmodernist 
writing, but we are prepared to say that people "speak mathematics" not as an arcane jargon to 
shut out others, but because it is an elegant and effective mode for communicating certain kinds 
of ideas.  We do not believe that formal mathematical models are the only way to do sociology.  
Rather, we believe that sociologists are bound in a Durkheimian organic solidarity based on a 
division of labor in which different kinds of theory and methods each play an important role.  In 
this respect, formal models do a particular kind of work.  Most importantly, the process of 
writing a formal model forces you to pin down exactly what you mean, operationalize 
relationships, and specify mechanisms.   Turning thoughts into equations reveals ambiguities and 
contradictions very quickly.  In addition, a good model can permit a "what if" analysis, allowing 
you to explore possibilities that do not actually exist.  If you can adequately represent the 
mechanisms in "what is," you can explore what would happen if some elements of the system 
change. 

We have mostly written as if the audience is made up of potential modelers, and we hope 
some of you will be motivated to try it.  But we know that most readers are more interested in 
evaluating others' models than in writing their own, so we end by summarizing the principles to 
use in evaluating a formal model. 

First, what is it about?  What empirical phenomena does it attempt to represent?  What 
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examples do the authors give?  Do they cite literature or give other basis for suggesting that their 
image of the empirical phenomenon is correct?  Or, if it is a purely theoretical article, what is the 
core process in the model?  Is this a kind of "normative" theory, in which the point is not to 
model actual behavior, but to provide a baseline by showing what the results would be if certain 
assumptions were true? 

Secondly, what are the scope conditions and simplifying assumptions?  These should be 
spelled out.  Some of the scope conditions will be implicit in the way the equations are written, 
and may be difficult to find if you cannot read the equations.  Remember, however, that you 
should not be focusing on whether you can think of any exceptions to the scope conditions – 
there will always be cases that do not fit the scope of a theory.  Rather you should consider 
whether there are cases that do fit the scope conditions.  Also look for the author's discussions of 
how the model changes if some of the simplifying assumptions are relaxed: is the model robust? 

Thirdly, how is the model analyzed?  It is very helpful to the non-mathematical reader to 
have a narrative which explains how the model works, but the analysis should be more than just 
story-telling, more than writing equations which can do the same thing as you can do verbally.  
There should be some analysis that shows how the model changes as the parameters of the model 
change.  There should be a presentation of controlled comparisons within the model, and if it is 
compared to other similar models, there should be controlled comparisons with the other 
theories. 

Finally, consider the empirical credibility of the model.  It is usually not possible to 
published an extended model and an extended data analysis in the same article.  But any 
presentation of relevant data is a plus, and there should at least be some discussion of the kinds 
of examples the model should apply to.  Look at the outcomes the model produces.  Do they 
seem to fit what you know about the empirical data?  Do they seem to illuminate the mechanisms 
involved?  Again, do not reject a model because you know of some counter-example or, worse, 
because you do not like the implications of the results.  And do not accept it just because you can 
think of one example that seems to fit or you do like the implications.  But it is appropriate to 
bring to bear what knowledge you do have about the phenomenon in evaluating the model. 

As one element of a diverse repertoire of methodologies designed to illuminate different 
aspects of collective action and social movements, mathematical models can make important 
contributions.  We invite you to explore the works we have listed in the bibliography and to 
undertake some modeling of your own. 
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Tools 
 Many people who write formal models also write their own computer programs to 
analyze them, using whatever computer language they happen to know.  It is possible to do a 
great deal of analysis using a spreadsheet.  There are also more specialized computer programs 
particularly suited for working with mathematical models or simulations.  We list some we have 
found to give you an idea of what is available.  Prices are as of the date we searched; editions 
and prices are continually evolving.  Academic prices for proven members of educational 
institutions are substantially lower than commercial prices. 
 
 1) Mathematics programs.  Mathematica by Wolfram, Inc. and Maple by Waterloo Maple 
Inc. are complex and very powerful programs which can do symbolic mathematics as well as 
numerical computations, and can create impressive 3-D graphical images.  You can do formal 
analysis of models with these packages, as well as design simulations.  There are ongoing 
debates between users of each program about which is better, and they are definitely different 
from each other in their syntax and underlying programming logic.   Both are relatively difficult 
to learn to use.   Mathematica has a richer library of add-ons and third party software products 
and books supports a wide variety of modeling and simulation activities.  Maple is generally less 
expensive.   Academic editions are available for under $1000, and student editions are 
considerably less expensive. 
Mathematica 
Wolfram, Inc. 
www.wolfram.com  
Corporate Headquarters 
Wolfram Research, Inc. 
100 Trade Center Drive 
Champaign, IL 61820-7237 USA  
Sales and order inquiries: 1-800-WOLFRAM (965-3726) or 
  1-800-441-MATH (6284) (U.S. and Canada only) 
Fax: 217-398-0747 
Sales: info@wolfram.com 
        Europe 
Wolfram Research Europe Ltd.  
10 Blenheim Office Park 
Lower Road 
Long Hanborough 
Oxfordshire OX8 8LN UNITED KINGDOM 
Telephone Number: +44-(0)1993-883400 
Fax: +44-(0)1993-883800 
Sales: info@wolfram.co.uk  
      Asia 
Wolfram Research Asia Ltd. 
Oak Ochanomizu Building 5F 
3-8 Ogawa-machi Kanda 
Chiyoda-ku, Tokyo 101-0052  JAPAN 
Telephone Number: +81-(0)3-3518-2880 

http://www.wolfram.com/�
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Fax: +81-(0)3-3518-2877 
Sales: info@wolfram.co.jp  
   
Maple.   
Waterloo Maple Inc. 
57 Erb Street West      
Waterloo, Ontario 
Canada N2L 6C2 
Phone: +1 (519) 747-2373 
Fax: +1 (519) 747-5284 
Sales (North America): 1 (800) 267-6583 
Email: info@maplesoft.com 
http://www.maplesoft.com/  
 
 2) Graphical simulation programs make it easy to construct certain kinds of models with 
icons and links between icons.  Most of these are specialized products oriented to engineers 
designing manufacturing or business processes, computer networks, and the like.  We have found 
two packages that are suitable for the more general needs of academic social scientists.  As 
compared with programming languages, these programs are much easier to use: it is possible to 
produce a basic model and get results very quickly.  This ease of use makes it possible to focus 
on thinking about the design of the model instead of figuring out how to write a program and 
deal with error messages.  However, the graphical programs are less flexible and powerful.  
Whether the limitations are a problem depends upon your particular model. 
 Stella from High Performance Systems, Inc. is a general purpose simulation package with 
a graphical interface which is especially well-suited for representing feedback processes that 
occur over time, e.g. predator-prey relations.  You represent the model as stocks and flows, and 
can specify the exact equation representing a relationship.  Unlike most graphical packages, 
Stella produces an equations page to complement the graphical representation.  It has special 
features for setting up computer- or web-based interfaces for educational presentations.  The user 
interface is very easy to use although it can be cumbersome for large batch-oriented data 
generation, but it can link to spreadsheets for large input-output tasks.   There are stochastic 
functions.  The more expensive research edition can handle arrays.  The documentation 
emphasizes the principles of model-building.  There is a less expensive basic edition, and a 
research edition which has much higher capacity and extra features.  Student pricing starts under 
$100, educator pricing is $300-$550 depending on version.  A free demo is available for 
download.  (Note, the same firm produces iThink which is exactly the same program marketed to 
business applications.) 
High Performance Systems, Inc. 
45 Lyme Road, Suite 300 
Hanover, NH 03755-1221 
Phone:   (800) 332 1202     (603) 643 9636 
http://www.hps-inc.com/  
 
 Extend from Imagine That, Inc. is a general-purpose simulation package with pedagogic 
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materials.   Everything is an icon, even adding and subtracting, and the icons are highly 
specialized, not really equation or functionally oriented.  Icons generate C-like code which 
apparently can be edited, although that feature was not available in the demo we examined.  
Models can generate processes which can be animated with icons you choose.  You can do 
sensitivity analyses, and interface with other programs.  Academic licenses begin at $350, 
pricing a limited edition for students or evaluation purposes begins at $60.  You can download a 
free demonstration version.    
Imagine That, Inc. 
6830 Via Del Oro, Suite 230 
San Jose, CA 95119 USA 
408-365-0305, fax 408-629-1251 
email extend@imaginethatinc.com 
http://www.imaginethatinc.com/    
 
 3) Simulation languages are powerful programming languages with special constructs to 
make it easier to write and test simulations.  They are generally easier to learn to program than 
general programming languages (or Mathematica/Maple), but require more learning than 
graphical packages.  The firms offering simulation languages also market graphical packages. 
 
 Wolverine Software sells GPSS/H, a version of the longstanding GPSS simulation 
language, and  SLX which is a powerful multi-layered simulation product.  A student version of 
SLX is available free and a student version of GPSS/H is available for $40; these are limited 
versions which can be used for evaluation purposes.  The student version of GPSS/H includes a 
textbook and examples.  Academic versions are $750 and $1000.   
Wolverine Software Corporation 
2111 Eisenhower Avenue, Suite 404 
Alexandria, VA 22314-4679  
(800) 456-5671  
(703) 535-6760 
Fax: (703) 535-6763 
 mail@wolverinesoftware.com 
 http://www.wolverinesoftware.com/products.htm   
 
 Simscript 11.5 and Simprocess are products of CACI, Inc. Simscript is a free-form, 
English-like general-purpose programming language with simulation constructs and built-in 
features for experimental design and response surface analysis.  Its core simulation constructs are 
entities and activities.  It is built on a C++ compiler, available for mainframe and PC, and has a 
menu oriented user interface.  It has graphical user interfaces and animation capabilities, self-
documenting code, and built-in constructs for discrete-event and combined discrete/continuous 
process-oriented simulations.  CACI also has a graphical-interface product called Simprocess 
which is available in a student version which can be downloaded as a demo.  Its orientation is 
entities (e.g. customer calls) going through activities; it is well designed for cost accounting and 
simulating business processes, but appears too specialized for more general sociological 
modeling.  Pricing information is not available without talking to a representative. 
CACI  

mailto:extend@imaginethatinc.com�
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Corporate web page 
 Www.caci.com    
Simscript and Simprocess info 
http://www.caciasl.com/  
simscript@caciasl.com  
619-542-5228.    
 
Some other useful resources 
 
Web page on social simulation: 
http://www.soc.surrey.ac.uk/research/simsoc/simsoc.html 
Has lots of links to other social simulation sites.  Well-organized, good set of links. 
 
The Journal of Artificial Societies and Social Simulation (JASSS) is the premier journal in the 
field of social  simulation and is the best source for a diversity of social simulations, as well as 
discussions about simulation principles.  
http://www.soc.surrey.ac.uk/research/simsoc/cress.html 
 
The Journal of Mathematical Sociology publishes a wide variety of mathematical models in 
sociology, including many relevant to collective action, and is the best single source for 
exploring the diversity of mathematical modeling in sociology. 
Editor: 
Patrick Doreian 
Department of Sociology, University of Pittsburgh 
Pittsburgh, PA 15260, USA 
Phone: (412) 648 7537 
Fax: (412) 648 2799 
Email: pdjms+@pitt.edu  
Subscriptions are held by most libraries.  Publisher is the Gordon and Breach Publishing Group. 
 

http://www.caci.com/�
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Figure 1.  Comparing three models of protests over time: constant (the amount of action is steady
across the time period), growth (the amount of action increases by a constant percentage of the
prior amount), diffusion (the amount of action is a function of the product of the proportion who
have already acted and those who have not acted yet).  The top panel shows the density function,
the bottom panel shows the cumulative amount of action over time.  All three curves begin and
end at the same cumulative amounts of action, but get there in different ways.  The density
function for the constant action model has a zero correlation with the others, while the growth
and diffusion models are negatively correlated, but the cumulative functions for all three are
highly positively correlated.


