Lecture 10
 Consumption and Savings

Noah Williams

University of Wisconsin - Madison

Economics 702
Spring 2019

A Parametric Example

- If $u(c)=\log c$, Euler Equation:

$$
\frac{1}{c}=\beta(1+r) \frac{1}{c^{\prime}} \Rightarrow c^{\prime}=\beta(1+r) c
$$

- Note that

$$
c=y^{P V}-\frac{c^{\prime}}{1+r}=y^{P V}-\beta c
$$

So that:

$$
\begin{aligned}
c & =\frac{1}{1+\beta} y^{P V} \\
c^{\prime} & =\frac{\beta(1+r)}{1+\beta} y^{P V} \\
s & =y+A-c=\frac{\beta}{1+\beta}(y+A)-\frac{1}{1+\beta}\left(\frac{y^{\prime}}{1+r}\right)
\end{aligned}
$$

Comparative Statics: Income Changes

- What happens if y, y^{\prime} or A increases? All matters is $y^{P V}$.
- Both c and c^{\prime} increase (normal goods).
- If y or A increase, s increases to finance higher c^{\prime}. Examples: increases in stock market or house prices "wealth effect"
- If y^{\prime} increases, s falls to finance higher current c. Examples: Announced layoffs, changing professions (or college majors).

Figure 9.5 The Effects of an Increase in Current Income for a Lender

Copyright © 2018, 2015, 2011 Pearson Education, Inc. All rights reserved.

Figure 9.7 Percentage Deviations from Trend in Consumption of Nondurables and Services and Real GDP

Copyright © 2018, 2015, 2011 Pearson Education, Inc. All rights reserved.

Comparative Statics: Changes in Interest Rate

- Income effect: if a saver $s>0$, then higher interest rate increases income for given amount of saving. Increases consumption in first and second period. If borrower $s<0$, then income effect negative.
- Substitution effect: gross interest rate $1+r$ is relative price of consumption in period 1 to consumption in period 2 . Current c becomes more expensive relative to c^{\prime}. This increases c^{\prime} and reduces c.
- Hence: for a saver an increase in r increases c^{\prime} and may increase or decrease c. For a borrower an increase in r reduces c and may increase or decrease c^{\prime}.

Figure 9.13 An Increase in the Real Interest Rate for a Lender

Pearson
Copyright © 2018, 2015, 2011 Pearson Education, Inc. All rights reserved.

Figure 9.14 An Increase in the Real Interest Rate for a Borrower

Savings Rate and Real Interest Rate

ㄹ․ D. - 10-Year Treasury Inflation-Indexed Security, Constant Maturity (left)

Infinite Horizon Consumption-Savings Model

- Now extend the consumption-savings model from 2 periods to an infinite horizon. Many of the same implications.
- Slightly different timing/notation following Wickens.
- Flow budget constraint: c_{t} consumption at date t, a_{t} assets on hand at start of t. a_{t+1} assets chosen at t, carried over to $t+1, r_{t}$ interest rate between $t-1$ and t, x_{t} income:

$$
c_{t}+a_{t+1}=x_{t}+\left(1+r_{t}\right) a_{t}
$$

- Derive intertemporal budget constraint, with $r_{0}=0$:

$$
\begin{aligned}
c_{0} & =x_{0}-a_{1}+a_{0} \\
& =x_{0}-\frac{c_{1}-x_{1}}{1+r_{1}}-\frac{a_{2}}{1+r_{1}}+a_{0} \\
& =x_{0}-\frac{c_{1}-x_{1}}{1+r_{1}}-\frac{c_{2}-x_{2}}{\left(1+r_{1}\right)\left(1+r_{2}\right)}-\frac{a_{3}}{\left(1+r_{1}\right)\left(1+r_{2}\right)}+a_{0} \\
c_{0}+ & \frac{c_{1}}{1+r_{1}}+\frac{c_{2}}{\left(1+r_{1}\right)\left(1+r_{2}\right)}= \\
& \quad x_{0} \quad+\frac{x_{1}}{1+r_{1}}+\frac{x_{2}}{\left(1+r_{1}\right)\left(1+r_{2}\right)}-\frac{a_{3}}{\left(1+r_{1}\right)\left(1+r_{2}\right)}+a_{0}
\end{aligned}
$$

Intertemporal Budget Constraint

- Continue same process for any horizon T :

$$
\sum_{t=0}^{T} \frac{c_{t}}{\prod_{s=0}^{t}\left(1+r_{s}\right)}=\sum_{t=0}^{T} \frac{x_{t}}{\prod_{s=0}^{t}\left(1+r_{s}\right)}+a_{0}-\frac{a_{T+1}}{\prod_{s=0}^{T}\left(1+r_{s}\right)}
$$

- For any finite horizon T we would have $a_{T+1}=0$. No reason to save, and more importantly no one would lend.
- For infinite horizon, need to rule out the possibility of borrowing forever and never repaying principal.
- A Ponzi game occurs when agents borrow, repaying existing debt obligations by borrowing more. We impose the No Ponzi Game (NPG) restriction:

$$
\lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{s=0}^{T}\left(1+r_{s}\right)} \geq 0
$$

- This rules out borrowing indefinitely. Household won't want to have strictly positive assets in limit, so NPG will hold with equality.

Household Problem: Infinite Horizon

- Under the NPG restriction we can take limits as $T \rightarrow \infty$:

$$
\sum_{t=0}^{\infty} \frac{c_{t}}{\prod_{s=0}^{t}\left(1+r_{s}\right)}=\sum_{t=0}^{\infty} \frac{x_{t}}{\prod_{s=0}^{t}\left(1+r_{s}\right)}+a_{0} \equiv x^{P V}
$$

- The household problem is now to choose $\left\{c_{t}\right\}_{t=0}^{\infty}$ to maximize utility subject to the present value budget constraint. Single optimization problem, choosing plan for consumption for entire future.
- Lagrangian:

$$
L=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)+\lambda\left(x^{P V}-\sum_{t=0}^{\infty} \frac{c_{t}}{\prod_{s=0}^{t}\left(1+r_{s}\right)}\right)
$$

Household Problem: Optimality Conditions

- First order condition for consumption at any dates $t, t+1$:

$$
\begin{aligned}
\beta^{t} u^{\prime}\left(c_{t}\right) & =\frac{\lambda}{\prod_{s=0}^{t}\left(1+r_{s}\right)} \\
\beta^{t+1} u^{\prime}\left(c_{t+1}\right) & =\frac{\lambda}{\prod_{s=0}^{t+1}\left(1+r_{s}\right)}
\end{aligned}
$$

- Divide these two equations:

$$
\frac{u^{\prime}\left(c_{t}\right)}{\beta u^{\prime}\left(c_{t+1}\right)}=\frac{\prod_{s=0}^{t+1}\left(1+r_{s}\right)}{\prod_{s=0}^{t}\left(1+r_{s}\right)}=1+r_{t+1}
$$

- So once again we get the consumption Euler equation:

$$
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right)\left(1+r_{t+1}\right)
$$

- This governs behavior of consumption for any dates $t, t+1$.

The Life Cycle Hypothesis

- One application: Franco Modigliani's life-cycle hypothesis of consumption
- Individuals want smooth consumption profile over their life. Labor income varies substantially over lifetime, starting out low, increasing until around the 50th year of a person's life and then declining until retirement around 65 , with no labor income after retirement.
- Life-cycle hypothesis: by saving and borrowing individuals turn a very non-smooth labor income profile into a very smooth consumption profile.

Life-Cycle Hypothesis: An Example

- Suppose that $r_{t}=r \forall t$, and $\beta(1+r)=1$. Then Euler equation implies $c_{t}=c_{t+1}=\bar{c}$.
- Use present value budget constraint to work out consumption level:

$$
\begin{aligned}
\sum_{t=0}^{\infty} \frac{c_{t}}{(1+r)^{t}} & =x^{P V} \\
\Rightarrow \bar{c} \sum_{t=0}^{\infty} \frac{1}{(1+r)^{t}} & =\frac{\bar{c}(1+r)}{r}=x^{P V}
\end{aligned}
$$

So $c_{t}=\frac{r}{1+r} x^{P V}$ for all t.

- If $x_{t}=\frac{r}{1+r} x^{P V}$ for all t then $a_{t}=0$ for all t.

Life-Cycle Predictions

- In general, consumption is constant but income x_{t} varies. How is this implemented?

$$
\begin{aligned}
c_{0} & =x_{0}-a_{1}+a_{0} \Rightarrow a_{1}=x_{0}-c_{0}+a_{0} \\
a_{1} & =x_{0}+a_{0}-\frac{r}{1+r} x^{P V}
\end{aligned}
$$

- If current income $x_{0}+a_{0}$ is low relative to $\frac{r}{1+r} x^{P V}$, borrow $a_{1}<0$.
If $x_{0}+a_{0}$ is high relative to $\frac{r}{1+r} x^{P V}$, save $a_{1}>0$.
- These same general implications extend to varying r_{t}, $\beta\left(1+r_{t}\right) \neq 1$.
- Main predictions: current consumption depends on total lifetime income and initial wealth. Saving should follow a very pronounced life-cycle pattern with borrowing in the early periods of an economic life, significant saving in the high earning years from 35-50 and dissaving in retirement years.

Figure 4.A. 5
Life-cycle consumption, income, and saving

(b)

Life-Cycle Evidence

- This pattern of life-cycle savings is generally consistent with the data
- One empirical puzzle: Older household do not dissave to the extent predicted by the theory. Several explanations:
(1) Individuals are altruistic and want to leave bequests to their children.
(2) Uncertainty with respect to length of life and health status.
- Important in aggregate as population ages (Japan).

Case of Japan

- Japanese saving rate fell from 23% of personal income in 1975 to 14% in 1990 down to 5% in 2000.
- Over same horizon, US saving rate roughly flat around 6%.
- Why? One reason: aging of the population in Japan.
- Ratio of Japanese over age of 65 to those of working age rose from 15% in 1980 to 28% in 2000 . Forecast to increase further to 38% by 2010 and 50% by 2020 .
- Estimates by HSBC that demographic shift can account for half of the decline in the savings rate.
- Effects of inflation, slower growth rates, changes in government debt are other factors contributing to savings decline.

Permanent Income Hypothesis

- Future income is uncertain.
- Income of an individual household, x_{t} consists of a permanent part, x^{p} and a transitory part v_{t}

$$
x_{t}=x^{p}+v_{t}
$$

- Permanent part x^{p} : expected average future income (usual salary)
- Transitory part v_{t} : random fluctuations around this average income (bonus)
- In two period model from last time, permanent means y and y^{\prime} change. Transitory: only y changes.
- Friedman (1956): Individuals react differently to an increase in permanent and an increase in transitory income.
- Increase in the permanent component of income brings about an (almost) equal response in consumption. Large increase in $x^{P V}$.
- Individuals smooth out transitory income shocks over time. Little effect on $x^{P V}$. Greater fraction of increase is saved.
- It follows that individual consumption is almost entirely determined by permanent income. So consumption should be smoother than income.
- Data suggests it is so, but not as smooth as theory suggests. Effects of credit market imperfections and borrowing constraints.

Figure 8.8 Temporary Versus Permanent Increases in Income

Consumption-Savings Under Uncertainty

- Now x_{t+1}, r_{t+1} are random, unknown at t.
- Agents form expectations of future income, maximize expected utility.
- Can derive an Euler equation of the same form, but now must have expectations over c_{t+1} and r_{t+1} :

$$
u^{\prime}\left(c_{t}\right)=\beta E_{t}\left[u^{\prime}\left(c_{t+1}\right)\left(1+r_{t+1}\right)\right]
$$

- Here $E_{t}(\cdot)$ represents the agent's expectations, conditional on all information available at date t.

Consumption-Savings Under Uncertainty: Hall (1978)

- Suppose again that $r_{t}=r$ and $\beta(1+r)=1$, so the Euler equation is:

$$
u^{\prime}\left(c_{t}\right)=E_{t} u^{\prime}\left(c_{t+1}\right)
$$

- Also suppose that agents have quadratic preferences, where $a>0$ is a constant:

$$
u\left(c_{t}\right)=c_{t}-\frac{a}{2} c_{t}^{2}
$$

- So $u^{\prime}\left(c_{t}\right)=1-a c_{t}$ and the Euler equation becomes:

$$
c_{t}=E_{t} c_{t+1}
$$

- Also by the law of iterated expectations:

$$
c_{t}=E_{t} c_{t+1}=E_{t}\left(E_{t+1} c_{t+2}\right)=E_{t} c_{t+2}
$$

Implications

- With these preferences consumption is a random walk:

$$
c_{t+1}=c_{t}+\varepsilon_{t+1}, \quad E_{t} \varepsilon_{t+1}=0
$$

- The best predictor of consumption one period ahead is current consumption. No other variables which are known at date t help predict consumption at $t+1$.
- To express this another way, note that the present value budget constraint holds for any date t :

$$
\sum_{s=0}^{\infty} \frac{E_{t} c_{t+s}}{(1+r)^{s}}=\sum_{s=0}^{\infty} \frac{E_{t} x_{t+s}}{(1+r)^{s}}+a_{t}(1+r)
$$

Permanent Income Theory Example

- Then note that $E_{t} c_{t+s}=c_{t}$ for all s. So then we have:

$$
\begin{aligned}
c_{t} \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s}} & =\sum_{s=0}^{\infty} \frac{E_{t} x_{t+s}}{(1+r)^{s}}+a_{t}(1+r) \\
c_{t} & =\frac{r}{1+r} \sum_{s=0}^{\infty} \frac{E_{t} x_{t+s}}{(1+r)^{s}}+r a_{t}
\end{aligned}
$$

Consumption depends on expectations of all future income.

- Changes in consumption over time are driven by changes in expectations of future income. Information revealed about future income is the driver of consumption.

$$
c_{t-1}=E_{t-1} c_{t}=\frac{r}{1+r} \sum_{s=0}^{\infty} \frac{E_{t-1} x_{t+s}}{(1+r)^{s}}+r a_{t}
$$

Permanent and Transitory Shocks

- A pure transitory income shock reveals at date t that $x_{t}>E_{t-1} x_{t}$ is higher than anticipated, but $E_{t} x_{t+s}$ is unaffected for $s \geq 1$. Example: $x_{t}=x_{t-1}+v_{t}, x_{t+s}=x_{t-1}$.

$$
c_{t}=c_{t-1}+\frac{r}{1+r} v_{t}
$$

- A permanent income shock reveals at date t that $x_{t}>E_{t-1} x_{t}$ is higher than anticipated, and $E_{t} x_{t+s}$ is also higher for $s \geq 1$. Example: $x_{t+s}=x_{t-1}+\Delta$

$$
c_{t}=c_{t-1}+\Delta
$$

Extensions of Permanent Income Theory

- With quadratic utility, uncertainty in income does not affect decisions:

$$
c_{t}=\frac{r}{1+r} \sum_{s=0}^{\infty} \frac{E_{t} x_{t+s}}{(1+r)^{s}}+r a_{t}
$$

- This is a property known as certainty equivalence. Decisions are the same as if x_{t} took on its expected value with certainty.
- With more general preferences, variability of income would matter.
- Suppose again that $r_{t}=r$ and $\beta(1+r)=1$, so the Euler equation is:

$$
u^{\prime}\left(c_{t}\right)=E_{t} u^{\prime}\left(c_{t+1}\right)
$$

- If $u^{\prime}(c)$ is convex $\left(u^{\prime \prime \prime}(c)>0\right)$, then more uncertain income will lead to lower consumption today, more savings: precautionary savings

Precautionary Savings

- Quadratic utility: $u^{\prime}(c)=1-a c, u^{\prime \prime}(c)=-a<0$, $u^{\prime \prime \prime}(c)=0$.

$$
u^{\prime}\left(c_{t}\right)=E_{t} u^{\prime}\left(c_{t+1}\right) \Rightarrow c_{t}=E_{t} c_{t+1}
$$

- Power utility: $u^{\prime}(c)=c^{-\gamma}, u^{\prime \prime}(c)=-\gamma c^{-\gamma-1}<0$,

$$
u^{\prime \prime \prime}(c)=-\gamma(-\gamma-1) c^{-\gamma-2}>0
$$

$$
u^{\prime}\left(c_{t}\right)=E_{t} u^{\prime}\left(c_{t+1}\right)>u^{\prime}\left(E_{t} c_{t+1}\right) \Rightarrow c_{t}<E_{t} c_{t+1}
$$

Implications for Consumption

- Uncertainty about future income will lead to more savings, to allow households to smooth potential consumption fluctuations.
- Periods of increased uncertainty will be characterized by reductions in household consumption.
- Another complication we've abstracted from is borrowing constraints. These affect consumption in two ways:
(1) When household is constrained, consumption will closely follow income. Unable to smooth.
(2) Household will build up stock of assets to diminish the impact of the constraint.
- There is significant micro evidence for these effects on household consumption. Macro effects are less clear.

