VI. Applications

1. Merton portfolio selection in finite horizon

An agent invests at any time t a proportion α_t of his wealth X in a stock of price S and $1 - \alpha_t$ in a bond of price S^0 with interest rate r. The investor faces the portfolio constraint that at any time t, α_t is valued in A closed convex subset of \mathbb{R}.

Assuming a Black-Scholes model for S (with constant rate of return μ and volatility $\sigma > 0$), the dynamics of the controlled wealth process is:

$$dX_t = X_t \alpha_t dS_t + \frac{X_t (1 - \alpha_t)}{S_t} dS_t^0$$

$$= X_t (r + \alpha_t (\mu - r)) dt + X_t \alpha_t \sigma dW_t.$$

The preferences of the agent is described by a utility function U: increasing and concave function. The performance of a portfolio strategy is measured by the expected utility from terminal wealth \rightarrow Utility maximization problem at a finite horizon T:

$$v(t, x) = \sup_{\alpha \in A} \mathbb{E}[U(X_t^{t,x})], \quad (t, x) \in [0, T] \times (0, \infty).$$

\rightarrow Standard stochastic control problem
HJB equation for Merton’s problem

\[v_t + r x v_x + \sup_{a \in A} \left[\left(a(\mu - r)xv_x + \frac{1}{2} x^2 a^2 \sigma^2 v_{xx} \right) \right] = 0, \quad (t, x) \in [0, T) \times (0, \infty) \]

\[v(T, x) = U(x), \quad x > 0. \]

- The case of CRRA utility functions:

\[U(x) = \frac{x^p}{p}, \quad p < 1, \quad p \neq 0 \]

→ Relative Risk Aversion: \(-xU''(x)/U'(x) = 1 - p.

- We look for a candidate solution to HJB in the form

\[w(t, x) = \varphi(t) U(x). \]

Plugging into HJB, we see that \(\varphi \) should satisfy the ODE:

\[\varphi'(t) + \rho \varphi(t) = 0, \quad \varphi(T) = 1, \]

where

\[\rho = rp + p \sup_{a \in A} \left[a(\mu - r) - \frac{1}{2} a^2 (1 - p) \sigma^2 \right], \]

→

\[\varphi(t) = e^{\rho(T-t)}. \]
The value function is equal to
\[v(t, x) = e^{\rho(T-t)U(x)}, \]
and the optimal control is constant (in proportion of wealth invested)
\[\hat{a} = \arg\max_{a \in A} [a(\mu - r) - \frac{1}{2}a^2(1 - p)\sigma^2]. \]

When \(A = \mathbb{R} \) (no portfolio constraint), the values of \(\rho \) and \(\hat{a} \) are explicitly given by
\[\rho = \frac{(\mu - r)^2}{2\sigma^2} \frac{p}{1 - p} + rp. \]
and
\[\hat{a} = \frac{\mu - r}{\sigma^2(1 - p)}, \]
2. Merton portfolio/consumption choice on infinite horizon

In addition to the investment \(\alpha \) in the stock, the agent can also consume from his wealth:

\[(c_t)_{t \geq 0} \text{ consumption per unit of wealth} \]

- The wealth process, controlled by \((\alpha, c)\) is governed by:

\[
dX_t = X_t (r + \alpha_t (\mu - r) - c_t) \, dt + X_t \alpha_t \sigma dW_t.
\]

- The preferences of the agent is described by a utility \(U \) from consumption, and the goal is to maximize over portfolio/consumption the expected utility from intertemporal consumption up to a random time horizon:

\[
v(x) = \sup_{(\alpha, c)} E \left[\int_0^\tau e^{-\beta t} U(c_t X^x_t) \, dt \right], \quad x > 0.
\]

We assume that \(\tau \) is independent of \(\mathcal{F}_\infty \) (market information), and follows \(\mathcal{E}(\lambda) \).

- Infinite horizon stochastic control problem:

\[
v(x) = \sup_{(\alpha, c)} E \left[\int_0^\infty e^{-(\beta + \lambda) t} U(c_t X^x_t) \, dt \right], \quad x > 0.
\]
The HJB equation is given by:

\[
(\beta + \lambda)v - rxv' - \sup_{a \in A} \left[a(\mu - r)v' + \frac{1}{2}a^2x^2\sigma^2v'' \right] - \sup_{c \geq 0} \left[U(cx) - cxv' \right] = 0, \quad x > 0.
\]

- Explicit solution for CRRA utility function: \(U(x) = \frac{x^p}{p} \).

Under the condition that \(\beta + \lambda > \rho \), we have

\[
v(x) = K U(x), \quad \text{with} \quad K = \left(\frac{1 - p}{\beta + \lambda - \rho} \right)^{1-p}.
\]

The optimal portfolio/consumption strategies are:

\[
\hat{a} = \arg \max_{a \in A} \left[a(\mu - r) - \frac{1}{2}a^2(1 - p)\sigma^2 \right],
\]

\[
\hat{c} = \frac{1}{x}(v'(x))^{\frac{1}{p-1}} = K^{\frac{1}{p-1}}.
\]