Dynamic Thin Markets

Marzena Rostek and Marek Weretka

January 22, 2010

Abstract. Extensive empirical research has shown that, in many markets, institutional investors have a significant impact on prices and mitigate its adverse effects through trading strategies. This paper develops a dynamic model of such thin markets in which traders recognize their price impact. The paper demonstrates that market thinness induced by dynamic bilateral (buyer and seller) market power qualitatively changes the efficiency and arbitrage properties of equilibrium, compared to existing competitive or non-competitive models of asset pricing. Predictions match a number of empirical facts, including order break-up, asset price overshooting and limits to arbitrage.

JEL classification: D43, D53, G11, G12, L13

Keywords: Thin Markets, Price Impact, Overshooting, Limits to Arbitrage

1 Introduction

The assumption of price-taking behavior underlies two central results in asset pricing—the no-arbitrage principle and full diversification of risk. Since trade-level data first became available two decades ago, it has become well understood that transactions by institutional investors exert price impact in many financial markets. Trading costs associated with price impact are not only significant but, in fact, dominate explicit trading costs, including commission fees, brokerage fees and order-processing fees (e.g., Chan and Lakonishok (1995); Stoll (1978);
Keim and Madhavan (1995, 1996, 1998)). Techniques used to estimate market impact and facilitate trading are widespread in investment management and are available in the Market Impact Models offered by Citigroup, EQ International, ITG, MCI Barra and OptiMark, among others. In financial jargon, markets in which individual trades are large relative to average daily volume and, hence, impact prices, are known as thin markets. By requiring that all traders correctly recognize their price impact, this paper shows that market thinness qualitatively alters the dynamics of trade and prices in equilibrium, compared to the existing non-competitive as well as competitive asset pricing models.

In order to delineate how the mere presence of price impact affects equilibrium, we assume preferences and assets from the standard CAPM setting with \(I \) mean-variance optimizers. The relaxation of the price-taking assumption is the sole departure from the competitive CAPM. There are \(T \) trading rounds, after which dividends are paid. The motive for trade comes from risk sharing. The market is modeled as a game in which traders submit demand schedules that are defined by limit and stop orders. In Nash equilibrium, traders correctly recognize their price impact and take it into account when trading. The demand game is the workhorse model of the finance literature (e.g., the seminal work of Kyle (1989)).\(^5\) Thus far, only the version of the game with one asset and a one-period market has been solved—with a notable exception by Vayanos (1999). The modeling contribution of the present paper is building a non-stationary, perfect-foresight model with many assets. The central economic insight of the model is that dynamic bilateral (buyer and seller) price impact changes both efficiency and arbitrage properties of equilibrium in ways not anticipated either by static models with bilateral price impact or dynamic models with one-sided market power. These can potentially explain a number of robust empirical phenomena observed in thin financial markets. Next, we describe the main predictions.

Results. Common practice among institutional investors involves breaking up orders into blocks, and then trading them sequentially. Even in markets as deep as the NYSE, only about 20% of the value of institutional purchases and sales is completed within a single day, while more than 50% of that value takes at least four days for execution. If traded at once, a typical institutional package would represent over 60% of the average daily trading volume (Chan and Lakonishok (1995)). In the competitive model, Pareto efficiency after the first round of trade precludes order breakup as an equilibrium prediction. In our model, equilibrium features order break-up as the optimal strategy for handling large orders in thin markets. The result of order break-up might seem reminiscent of predictions for the classical durable-

\(^5\)In industrial organization, the game of Nash in demands (or supplies) was introduced for an oligopolistic industry by Grossman (1981) and further developed by Klemperer and Meyer (1989).
good monopoly. The mechanism underlying order break-up is, however, distinct and novel. Specifically, with bilateral market power, order break-up is optimal despite lack of discounting or heterogeneous beliefs about fundamentals, and with perfect foresight—throughout trading, there are no endowment shocks or information disclosure.

Another large body of evidence in finance concerns price behavior that is often interpreted as temporary departures of asset prices from their fundamental values. Such price behavior is observed as the reaction of prices in thin markets to one-time exogenous supply or demand shocks as well as to block trades. A typical price pattern features a significant price change followed by a partial reversal of the price in subsequent periods. Thus, apart from permanent effect, the resulting price adjustment also has a temporary, overshooting component. These two effects were empirically discovered by Kraus and Stoll (1972) and subsequently documented by numerous studies for various securities (described in Section 4.1). Crucially, in the data, temporary price change occurs on the date of the shock, even if the shock was pre-announced. The evidence on market reaction to supply and demand shocks is striking because it demonstrates that trade announcements and trade-induced price effects can be separated in time and that anticipated price changes can be observed in markets. In the standard competitive model, all of these features of price behavior are ruled out simply by no-arbitrage—the presence of price-taking traders who are ready to respond to price differentials at any time ties the equilibrium price to the fundamental value.

Our model predicts such temporary departures of equilibrium prices from the fundamental values as the equilibrium reaction of thin markets to shocks. We establish that any exogenous demand or supply shocks in thin markets have two effects on prices—fundamental and liquidity effects—which differ in their origin, persistence and timing. The fundamental effect, which is permanent, reflects the adjustment of the fundamental value that results from the change in the average portfolio in the market. This effect would be observed also in markets with price-taking traders. The fundamental effect is amplified by a temporary liquidity effect, which results from the non-competitiveness of both buying and selling traders. The permanent effect always occurs immediately after investors learn about the shock. Consistent with the data, the temporary effect attains its maximum only at the moment of trade, regardless...
of whether the shock is anticipated. Thus, in our model, overshooting is not a market fric-
tion, but rather an equilibrium phenomenon that is consistent with dynamic optimization
and robust to arbitrage. An implicit assumption in the no-arbitrage argument is that traders
can place arbitrarily large orders; once one acknowledges that such large orders have price
impact, limits to arbitrage arise.

Endogenously determined market depth (price impact) is not constant, but evolves over
time, even in the absence of shocks or information revelation. Market depth changes because,
as time-to-maturity varies across trading periods, different trading rounds offer different
diversification (resale) opportunities for traders prior to maturity. This, in turn, affects
investor willingness to absorb orders placed by other traders and translates into different
price concessions being required in trade. The model can thus accommodate variations in
market depth.

Our model has normative implications for asset valuation. Apprising assets in thin mar-
kets is challenging because the current market price of an asset does not reflect the cash value
that could be obtained by liquidating a portfolio. To account for the adverse effect of market
thinness on market value, valuation specialists apply the so-called “blockage discount”, which
has been recognized by the IRS since 1937. Our model can be directly used to derive blockage
discounts, only heuristic formalizations of which are previously available, in an equilibrium
asset pricing model. That the model allows for many risky assets is particularly important
when determining blockage-discount formulas for the entire portfolio.

Other Related Literature. To explain further the bite of our approach, let us describe
how it relates to the existing models with price impact. In the literature, price impact has
been attributed to asymmetric information and/or traders’ primitive decreasing marginal
utility (inventory effects). In this paper, price impact does not result from asymmetric infor-
mation, as we seek a source of market thinness that would also be present in perfect-foresight
environments.\(^8\) Within the tradition of modeling price impact based on inventory effects, a
common approach for incorporating price impact has been by building a Monopoly/Cournot-
type model of one-sided market power with \(I \geq 1\) large investors trading with a fringe of
price-taking traders (e.g., Ho and Stoll (1981); Grossman and Miller (1988); Vayanos (2001);
Brunnermeier and Pedersen (2005); and DeMarzo and Urošević (2006) extended by Urošević

\(^8\)Empirical studies suggest that in many markets, the price impact component that is due to asymmetric
information can only partially account for the observed magnitudes of price changes. (See Section 5.) In
addition, large institutional investors do not outperform fixed benchmark portfolios, which would likely be the
case if they had superior information about asset fundamentals. Madhavan and Cheng (1997) report that, for
the average trade value, price impacts in downstairs markets do not differ significantly from those in upstairs
markets, which are more transparent and less susceptible to informational asymmetries. This suggests that,
in both types of markets, price impact is not mainly driven by the asymmetry of information.
(2005)). In the Cournot market structure, small, price-taking traders define demand, and hence provide liquidity for, large strategic investors. In the perfect-foresight setting studied in this paper, if market power were one-sided or if there were price-taking liquidity providers, gains to trade could be optimally exhausted and full risk sharing achieved within one period. Furthermore, equilibrium prices would correspond to fundamental values. Thus, the key to this paper’s novel predictions is the presence of market power of both buying and selling traders.\(^9\) The assumption that institutional traders are large and that they provide liquidity for, and effectively trade with, one another describes well many markets, such as intra-dealer markets.

2 Set-up

2.1 Market Microstructure

There are \(I\) traders, where \(I\) can be a small number. With the usual abuse of notation, \(I\) also denotes the set of traders. Investment opportunities include \(N\) risky assets and one riskless asset (e.g., a bond). Investors can potentially trade for \(T\) trading rounds, after which assets mature and dividends are paid. This captures that trade can take place more frequently than dividend payments, which in practice typically occur semiannually. The dividends from risky assets are distributed normally according to \(N(A, V)\), where \(A\) is the vector of the expected asset payoffs and \(V\) is the variance-covariance matrix of payoffs. For notational convenience, we assume that the interest rate on the riskless asset is zero. Alternatively, the riskless asset can be interpreted as money.

Traders enter each period \(t = 1, 2, \ldots, T\) with the stocks of risky assets \(\theta_{i-1}^i \in \mathbb{R}^N\) and bonds \(\theta_{b,t-1}^i \in \mathbb{R}\). After they trade \(\Delta \theta_{i}^i\) and \(\Delta \theta_{b,t}^i\) in stocks and bonds, respectively, the traders end trading period \(t\) and enter \(t + 1\) with holdings of \(\theta_{t}^i = \theta_{t-1}^i + \Delta \theta_{i}^i\) and \(\theta_{b,t}^i = \theta_{b,t-1}^i + \Delta \theta_{b,t}^i\). Trades \(\Delta \theta_{i}^i\) and \(\Delta \theta_{b,t}^i\) denote net demands in period \(t\). \((\theta_0^i, \theta_{b,0}^i)\) denotes the exogenously given initial portfolio of trader \(i\). Investors choose their trades to maximize expected CARA utility functions. Using the standard argument, such assumptions are jointly equivalent to assuming that investors are mean-variance optimizers; that is, investor’s \(i\) indirect utility function, expressed in terms of after-trade portfolios, is linear in bond holdings and quadratic in risky assets,

\[
U(\theta_{b,T}^i, \theta_{b,T}^i) = \theta_{b,T}^i + A \cdot \theta_{T}^i - \frac{\alpha}{2} \theta_{T}^i \cdot V \theta_{T}^i.
\]

\(^9\)Weill (2007) analyzes price behavior in a model with risk neutral competitive market makers and investors, in which short selling constraints give rise to departures of price from the fundamental value. In the present paper, market makers can trade arbitrary quantities and the liquidity effect occurs in equilibrium even with unconstrained market makers.
To measure market size, it is useful to define *market participation rate* as an increasing function of the number of traders

\[\gamma \equiv 1 - \frac{1}{T-1}. \tag{2} \]

In hindsight, the closer \(\gamma \) is to one, the more competitive are market interactions.\(^\text{10}\) Let \(\theta^{Av} \) denote the *average portfolio*, which is defined as the asset-by-asset average of the risky part of the initial holdings of all traders,

\[\theta^{Av} \equiv \frac{1}{T} \sum_{i \in I} \theta_i^0. \tag{3} \]

The fundamental value profile \(\nu \in \mathbb{R}^N \) is defined as the average marginal utility from risky assets,

\[\nu \equiv A - \alpha \mathcal{V} \theta^{Av}. \tag{4} \]

It is straightforward to show that the fundamental values coincide with the vector of prices from the competitive CAPM. Throughout, a bar ‘\(\bar{\cdot} \)’ indicates equilibrium.

2.2 Equilibrium and Interpretation of Trading Behavior

We model spot markets as a Walrasian auction. In each period, traders submit downward-sloping (net) demand schedules \(\Delta \theta_i^t(p) \), formed, e.g., by limit and stop orders. The market maker aggregates such bids and finds a price \(\bar{\rho}_t \) that clears the market

\[\sum_{i \in I} \Delta \theta_i^t(\bar{\rho}_t) = 0. \]

In the spot market at \(t \), investor \(i \) trades \(\Delta \bar{\theta}_i^t \equiv \Delta \theta_i^t(\bar{\rho}_t) \) risky assets for \(\bar{\rho} \cdot \Delta \bar{\theta}_i^t \) in terms of bonds. Similar to Kyle (1989) or Vayanos (1999), we study the Nash equilibrium in linear demands; we do not restrict the strategies to linear bids, but rather analyze equilibrium in which it is optimal for a trader to bid linearly given that others do. It is well known that there exists a continuum of equilibria (in terms of outcomes) in a deterministic Walrasian auction. As is standard in the literature, we focus on the unique linear equilibrium that is robust to perturbations in demands. A dynamic equilibrium is solved for by backward induction.

We suggest that the classical Walrasian auction, or the Nash demand game, admit an alternative and revealing interpretation. From the perspective of trader \(i \), in each period \(t \), the demand schedules of other traders and the market clearing condition define a linear residual supply with a deterministic slope \(M_i^t \) faced by \(i \). The slope of the residual supply against which investor \(i \) trades measures how a marginal change in quantity affects the price;

\(^{10}\)With only two traders, \(\gamma \) is equal to zero, in which case equilibrium does not exist. The non-existence of equilibrium with two traders is also present in closely related models by Kyle (1989) and Klemperer and Meyer (1989) with a vertical demand.
in short, his price impact. Lemma 1 shows that the (robust) Nash equilibrium is a profile of demand schedules such that (i) given his assumed price impact M^i_t, each trader optimizes (i.e., equalizes his marginal utility derived from the value function with his marginal revenue) for every price, and (ii) his assumed price impact is correct (i.e., it is equal to the slope of the residual supply that results from aggregating the bids of others). Let $V^i_t(\Delta \theta^i_t)$ be the value function at time t, which, in the last period T, coincides with utility function (1).

Lemma 1 (Characterization of Robust Nash Equilibrium) A profile of demands $\{\Delta \theta^i_t(\cdot)\}_{i \in I}$ constitutes a symmetric robust Nash equilibrium at $t = 1, \ldots, T$ if, and only if, for all $i \in I$,

(i) $D_{\Delta \theta^i_t} V^i_t(\cdot) = p + M^i_t \Delta \theta^i_t$ for all p, where M^i_t is such that (ii) $M^i_t = (1 - \gamma) \left(D_p \Delta \theta^i_t(\cdot) \right)^{-1}$.

The characterization makes explicit that the trader price impact is not exogenous, but determined in equilibrium jointly with trades and prices. Strikingly, the only information any investor i needs in order to respond optimally to all prices—not just the equilibrium price—and to arbitrary orders of others—and not just the equilibrium orders—is, apart from his own preference, his price impact M^i_t. In particular, no information about the number—let alone the utility functions, identities, or trading strategies of his trading partners—is required; nor does a trader need to know the equilibrium price in order to trade optimally. Thus, our model fits well anonymous markets in which each trader’s price impact summarizes all the payoff-relevant information about the residual market against which he trades.

Let us emphasize that writing the (robust) Nash demand equilibrium using Lemma 1 allows us to relate the trading behavior in the non-competitive equilibrium in a Walrasian auction to that in the competitive equilibrium: As is apparent from condition (ii), traders are slope-takers rather than price-takers. They act assuming that they do not affect the slope of their residual supply by changing trading position; they might affect prices and they will as long as that slope is not zero. If the endogenous price impacts are equal to zero, the competitive equilibrium is obtained. Price impact M^i_t, which in our model is endogenously identical for all traders, serves as a measure of market thinness in period t.

In addition, the results from the strategic model presented in this paper can be directly compared with the standard competitive theory of asset pricing, in the following sense. Weretka (2007) develops a static general-equilibrium model with price impact and, using the strategic representation (1) from the present paper, Weretka (2009) shows outcome equivalence between Nash in demands and the general-equilibrium representation for the quadratic (CARA-Normal) setting.

11This property is particularly attractive in a one-period market; knowing one’s preference in dynamic trading requires knowledge of one’s value function.
The idea of an equilibrium with slope-takers fits well the description of institutional traders who use Market Impact Models and is consistent with practitioner views. Incidentally, apart from the models with price impact based on asymmetric information or inventory effects (see the Introduction), several non-equilibrium models with price impact have been proposed, also by practitioners (e.g., Almgren et al. (2005) and Huberman and Stanzl (2004), and references therein). These models endow traders with exogenously given price impact functions, the shape of which is motivated empirically and which are then used to analyze prices and allocations in thin markets. Our model derives such price impact functions endogenously, as part of equilibrium.

For markets with many assets, the price impact of trader i is formalized as an $N \times N$ matrix \mathcal{M}_i, in which a typical element (n, m) characterizes the price change of asset m that results from a marginal increase in demand for asset n. When $N = 1$ the matrix becomes a scalar and is equal to the slope of a one-dimensional residual demand. As long as the price impact matrix \mathcal{M}_i is not zero, the asset demands on which investor i operates are not perfectly elastic. We derive symmetric equilibrium in a closed form.\footnote{For one asset, asymmetric equilibria do not exist. We conjecture that this is also true for many assets, but do not offer a formal argument.} By Lemma 1, equilibrium in every period t is fully described by the profile of prices, trades and price impacts for all traders, \[\left\{ (\bar{p}_t, \Delta \bar{\theta}_t, \mathcal{M}_i^t) \right\}_{i \in I}. \]

3 Model Predictions

This section presents the model’s predictions about trading strategies, prices and price impacts in the symmetric equilibrium. We begin with a description of the basic mechanisms operating in a one-period thin market and the origins of market thinness (Section 3.1). We then describe the main predictions for dynamic thin markets (Section 3.2). Throughout, we highlight the differences with the competitive benchmark. In the Appendix, we derive equilibrium for an arbitrary T.

3.1 Last Period

Equilibrium in Period T. Consider the last trading period T. The equilibrium price impact of investor i is equal to

\[\hat{\mathcal{M}}_i^T = \frac{1 - \gamma}{\gamma} \alpha \nu. \]

Our model predicts that price impact is strictly positive and, in particular, competitive
equilibrium does not satisfy equilibrium conditions. Given the finite number of traders \((\gamma < 1)\) and strictly decreasing marginal utility \((\alpha > 0)\), each trader faces an upward-sloping residual supply, and hence, his orders impact prices. In response to their market power, each trader reduces his order relative to the competitive bid—for any given price, he buys or sells less,

\[
\Delta \tilde{\theta}_T^i(t) = (M_T^i + \alpha \mathcal{V})^{-1}(A - \alpha \mathcal{V} \cdot \tilde{\theta}_{T-1}^i - p_T) = \gamma(\alpha \mathcal{V})^{-1}(A - \alpha \mathcal{V} \cdot \tilde{\theta}_{T-1}^i - p_T).
\]

Hence, compared to the competitive market, inverse demands become steeper by a factor of \(\gamma\). The equilibrium asset prices coincide with the competitive prices

\[
\bar{p}_T = v \equiv A - \alpha \mathcal{V} \theta^{Av}.
\]

We postpone discussion of this result to Section 3.2. In a perfectly competitive CAPM with symmetric bidders in equilibrium, each investor sells his initial holdings at \(T\), \(\tilde{\theta}_{T-1}^i\), and replaces them with the average portfolio \(\theta^{Av}\). In a thin market, the trader sells a fraction \(\gamma\) of the portfolio with which he entered the trading round and replaces it with \(\gamma\) of the average portfolio

\[
\Delta \tilde{\theta}_T^i = \gamma(\theta^{Av} - \tilde{\theta}_{T-1}^i).
\]

Interestingly, how much of the initial holdings is rebalanced is determined solely by the market participation rate \(\gamma\); in particular, it is independent of risk aversion \(\alpha\).

The static and dynamic origins of market thinness. Where does market power come from? When traders are risk averse and the shares are risky, purchasing or selling shares changes the traders’ marginal utility. Therefore, investors require price concessions when trading. Thus, the model predicts that the essential determinant of price impact of trader \(i\) is risk aversion \((\alpha)\) and return riskiness amplified or weakened by cross-market impact, as specified by the variance-covariance matrix \((\mathcal{V})\). What is less apparent in a symmetric solution is that it is other investors’ risk aversion that enters directly into trader’s \(i\) price impact; more risk averse trading partners are more reluctant to increase their holdings of risky assets, which implies larger price concessions in trading. Price impact strictly decreases in the number of traders, captured by \(\gamma\). When the number of traders increases, the effect that the orders of any given trader have on the average marginal utility becomes weaker because each of the other traders absorbs a smaller fraction of these orders. Predictions approach the competitive outcome when investors are approximately risk neutral \((\alpha \sim 0)\) or when the number of traders is large \((\gamma \sim 1)\).
Multiple trading opportunities introduce a new source of price impact. Market power in a static market (or, in the last-period) results solely from the traders’ risk aversion, which makes them willing to absorb the risky assets of other traders only at price concessions. The non-competitiveness of dynamic perfect-foresight markets is, in turn, governed by a dynamic mechanism: Future market thinness begets present market thinness. Intuitively, the inability to diversify risk without price concessions at \(T \) exposes traders to risk at maturity and endogenously induces risk aversion at \(T - 1 \) (and, by a recursive argument, in all previous periods). This can be seen by substituting the policy function in utility (1), which gives the indirect utility function of trader \(i \) at \(T - 1 \) as a function of trade in this period. Crucially, the presence of period-(\(T - 1 \)) trade \(\Delta \theta_{T-1} \) in the final portfolio implies that the value function has a quadratic term (and is of the mean-variance form) and is strictly concave, which makes the investor effectively risk averse at \(T - 1 \). The coefficient of effective risk aversion, \((1 - \gamma)^2 \alpha\), depends on the market participation rate \(\gamma \), because only \(1 - \gamma \) of the \((T - 1)\)-period trade survives till maturity, while the remaining fraction \(\gamma \) is liquidated at \(T \). The derivative of the value function at \(T - 1 \) is equal to

\[
D_{\Delta \theta_{T-1}} V^i_{T-1} (\cdot) = v - (1 - \gamma)^2 \alpha V \left(\hat{\theta}_T^i + \Delta \hat{\theta}_{T-1}^i - \theta^{Av} \right).
\]

Higher market competitiveness in the last period improves the hedging possibility in that period, which weakens the impact of trade \(\Delta \theta_{T-1} \) on final holdings \(\bar{\theta}_T \). Thus, it is the thinness of the future-period market that makes investors averse to absorbing risky shares in earlier periods and induces them to require price concessions in trading. On the other hand, with a trading opportunity in the future, traders are more willing to absorb risky assets from other traders, knowing that they will be able to partially diversify their positions in subsequent rounds. As a result, in earlier trading rounds, the value function is less concave, the required price concessions are smaller, and so is the price impact. Since, in response to their market power at \(T - 1 \), traders reduce their orders in that period, the outcome is not Pareto efficient, and it follows that there are gains to trade at \(T \). Hence, investors trade in both periods.

3.2 Dynamic Thin Markets

We now characterize the equilibrium in a market in which investors can potentially trade for \(T \) periods after which assets mature. There are no shocks throughout.

Optimal trading strategies. Proposition 1 characterizes how market thinness affects the optimal execution of trade. In the competitive CAPM, investors instantaneously sell their initial inventories and rebalance their holdings within one period; they invest in a
combination of the market portfolio and the riskless asset (Two-Fund Separation Theorem). In a deterministic setting, no trade takes place in subsequent periods, as the investors’ risky holdings become efficient already in the first trading period. By contrast, our model predicts that the optimal handling of large orders in thin markets ($\gamma < 1$) involves trading in blocks. The adverse effects of price impact induce investors to break up their orders into smaller blocks, $\Delta\tilde{\theta}_t^i = \gamma(\theta^{Av} - \tilde{\theta}_t^i)$, and place them on the market sequentially.13

In addition, order break-up takes a particular, easy-to-execute form that results in a Three-Fund Separation. Namely, every time they trade, investors sell a fraction of (the remaining part of) their initial portfolios to invest between the average portfolio and the riskless asset.

Proposition 1 (Three-Fund Separation) For every trading period $t = 1, \ldots, T$, the risky part of the optimal portfolio is a convex combination of the initial and average portfolios, θ_0^i and θ^{Av}, and the weight assigned to θ^{Av} monotonically increases over time:

$$\tilde{\theta}_t^i = (1 - \gamma)^t \theta_0^i + (1 - (1 - \gamma)^t) \theta^{Av}. \quad (10)$$

The remaining wealth is invested in the riskless asset, θ_{bt}^i.

Order break-up is a common practice among large investors. Table 1 presents typical figures from the NYSE. Only 20% of the total volume of all institutional purchases and sales is completed within one day, while more than 30% of the orders takes at least six days to execute.

<table>
<thead>
<tr>
<th>Table 1. Order Break-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1 Day</td>
</tr>
<tr>
<td>Buy</td>
</tr>
<tr>
<td>20.1%</td>
</tr>
<tr>
<td>Sell</td>
</tr>
<tr>
<td>22.1%</td>
</tr>
</tbody>
</table>

*Data: All trades of NYSE and AMEX stocks by 37 investment management firms from July 1, 1986, to December 30, 1988 (October 1987 excluded). A buy/sell package is defined as successive purchases/sales of a stock with at most a 5-day break between consecutive trades. The numbers are percentages of the total volume of trade in $\$. (Chan and Lakonishok (1995, Table 1))

An average package in the smallest firms amounts to two or three times the daily volume of trade, and even in the largest firms, an average package takes up 25% of the daily volume.

13 The number of blocks in the optimal trading strategy corresponds to the number of trading opportunities T. That number can be endogenized by introducing fixed transaction costs.
Partial Diversification of Risk. When the number of trading periods is sufficiently large, the portfolios in the model converge to the competitive holdings, but for any finite number of periods, the portfolios are distinct. Consequently, at any point in time, idiosyncratic risk is not perfectly hedged. On the other hand, allocation can be arbitrarily close to efficiency, provided that the time to maturity \(T - t \) is sufficiently long.

When markets are deeper, individual risky holdings converge more quickly to the competitive outcome, i.e., the average inventories held by all investors (see Figure 1). Somewhat surprisingly, not only does \(\gamma \) affect the speed of trade, but it actually fully determines it. In particular, the speed of trade does not depend on risk aversion \(\alpha \), as long as \(\alpha > 0 \). Intuitively, higher \(\alpha \) is associated with greater gains to trade, and hence encourages more aggressive hedging through faster trading. It also, however, amplifies the price impacts of all traders, making interactions less competitive and reducing the trade. In a quadratic symmetric model, these two effects of risk aversion offset each other. Thus, even if large institutional traders are almost risk-neutral, as is sometimes assumed in the finance literature, they will choose to trade slowly.

Non-stationarity of Price Impact. The non-competitive CAPM predicts that price impact is not constant across the trading periods, but instead increases as time approaches maturity—the further from maturity, the more opportunities to diversify and re-trade, the less costly it is for the investors to depart from their current holdings, and the smaller the price concessions required. That mechanism is apparent in the value function (equation (33) in the Appendix), which becomes more and more concave over time to reflect the traders’ increasing effective risk aversion, and their decreasing willingness to buy risky assets at given price concessions. To the extent that market depth can proxy the level of market competitiveness, according to our model, markets are least competitive just prior to maturity.

Proposition 2 (Time Structure of Price Impact) Price impact exponentially decreases with time-to-maturity \(T - t \),

\[
\hat{M}_i^t = \frac{(1 - \gamma)^{2(T-t)+1}}{\gamma} \alpha \mathcal{V}. \tag{11}
\]

Notably, the derived schedule of price impact matrices, \(\hat{M}_i^t \), is directly proportional to the variance-covariance matrix of returns, \(\mathcal{V} \). Thus, the markets for less risky assets are deeper. Moreover, characterization (11) shows that there are cross-market price-impact effects when the payoffs of two stocks are correlated. Then, the sale of one asset inflicts downward pressure on the price of other assets. In addition, time-to-maturity, \(T - t \), and market participation rate, \(\gamma \), weaken the effect of asset riskiness, \(\mathcal{V} \), and risk aversion, \(\alpha \), which are determinants of the concavity of investors’ preferences on price impact.
One implication of the non-stationarity of price impact is that liquidity is correlated across assets, even if their returns are independent. That mechanism, dubbed “commonality in liquidity,” has already been widely documented in the empirical literature (e.g., the survey by Amihud, Mendelson and Pedersen (2005)).

The derived monotone time structure of price impact hints at a new channel through which systemic risk might destabilize markets, as it suggests that market depth can endogenously become higher prior to news announcements. Similarly, Proposition 2 implies that, in thin markets, asset maturity might become an active instrument in stabilizing markets; increasing maturity of an asset lowers the price impact in the market for that asset and increases the level of competitiveness in all trading periods.

Security Market Line. One of the most celebrated and controversial results in the standard CAPM is the Security Market Line, which asserts that the return of an asset can be explained solely by the covariance of its return with the return of the market portfolio. Analyzing the trade-off between risk and return is significantly harder in the non-competitive model, as asset prices no longer coincide with the marginal utilities of traders, and, moreover, marginal utilities typically differ across agents.

Nevertheless, under our assumptions, equilibrium asset prices coincide with the fundamental values of assets and are, therefore, identical to the competitive prices in every period. The price result might be somewhat surprising, but it arises from the following mechanism. With symmetric price impacts, market power of buyers and sellers is balanced, and buyers and sellers reduce their demands and supplies for each asset by the same factor γ. Consequently,

14 Market thinness can be viewed as a particular source of market illiquidity, with price impact measuring illiquidity. Domowitz, Hansch, and Wang (2005) show empirically that liquidity commonality is due to co-movements in supply and demand that are induced by cross-sectional correlation in order types (market and limit orders), while return commonality is caused by correlation in order flows (order direction and size). Thus, stocks that do not correlate in returns can feature liquidity co-movement because return co-movement and liquidity co-movement are caused by different economic factors. The authors conclude that liquidity co-movement poses a challenge for traditional diversification strategies that are based solely on return interactions.

15 It might seem that, apart from predicting commonality in liquidity, Propositions 1 and 2 imply that trade volume and liquidity (measured by the inverse of price impact) should be positively correlated in time series data. Yet, although empirical support for the cross-sectional relation of liquidity across markets is strong, the evidence on a dynamic relation is mixed (see, e.g., Johnson (2008) and references therein). Notice, however, that TM-CAPM predicts that, in any given trading period, investors will rebalance a fraction γ of the remaining part of their initial holdings, and this fraction depends solely on the participation rate and not on price impact or time. That the absolute volume of trade appears correlated with price impact is an artefact of the perfect correlation of gains to trade across traders in the first trading period.

16 Recall that at the end of period T assets mature, which can be viewed as full resolution of uncertainty. Our analysis implies that if the disclosure of information is introduced to the model, T would alternatively be interpreted as a period at the end of which partial information about dividends is revealed. Our predictions are consistent with the extensively documented fact that liquidity tends to increase prior to scheduled news announcements and decrease on the announcement day as uncertainty is resolved by market participants.
thin markets clear at the competitive prices, even though the trades are not competitive. The price result, however, relies on the joint assumption of: (i) CARA-Normal (quadratic) and (ii) homogenous utility functions, and (iii) deterministic structure of the model. Moving away from these assumptions would introduce price effects.

One implication of the price result is that asset returns are the same random variables as in the competitive model and their expectations lie on the Security Market Line, spanned by the riskless return and the return on the average portfolio. Let R^{Av} denote the expected return of an average portfolio, let $\beta_n = \mathcal{V}_{Average,n}/\mathcal{V}_{Average}$ be the beta of asset n, and let R_n be the expected return of asset n.

Proposition 3 (Security Market Line) In thin markets with I traders, the expected returns of assets in any period $t = 1, \ldots, T$ are located on the Security Market Line,

$$R_n - R = \beta_n (R^{Av} - R).$$

We should stress here that, in our model, the average portfolio is defined as a _per capita_ risky portfolio held by a possibly small group of traders in a given asset market. Therefore, the standard approach to testing CAPM predictions, based on the whole market portfolio, should not be applied in this instance. To empirically test for the Security Market Line in our model, one should first properly identify a thin market—a group of institutional investors who trade a given collection of risky assets.

One lesson from Proposition 3 is that price impact, _per se_, does not necessarily distort asset returns and in order to explain liquidity premia within CAPM, one needs other distortions (on that, see Section 6). Conveniently, the price result allows us to isolate the economic effects due to the mere presence of market thinness without having to deal with further effects due to price changes.

4 Price Effects in Thin Markets

Our model suggests that, in the absence of shocks and with a sufficiently long trading horizon, thin markets feature an essentially competitive outcome—almost perfectly diversified portfolios and competitive prices throughout. As we demonstrate in this section, however, thin markets respond very differently than competitive markets to exogenous shocks in asset supply and demand, or when investors need to quickly liquidate their portfolios. We show that accounting for market thinness may explain a number of empirical phenomena that are hard to reconcile within the competitive models; these include asset price overshooting (Section 4.1) and the existence of instruments for asset valuation that account for price impact.
Typical supply or demand shocks that have been examined in the empirical finance literature include forced liquidation, issuance of new debt, selling Initial Public Offerings (IPOs), an inclusion of an asset into the S&P Index, or a change of index weights. Alternatively, exogenous shocks can capture a net trade of small competitive traders who do not monitor prices and are unable to take advantage of price differentials.

To examine how thin markets react to exogenous shocks in asset supply (or demand), we enrich the model with an unanticipated, as well as an anticipated, exogenous sale of a large block of shares by an investor other than I strategic traders.

4.1 Fundamental and Liquidity Effects

As evidenced from the empirical literature, the exogenous shocks in asset supply or demand result in price response that is commonly interpreted as temporary departures of price from the fundamental value, often referred to as “mispricing” or “asset price overshooting.” In the data, an unanticipated supply shock results in an immediate and significant price drop followed by a partial reversal of the price change in subsequent periods. Notably, even if the shock is pre-announced, the temporary price drop below the long-run level occurs on the actual event date and not on the date of the announcement, and attains the long-run value only in subsequent periods. This phenomenon cannot occur in the standard competitive model. Otherwise, price-taking investors could make infinite profits by placing an unbounded buying order when the price is depressed and a selling order after the price reverts deterministically. What should be observed, instead, is that the price adjusts to the new fundamental value immediately following the shock announcement and remains there until maturity. The central difficulty in explaining the observed price behavior in an equilibrium model is that the presence of price-taking traders—traders who are able to respond to price differentials at any time—ties the equilibrium price to the fundamental value. The overshooting price pattern was first empirically documented by Kraus and Stoll (1972) and subsequently confirmed by numerous studies (e.g., Harris and Gurel (1986); Holthausen, Leftwich and Mayers (1990); Chan and Lakonishok (1995); Beneish and Whaley (1996); Keim and Madhavan (1996); Lynch and Mendenhall (1997); Newman and Rierson (2004); and Greenwood (2005)).

Our model predicts such temporary departures of prices from the fundamental values as the equilibrium reaction of thin markets to shocks. We show that, in a thin market, the price change resulting from any exogenous supply or demand shock has two effects on prices: a fundamental effect, which is permanent, and a liquidity effect, which is temporary. Proposition 4 demonstrates that price overshooting is a direct consequence of the existence of the liquidity effect of shocks. As we proceed to explain, these two effects differ not only in their origin and persistence, but also in timing and magnitude dynamics.
Consider an unanticipated one-time shock in asset supply. (Section 5 provides analysis for anticipated shocks.) In period \(t^* \), a portfolio \(\hat{\theta} > 0 \) is being liquidated along with the trade by \(I \) investors. The fundamental effect represents the change in the fundamental value. The supply shock permanently increases the average holdings of risky assets to \(\theta^{Av*} \equiv \theta^{Av} + \hat{\theta}/I \), which, given investors’ decreasing marginal utility, lowers the average marginal valuation to \(v^* \equiv A - \alpha V \theta^{Av*} \) and, thus, the fundamental value drops. Since all traders learn about the shock in period \(t^* \), the post-shock fundamental value changes at \(t^* \) by

\[
\Delta^F \equiv -\alpha V \frac{\hat{\theta}}{I}.
\]

The fundamental effect would also be observed in a model with price-taking traders, so long as the number of such providers remained small (so that the per-capita shock \(\hat{\theta}/I \) is not negligible). It is the liquidity effect, which lowers the price at \(t^* \) further below \(v^* \), that is due to the non-competitive nature of trade. Why do traders demand price concessions beyond the drop in the fundamental value? On the equilibrium path, with or without the shock, in any period \(t \), each trader equalizes his period-\(t \) marginal utility and his marginal revenue. This also holds in averages,

\[
v^* = \frac{1}{I} \sum_{i \in I} D_{\theta^i_t} V_t^i(\cdot) = \bar{p}_t + \tilde{M}_t^I \frac{1}{I} \sum_{i \in I} \Delta \theta^i_t.
\]

Without the shock, the net trade \((1/I) \sum_{i \in I} \Delta \theta^i_t \) is equal to zero by market clearing, and the price equals the fundamental value, as explained above in the model predictions. With a positive net supply of risky assets at \(t^* \), \(\hat{\theta} \), investors demand, on average, positive amounts of shares, and investors’ average marginal payment exceeds the market price by \(\tilde{M}_t^I \hat{\theta}/I > 0 \). It then follows from optimality that the price is below the average marginal utility, \(\bar{p}_t = v - \tilde{M}_t^I \hat{\theta}/I \). The liquidity effect of the equilibrium price is equal to

\[
\Delta^L \equiv -\frac{(1 - \gamma)^2 (T - t^*) + 1}{\gamma} \alpha V \frac{\hat{\theta}}{I}.
\]

Proposition 4 describes the price behavior on the equilibrium path in response to a supply shock.

Proposition 4 (Asset Price Overshooting) Following an unanticipated liquidity shock, \(\hat{\theta} \), in period \(t^* \), equilibrium prices adjust by \(\Delta^F + \Delta^L \). In period \(t^* + 1 \), prices revert by \(\Delta^L \) to their post-shock fundamental value \(v^* \) and remain at this level in all subsequent periods.

Why does the liquidity effect not persist as does the fundamental effect? Since no other
shocks occur after \(t^* \), in all periods following \(t^* \), the net trade of strategic traders becomes equal to zero by market clearing, and the price attains the new fundamental value \(\bar{p}_t = v^* \).

Note that, by contrast to competitive markets, thin markets react differently to endowment shocks compared to shocks in demand or supply. Specifically, if the assets \(\hat{\theta} \) were an increase in the endowments of the strategic traders, then only a fundamental effect but no liquidity effect would be observed.

The overshooting effect in thin markets can be conceptualized using the notion of market demand. Empirical studies on the reaction of markets to shocks make a distinction between short- and long-run market demands. The short-run (inverse) demand corresponds to period-\(t^* \) price reaction to trade in period \(t^* \), while the long-run demand specifies the price for period-\(t^* \) trade after all the price adjustments occur. Our model provides a microfoundation for such a representation of thin markets. In the model, the long-run demand for \(\hat{\theta} \) is given by a horizontal sum of marginal utilities of the strategic traders, \(A - \alpha V(\hat{\theta}^A v + \hat{\theta}) \). The short-run demand corresponds to the horizontal sum of bid schedules submitted by strategic traders in period \(t^* \), the inverse of \((1/I) \sum_{i \in I} \Delta \hat{\theta}_i \cdot (p) \). Due to order reduction, the short-run market demand is steeper than the long-run demand and, because of endogenously varying market thinness, its slope changes over time. The difference between the short-and long-run demand results in the liquidity effect. (See Figure 2.) On the day of the shock, the price moves along the short-run demand, but after the period in which the shock occurs ends, only the fundamental effect is observed. Lastly, note that while the long-run market demand depends solely on the primitive preferences, the short-run demand is also shaped by time-to-maturity and, as explained in Section 5, on whether or not trade \(\hat{\theta} \) is anticipated.

Whereas the magnitude of the fundamental effect \(\Delta^F \) does not depend on the timing of the shock \(t^* \), due to the non-stationarity of price impact, the magnitude of overshooting \(\Delta^L \) is greater when time to maturity is shorter.

As observed in the data, our model predicts that when asset returns are correlated, overshooting in one market spills over to other markets along with the fundamental effect. Apart from the permanent adjustment of the fundamental value in substitute or complement asset markets,

\[
\theta \cdot \Delta^F = \frac{\alpha}{I} Cov(A\hat{\theta}, A\theta), \tag{16}
\]

an exogenous sale of one asset induces liquidity effects in these markets at \(t^* \),

\[
\theta \cdot \Delta^L = \frac{(1 - \gamma)^{2(T - t^*) + 1}}{\gamma} \frac{\alpha}{I} Cov(A\hat{\theta}, A\theta). \tag{17}
\]

All of these features of price behavior have been documented in the data. An immediate reversal of the price change on the trade subsequent to a large transaction is a major finding
in event studies (e.g., Holthausen, Leftwich and Mayers (1990)). The predictions are also strongly supported by methodology recently implemented by Citigroup to estimate price impact.\(^{17}\) Figure 3 depicts both effects for an exogenous shock \(\hat{\theta}\) in period \(t^*\). Panel A shows the path for the trade of an asset, while Panel B depicts the price of an asset \(\hat{p}_t\).

The influential paper by Brunnermeier and Pedersen (2005) explained price overshooting in a Cournot-based model by “predatory trading”: When an investor needs to quickly liquidate a portfolio, other investors sell and subsequently buy back the asset. This strategy lowers the price at which they can obtain the liquidated portfolio. The mechanism arises due to the presence of long-run traders who define a downward-sloping demand, buying assets when they are expensive and selling when assets are cheap. These traders, by assumption, do not take advantage of short-term price differentials. If the traders were optimizing dynamically, overshooting would not arise, for otherwise, the traders could make infinite profits by taking unbounded positions. Our explanation of overshooting is complementary in that predatory trading does not occur, since all traders have perfect foresight and optimize dynamically. In addition, while predatory trading can rationalize price overshooting as a response to unanticipated shocks, our model can also explain delayed overshooting.

Limits to Arbitrage. When traders’ individual orders can influence prices, an important question becomes how price impact affects the arbitrage possibilities in a market. Indeed, the key to understanding why the liquidity effect occurs concerns arbitrage. Since the price path is deterministic and traders know at \(t^*\) that the prices will revert in the next period, why do they not arbitrage the temporary price differential between \(t^*\) and \(t^* + 1\), as they would in the competitive models? In addressing this question, we show that market thinness gives rise to endogenously arising limits to arbitrage. Suppose, for the sake of simplicity, that investors’ holdings of risky assets are fully diversified so that their only trade is from shock absorption. Suppose that in period \(t^*\) when the shock occurs, an investor increases his trade by \(\varepsilon\) and sells the same amount in the next period. Such trade would have a first-order benefit equal to \(\varepsilon\) times the price differential induced by the shock, \(\varepsilon \times \hat{\mathcal{M}}_{t^*} \hat{\theta} / I\). At the same time, however, the additional demand created by arbitrage increases the price in \(t^*\) by \(\hat{\mathcal{M}}_{t^*} \times \varepsilon\), which adversely affects the terms of trade of \(\hat{\theta} / I\). Hence, on the equilibrium path, the marginal benefit from arbitrage is exactly offset by the marginal externality of the price increase on the remaining units being traded.

\(^{17}\) In this program, price impact is decomposed into the following: (a) a permanent component (“reflects the information transmitted to the market by the buy/sell imbalance”), which is believed to be roughly independent of trade scheduling; and (b) a temporary component (“reflects the price concession needed to attract counterparts within a specified short time interval”), which is highly sensitive to trade scheduling (Almgren et al. (2005)).
An implicit assumption maintained so far is that trade takes place among a fixed number of traders. A fundamental paradigm of the classical asset pricing models is that shocks can have only negligible effects on asset prices. With price-taking agents, anticipated price differentials create infinite profit opportunities and the flows of speculative capital immediately drive the price back to the fundamental value. To complete the argument behind the coexistence of anticipated price differentials in equilibrium and limits to arbitrage in thin markets, we need to consider potential entrants. Relative to the strategic traders, the additional difficulty is that, for potential entrants, arbitrage has no externality cost on their existing trades. Nonetheless, by contrast to the competitive markets, in thin markets, potential profits from entering the market are not infinite, but bounded due to price impact. This then limits the benefits from arbitrage and reduces incentives to enter the market. To see this, suppose that, at t^*, an (outside) entrant purchases a block of assets to be sold in the next period. Taking an unbounded position at t^*, or buying a few more shares than the amount of the shock $\hat{\theta}$ results in a strictly negative profit, as the purchase drives the price above the fundamental value in this period. Similarly, selling the shares in period $t^* + 1$ also has an adverse effect on the price, which is further magnified by the non-stationarity of price impact. Still, for any overshooting effect, there exists a sufficiently small trade $\left\{\hat{\theta}_t\right\}_{t \geq t^*}$ satisfying $\sum_{t \geq t^*} \hat{\theta}_t = 0$ (i.e., a round-trip trade) that gives a positive profit.\(^{18}\) Given the boundedness of potential profits from entry, however, unlike in a competitive model, fixed entry costs might prevent outsiders from arbitraging the price overshooting. In practice, entry costs include explicit trading costs, such as transactions costs, but also costs associated with learning and monitoring the characteristics of particular stocks. Mitchell, Pedersen and Pulvino (2007) document that it may take months for outside capital to bid prices back to fundamental values.\(^{19}\) This slow entry is attributed by the authors to information barriers and the costs of maintaining dormant financial and human capital in a state of readiness when arbitrage opportunities arise.

Once one acknowledges that arbitrageurs who can place large orders have price impact, limits to arbitrage naturally arise. Note finally that the argument behind no-arbitrage with non-price taking behavior differs in two ways from that in the competitive model. First, the

\(^{18}\)In this argument, we assume that the strategic traders do not anticipate trades by an outsider.

\(^{19}\)The study examines price behavior in the convertible bond market in 2005 and around the collapse of LTCM in 1998, and merger targets in the 1987 market crash. During these events, natural liquidity providers were themselves forced to liquidate their holdings, which depressed the prices below the fundamental values, despite the fact that there was little change in the overall fundamentals. In the convertible bond markets, the prices deviated from the fundamental values, reaching the maximum discount of 2.7% in 2005 (2.5 standard deviations from the historical average), and 4% in 1998 (4 standard deviations from the average). During the crash of 1987, the median merger arbitrage deal spreads increased to 15.1%. In all cases, it took several months for traders to increase their capital or for better-capitalized traders to enter.
externality exerted by arbitrage on other trades introduces a difference in arbitrage possibilities between insiders and outsiders. Secondly, profits from arbitrage are bounded for any round-trip trade.

Price Manipulation. Given that traders can affect prices, another critical question is whether investors have incentive to manipulate prices. More precisely, so far, we have examined whether it is profitable for an investor to arbitrage the price differential created by an exogenous liquidity shock. We now ask whether an investor would choose to destabilize the market and generate such shocks himself by submitting a sequence of market orders and then take advantage of the resulting price differentials. If each block in the sequence is interpreted by the strategic traders as a once-and-for-all shock, whereas the manipulator knows the entire sequence of the shock, and thus, the price path, such asymmetry in information might lead to a positive profit from price manipulation.

Price manipulation can be formalized as a non-zero sequence of trades of risky assets \(\left\{ \bar{\theta}_t \right\}_t \) such that \(\sum_t \bar{\theta}_t = 0 \) (i.e., a *round trip*) for which \(\sum_t \bar{p}_t \cdot \bar{\theta}_t > 0 \). Proposition 5 establishes that, even though it is possible for investors to affect prices in thin markets, doing so can never be profitable.

Proposition 5 (Price Manipulation) For any round-trip trade \(\left\{ \bar{\theta}_t \right\}_t \), the net profit is negative \(\sum_t \bar{p}_t \cdot \bar{\theta}_t < 0 \), where \{\bar{p}_t\}_t is the vector of equilibrium prices with an unanticipated sequence of shocks \(\left\{ \bar{\theta}_t \right\}_t \).

The key feature of the model underlying the robustness of thin markets to price manipulation is the time-independence of the fundamental component of price impact. With a time-varying fundamental effect, price manipulation could be profitable. The price change induced by the liquidity effect lasts only for one period and always works against the manipulator, irrespective of whether he buys or sells.

Taking a view of a single agent trading against a market demand, Huberman and Stanzl (2004) also decompose an (exogenous) price impact into the permanent and temporary component to identify conditions on the two price impact functions under which price manipulation is not feasible. Proposition 5 provides an equilibrium-based alternative to their argument; our setting is less general in that the permanent price impact is constant over time (albeit endogenously) and is more general in that it allows for an arbitrary number of assets. Our model offers justification for time-independence of the permanent effect as resulting from price changes along the long-run aggregate demand.
4.2 Market Value and Blockage Discount

When markets are thin, assessing the value of a portfolio is nontrivial. In a perfectly competitive market, the cash value of a block of shares, \(\hat{\theta} \), is simply equal to the corresponding prices currently observed on the market times the quantity of shares, \(\bar{p} \cdot \hat{\theta} \). When markets are thin, selling a large block of shares exerts downward pressure on prices, and the market value no longer reflects the actual amount of cash that would be obtained by selling block \(\hat{\theta} \). The problem of appraising assets traded in thin markets has been recognized by valuation specialists, who apply an instrument called blockage discount. Blockage discount is defined as a “deduction from the actively traded price of a stock because the block of stock to be valued is so large relative to the volume of actual sales on the existing market that the block could not be liquidated within a reasonable time without depressing the market price” (Handbook of Advanced Business Valuation, p. 140).\(^{20}\) In practice, blockage discounts are applied not only to stocks, but also to real estate, personal property (e.g., collections of art, antiques and manuscripts), charitable gifts, etc. The discounts have typically been estimated to range between 0 and 15 percent. The IRS has acknowledged the concept of blockage discount since 1937.\(^{21}\) According to Federal Tax Regulations, the burden of demonstrating that a blockage discount is justified lies on the taxpayer. Yet, there are no equilibrium-based guidelines about how to assess the cash value of assets and the appropriate amount of blockage discounts. Practitioners have developed a range of heuristic methods for how to adjust the values of assets (e.g., Estabrook (1999)), and these methods have been adopted in appraisal businesses and valuation consulting.

The challenge in formalizing appraisals when markets are thin arises because assets are often transferred outside of the market, or because the transfer is only hypothetical. For example, a typical instance where blockage discounts are applied involves a transfer of a property in the case of a divorce. It is in the interest of divorcees to claim a large price impact (and blockage discount), which implies a large tax discount. The relevant question is: what would be the value of the property if it were sold on the market (even though it will not be)? This counterfactual reasoning corresponds to how price impact is captured in our model. Our results can directly be applied to formally address asset valuation in thin markets and, thus, derive blockage discounts. Let \(\bar{p}_t \) be the observed market price and \(\hat{p}_t \) be the hypothetical price that would be obtained if the block were offered on the market. The corresponding blockage discount is equal to \(BD \equiv \hat{\theta} \cdot (\bar{p}_t - \hat{p}_t) = -\hat{\theta} \cdot \Delta \bar{p}_t \), where \(\Delta \bar{p}_t \) is as in

\(^{20}\)These are distinct from (though sometimes confused with) restricted stock discounts due to the difficulty in selling that is caused by regulatory or contractual constraints.

\(^{21}\)Estabrook (1999) and Pratt (2001) provide a summary of U.S. Tax Court decisions involving blockage discounts.
Proposition 4. Consequently, the blockage discount becomes

$$BD = \frac{\alpha}{\gamma} V a r(A \cdot \hat{\theta}) + \frac{(1 - \gamma)^{2(T-t^*)+1}}{\gamma} \frac{\alpha}{\gamma} V a r(A \cdot \hat{\theta}).$$

(18)

In the derivation of formula (18), we made two implicit assumptions: that the block is being sold all at once, and that the owner does not have any other assets but those of the considered block. In practice, traders break up large amounts into smaller blocks and sell them over time to mitigate the adverse impact of market thinness. Therefore, formula (18) is likely to overestimate the value of a blockage discount and should be interpreted as the upper bound on the discount. The lower bound for the blockage discount is the fundamental effect as this effect is present even if the trade is spread over time. Additionally, if a trader has other assets that are not included in \(\hat{\theta} \), and whose payoffs are positively (negatively) correlated with the liquidated portfolio, then liquidation also affects the values of these assets via cross-market liquidity and permanent effects. The blockage discount (18) should then be adjusted upwards (downwards) accordingly, applying (16) and (17).

5 Anticipated Shocks

So far, we have considered the supply shocks that were announced on the day of the shock. A large body of research documents price behavior for shocks that are announced long before they actually occur, such as changes of the weights in a stock market index and inclusions of a new stock into an index. The evidence shows that such pre-announced shocks have price effects not only on the day of the announcement, but also on the actual day of the shock; that the severity of the effect is enhanced by asset riskiness and correlation; and that price is additionally depressed (increased) between the day of the announcement and the shock day when the transitory effect peaks.22 Thus, the observed price effects cannot be attributed to any revelation of information about the fundamental value, which should be incorporated on the day of the announcement. None of these effects are observed in a competitive model—pre-announcing the shock does not alter the price adjustment, which amounts to a change of the fundamental value at the announcement. In this section, we study whether, and if so, how price reaction to shocks is affected by the timing between the announcement and the occurrence of the shock, and by the anticipated break-up of the shock into blocks.

22 These effects were documented, for example, by Newman and Rierson (2004). In particular, the study found that new bond issuance in the European telecommunication sector increased the yield spreads of other firms in the sector. The effect was transitory, significant, and peaked on the day of issuance, not on the announcement day.
Separation of Shock Announcement and Price Effect. To examine the effect of pre-announcing a shock on price adjustment, suppose that, in period t^\ast, strategic traders learn that an extra supply of assets $\hat{\theta}$ will be available in period t^{**}. Since the fundamental effect Δ^F, given by (13), is defined with respect to the expectation in t about the average holdings at the end of period T, the effect occurs at the moment of the announcement and not at the moment when the shock is realized. The fundamental value instantaneously adjusts to its post-shock level v^\ast in the announcement period t^\ast and remains there until T, as no new information about the shock is revealed. The additional liquidity effect of shocks Δ^L, given by (15) evaluated at t^{**}, takes place only in the actual period of the shock, t^{**}, whether or not the shock is pre-announced. This holds because it is in that period that the net trade is positive and during which traders need to absorb it (cf. (14)). The liquidity effect is not driven by information disclosure, but rather by the effect that absorption of the extra assets has on the average marginal payment. Pre-announcing a shock in a thin market introduces a time separation of fundamental and liquidity effects.

Another new feature of price behavior for pre-announced shocks is that, in addition to fundamental and liquidity price effects, we observe a third effect—in all the periods between the announcement and the shock occurrence, the price is depressed by $\gamma \Delta^L$. This happens because the strategic traders anticipate the drop in price in t^{**}, which lessens their willingness to buy the assets in all periods prior to t^{**}. The formalization of these three effects is a special case of Proposition 6. The path of price response to an announced once-and-for-all shock is depicted in Figure 4.

Multiple Anticipated Blocks. In practice, portfolios are often liquidated in blocks. We now examine the price effects of sequential trading when the entire sequence of trades is credibly announced prior to trade at $t = 1$. We study the effect of the liquidation of a sequence of blocks $\{\hat{\theta}_t\}_t$, the total liquidated portfolio being $\hat{\theta} \equiv \sum_{t=1}^{T} \hat{\theta}_t$.

As in the case of a single unanticipated shock, following the announcement of a sequence, the fundamental value adjusts to $v^\ast = A - \alpha N\theta^{Av} - \alpha N\hat{\theta}/I$. The last term represents the cumulative fundamental effect of the sequence Δ^F and is equal to the sum of the fundamental effects of the individual blocks, $\Delta^F = \sum_{t=1}^{T} \Delta^F_t$, where $\Delta^F_t = -\alpha N\hat{\theta}_t$. The total fundamental effect is independent of how the portfolio $\hat{\theta}$ is partitioned into blocks. It follows that, if traders are price-takers, the cash obtained by liquidating $\hat{\theta}$ is independent of the partition. By contrast, in thin markets, the price path, and hence the cash obtained, do depend on the order of block sizes—unlike the fundamental effect, the liquidity effect is not additive.
Proposition 6 (Anticipated Multiple Blocks) Consider a sequence of anticipated sales \(\{\hat{\theta}_t\}_t \). In any trading period \(t \), price is equal to

\[
\hat{p}_t = v^* + \Delta_t^L + \gamma \sum_{l=1}^{T-t} \Delta_{t+l}^L,
\]

(19)

where the liquidity effect in period \(t \) is given by

\[
\Delta_t^L = \frac{(1 - \gamma)^{2(T-t)+1}}{\gamma} \alpha \nu \hat{\theta}_t / I.
\]

(20)

In any period, the price departs from the fundamental value by the current liquidity effect, which is reinforced by the fraction \(\gamma \) of the cumulative effect of all the subsequent liquidity effects. While the current liquidity effect in (19) results directly from non-competitive trading, as explained in Section 4.1, the cumulative effect reflects the resulting anticipation of depressed prices in the future, which lowers the price by weakening incentives to buy and strengthening incentives to sell today. The cumulative effect generalizes the third effect discussed above in the context of a single anticipated shock. Interestingly, the cumulative liquidity shock affects today’s price with weight \(\gamma \), irrespective of how far in the future the liquidity shock occurs. The constant weight results from the balancing of two effects: The farther in the future the liquidity shock is from today, the smaller the fraction of today’s trade that maintains a lower price until the shock period. On the other hand, the cumulative effects influence all prices between today and the period of the shock, which increases the weight. Using an argument similar to the one for unanticipated shock, since the traders are, on average, buying on the shock day, the average marginal payment, which coincides with the fundamental value, is above the equilibrium price and traders have no incentive to arbitrage.

In sum, just as when the sequence of sales is not anticipated, asset prices in the long run are not affected by how the portfolio is divided into smaller blocks or the time at which the trade takes place. Nevertheless, the price path in a thin market is sensitive to how the portfolio is partitioned. This occurs because future sales depress price during the whole period between the announcement and the shock, and the effects on prices are cumulative. If sales are anticipated (and credible), the liquidator can be expected to concentrate most of the trade in the first period.

Proposition 6 (equation (19)) further suggests that the liquidator has strong incentives not to announce the liquidation. If the sequence to be placed is announced in advance, and the whole portfolio \(\hat{\theta} \) is being liquidated, the fundamental value instantaneously drops by \(\Delta^F \). Further, ability to spread the current liquidity effect is reduced, as the anticipation of future
liquidity effects adversely affects prices today. If instead, the sequence is not announced, the fundamental value of the portfolio decreases slowly in each period when the blocks are traded. This benefits the liquidator, who receives a better price for initial blocks. In addition, the cumulative liquidity effects are not present, and hence the sequence being placed can be arbitrarily long, making the current liquidity effects negligible.

6 Discussion

The model presented in this paper suggests that even if price impact does not affect equilibrium returns, accounting for the very presence of price impact can help one understand order break-up, asset price overshooting, limits to arbitrage, differences between short- and long-run market response to demand/supply shocks, commonality in liquidity, cross-market liquidity effects, the existence of valuation instruments, such as blockage discount, etc. The empirical literature on illiquid markets has demonstrated that expected asset returns are higher for illiquid assets, as liquidity premium compensates for the low marketability of an asset. Therefore, our finding that market impact does not affect asset prices, and hence their returns, is not confirmed by the data. Notice, however, that in the setting studied in this paper, there is nothing that would represent the traders’ concern about having to liquidate part of their portfolio prior to maturity. Rostek and Weretka (2010) model traders who, in every period, assign a positive (and arbitrarily small) probability to a distress situation in which they receive only the liquidation value of their holdings. Crucially, if traders are price-takers, introducing the liquidity concern has no effects on prices and allocations, as the cash value from liquidation coincides with the value at maturity. It is the interaction of price impact and liquidity concern that introduces new effects, the main result of which is the derivation of liquidity premia that are time-varying and depend on the equilibrium dynamics of price impact.

Appendix

Proof. (Lemma 1: Characterization of Robust Nash Equilibrium) Symmetry of robust Nash equilibrium is not required in the lemma and the proof we provide does not assume it.

(If) Let \(\{\Delta \theta_t^j(\cdot)\}_{j \neq i} \) be the equilibrium strategies of traders other than \(i \). With additive perturbations (e.g., exogenous noise) in demand, the residual supply faced by trader \(i \) has a stochastic intercept and a deterministic slope, given by \(\hat{M}_t^i = (1-\gamma)H \left((D_t \Delta \theta_t^j(\cdot))^{-1} \right) \), where \(H(\cdot) \) is the harmonic average operator. (In a symmetric equilibrium, bid slopes
$D_p \Delta \theta^i_t (\cdot)$ are the same for all traders and, hence, the slope of the residual supply of trader i is given by $\mathcal{M}^i_t = (1 - \gamma) \left(D_p \Delta \theta^i_t (\cdot) \right)^{-1}$. By condition (i), $\Delta \theta^i_t (\cdot)$ equalizes the t-period marginal utility (marginal value function) with marginal revenue for any possible realization of the residual supply (or noise); it is thus a best response to $\Delta \theta^j_i (\cdot)_{j \neq i}$. Since this is true for any i, the profile of demands $\{ \Delta \theta^i_t (\cdot) \}_{i \in I}$ is a Nash equilibrium with an arbitrary additive noise and, hence, it is a robust Nash.

(Only if) Let $\{ \Delta \theta^i_t (\cdot) \}_{i \in I}$ be demand functions such that the conditions (i) and (ii) in the Lemma are not satisfied. By the linearity of demands, for almost all \bar{p}, $D_{\Delta \theta^i_t} V^i_t (\cdot) \neq \bar{p} + \mathcal{M}^i_t \Delta \theta^i_t$, where \mathcal{M}^i_t is the slope of the residual supply. With any additive noise that puts positive mass on prices for which $D_{\Delta \theta^i_t} V^i_t (\cdot) \neq \bar{p} + \mathcal{M}^i_t \Delta \theta^i_t$, the bid that equalizes marginal utility with marginal revenue, $D_{\Delta \theta^i_t} V^i_t (\cdot) = \bar{p} + \mathcal{M}^i_t \Delta \theta^i_t$, gives a strictly higher expected utility. It follows that $\Delta \theta^i_t (\cdot)$ is not a best response and that noise exists for which $\{ \Delta \theta^i_t (\cdot) \}_{i \in I}$ is not a Nash equilibrium. Therefore, $\{ \Delta \theta^i_t (\cdot) \}_{i \in I}$ is not a robust Nash equilibrium. \hfill \blacksquare

Since many of the results in the paper can be derived from formulas of the general model with a sequence of anticipated shocks, we first derive equilibrium in the general model (Proposition 6).

Proof. (Proposition 6: Anticipated Multiple Blocks) Recall that $\theta^A_t = (1/I) \sum_{i \in I} \bar{\theta}_{t-1}^i$ is the average portfolio at the beginning of trading period t and v^* is the average marginal utility (i.e., the fundamental value) after the last period of trade, $v^* = A - \alpha \mathcal{V} \theta^A_{T+1}$. Let $(\hat{\theta}_1, \ldots, \hat{\theta}_T)$ be a sequence of anticipated shocks. We show that the equilibrium price is given by

$$\hat{p}_t = v^* + \Delta^L_t + \gamma \sum_{l=1}^{T-t} \Delta^L_{t+l}, \quad (21)$$

where the liquidity effect in period t is equal to

$$\Delta^L_t = \frac{(1 - \gamma)^{2(T-t)+1}}{\gamma} \alpha \mathcal{V} \frac{\hat{\theta}_t}{T}, \quad (22)$$

and the equilibrium portfolio is given by

$$\hat{\theta}_t^i = (1 - \gamma) \theta^i_0 + (1 - (1 - \gamma)^t) \theta^A + \sum_{l=1}^t \hat{\theta}_l \frac{1}{T}. \quad (23)$$

We proceed by induction. In the last trading period, T, the value function is

$$V^i_T (\Delta \theta^i_T, \Delta \theta^i_{b,T}) = \Delta \theta^i_{b,T} + \bar{\theta}^i_{b,T-1} + A \cdot (\bar{\theta}^i_{T-1} + \Delta \theta^i_T) - \frac{\alpha}{2} (\bar{\theta}^i_{T-1} + \Delta \theta^i_T) \cdot \mathcal{V} (\bar{\theta}^i_{T-1} + \Delta \theta^i_T). \quad (24)$$
In the robust Nash equilibrium, trader i equalizes his marginal utility with marginal revenue (expenditure), given his equilibrium price impact \bar{M}_i, which yields

$$A - \alpha V(\bar{\theta}_T^{i-1} + \Delta \bar{\theta}_T^{i}) = \bar{p}_T + \bar{M}_i \Delta \bar{\theta}_T^{i}. \quad (25)$$

Solving for trade $\Delta \bar{\theta}_T^{i}(\bar{p}_T, \bar{M}_i)$ from (25) and summing the derived functions for all trading partners of i, we obtain i’s residual supply, the slope of which gives i’s price impact equal to $\bar{M}_i = (1 - \gamma)(\alpha V + \bar{M}_i)$; Applying Lemma 1, in a symmetric equilibrium, $\bar{M}_i = \alpha V(1 - \gamma)/\gamma$. Averaging the F.O.C. (25) across all trades, using $\sum_{i\in I} \Delta \bar{\theta}_T^{i} = \hat{\theta}_T$ and substituting for price impact gives

$$A - \alpha V(\bar{\theta}_T^{Av} + \frac{\hat{\theta}_T}{T}) = \bar{p}_T + \frac{1 - \gamma}{\gamma} \alpha V \frac{\hat{\theta}_T}{T}, \quad (26)$$

from which we can derive the equilibrium prices in period T.

$$\bar{p}_T = v^* - \frac{1 - \gamma}{\gamma} \alpha V \frac{\hat{\theta}_T}{T} = v + \Delta_{T}. \quad (27)$$

Substituting the derived prices (27) back into the F.O.C. (25), we obtain policy functions for the equilibrium trades,

$$\Delta \bar{\theta}_T^{i} = \gamma(\theta_T^{Av} - \bar{\theta}_T^{i-1}) + \frac{\hat{\theta}_T}{T}. \quad (28)$$

Equations (27) and (28) characterize the equilibrium outcome in T in terms of exogenous parameters, and for T the formulas coincide with (21) and (23). Suppose now that the formulas hold in all periods between $t + 1$ and T. We show that they must hold in t. The ultimate portfolio, as a function of trades in period t, is given by

$$\bar{\theta}_T(\Delta \theta_t^{i}, \Delta \theta_{b,t}) = (1 - (1 - \gamma)^{T-t})\theta_{t+1}^{Av} + (1 - \gamma)^{T-t}(\bar{\theta}_t^{i} + \Delta \theta_t^{i}) + \sum_{l=1}^{T-t} \hat{\theta}_{t+l} \cdot \bar{p}_t + \frac{1}{T} \gamma (1 - \gamma)^{l-1} + c_1^{i} \quad (29)$$

In addition, the trade of risky assets in the l^{th} period following t, as a function of trades in t, is equal to

$$\Delta \theta_{t+l}^{i} = -\gamma (1 - \gamma)^{l-1} \left(\bar{\theta}_{t-1}^{i} + \Delta \theta_t^{i} \right) + c_1^{i}, \quad (30)$$

where c_1^{i} is a constant that does not depend either on $\Delta \theta_t^{i}$ or $\Delta \theta_{b,t}^{i}$. This implies that the holdings of bonds in T are given by

$$\bar{\theta}_{b,T}^{i}(\Delta \theta_t^{i}, \Delta \theta_{b,t}) = \bar{\theta}_{b,t-1}^{i} + \Delta \theta_{b,t}^{i} + \sum_{l=1}^{T-t} \Delta \theta_{t+l}^{i} \cdot \bar{p}_{t+l} = \bar{\theta}_{b,t-1}^{i} + \Delta \theta_{b,t}^{i} + \left(\bar{\theta}_{t-1}^{i} + \Delta \theta_t^{i} \right) \sum_{l=1}^{T-t} \bar{p}_{t+l} \gamma (1 - \gamma)^{l-1} + c_2^{i}, \quad (31)$$
where \(c^i \) is independent of \(\Delta \theta_t \) and \(\Delta \theta_{b,t} \). Applying (29) and (31) to (1), we observe that the value function is linear in the trade of bonds \(\Delta \theta^i_{b,t} \) and quadratic in \(\Delta \theta^i_t \). With \(\lambda_t \) defined as

\[
\lambda_t \equiv (1 - \gamma)^{T-t},
\]

(32)

the derivative of the value function with respect to \(\Delta \theta^i_t \) equals

\[
D_{\Delta \theta^i_t} V^i_t(\cdot) = \lambda_t \left[A - \alpha V \left((1 - \lambda_t) \hat{\theta}^i_{t+1} + \lambda_t (\hat{\theta}^i_{t-1} + \Delta \theta^i_t) + \sum_{l=1}^{T-t} \frac{\hat{\theta}^i_{t+l}}{T} \right) \right] + \sum_{l=1}^{T-t} \bar{p}_{t+l} \gamma (1 - \gamma)^{l-1}.
\]

(33)

Using the quasilinearity of the value function, the first-order (necessary and sufficient) optimality condition is \(D_{\Delta \theta^i_t} V^i_t(\cdot) = \bar{p}_t + \tilde{M}^i_t \Delta \theta^i_t \), for any \(\bar{p}_t \) and \(\tilde{M}^i_t \). This allows solving for the optimal trade \(\Delta \tilde{\theta}^i_t(\bar{p}_t, \tilde{M}^i_t) \). Summing the derived trade functions for all \(j \neq i \), we find that \(i \)'s price impact is equal to \(\tilde{M}^i_t = (1 - \gamma) \mathcal{H}(\lambda_t^2 \alpha V + \tilde{M}^j_t | j \neq i) \); in a symmetric equilibrium,

\[
\tilde{M}^i_t = \frac{(1 - \gamma)^{2(T-t)+1}}{\gamma} \alpha V,
\]

(34)

as desired. Applying the derived price impacts \(\tilde{M}^i_t \) and the definition of liquidity effect \(\Delta^L_t \) in F.O.C., and averaging the F.O.C. across all traders, we arrive at

\[
\lambda_t \left(A + \alpha V \left(\theta^A_{t+1} + \sum_{l=1}^{T-t} \frac{\hat{\theta}^i_{t+l}}{T} \right) \right) + \sum_{l=1}^{T-t} \bar{p}_{t+l} \gamma (1 - \gamma)^{l-1} = \bar{p}_t - \Delta^L_t.
\]

(35)

Term 1 is equal to \(\lambda_t v^* \) and Term 2 is a weighted sum of prices for the periods following \(t \). Since all prices are linear functions of \(v^* \) and \(\Delta^L_t \) for all \(l > 0 \), Term 2 is also a linear function of those variables. We next determine the coefficients that multiply \(v^* \) and \(\Delta^L_t \) for any \(l > 0 \). Using the fact that \(v^* \) enters prices in all periods in Term 2, we find the coefficient that multiplies \(v^* \)

\[
v^* \sum_{l=1}^{T-t} \gamma (1 - \gamma)^{l-1} = \gamma \left(\frac{1 - (1 - \gamma)^{T-t}}{1 - 1 - \gamma} \right) = v^* \left(1 - (1 - \gamma)^{T-t} \right) = v^* (1 - \lambda_t).
\]

(36)

For any \(k = t+1, ..., T \), liquidity effect \(\Delta^L_k \) enters Term 2 through all prices between \(t \) and \(k-1 \) (multiplied by coefficient \(\gamma \)) and the price in period \(k \) (with the coefficient of 1). Crucially, this term is not present in prices following period \(k \) (see (19)). This allows us to find the sum
of all components that contain Δ^L_k in Term 2 as

$$\gamma \Delta^L_k \left(\gamma \sum_{l=1}^{k-1-t} (1 - \gamma)^{t-1} + (1 - \gamma)^{k-1-t} \right) = \gamma \Delta^L_k \left(\frac{1 - (1 - \gamma)^{k-1-t}}{\gamma} + (1 - \gamma)^{k-1-t} \right) = \gamma \Delta^L_k. \tag{37}$$

Observe that this holds for any $k = t + 1, \ldots, T$. Hence,

$$\text{Term 2} = v^* (1 - \lambda_t) + \gamma \sum_{l=1}^{T-t} \Delta^L_{t+l}. \tag{38}$$

Therefore, the averaged F.O.C. (35) simplifies to

$$\underbrace{\lambda_t v^*}_{\text{Term 1}} + \underbrace{v^* (1 - \lambda_t) + \gamma \sum_{l=1}^{T-t} \Delta^L_{t+l}}_{\text{Term 2}} = v^* + \gamma \sum_{l=1}^{T-t} \Delta^L_{t+l} = \bar{p}_t + \Delta^L_t. \tag{39}$$

Solving for the price

$$\bar{p}_t = v^* + \Delta^L_t - \gamma \sum_{l=1}^{T-t} \Delta^L_{t+l} \tag{40}$$

establishes that the equilibrium price in t is as asserted by (21). To complete the proof, we verify that the policy function for risky assets holds as well. Using the equilibrium price impact, we find that the F.O.C. becomes

$$\lambda_t \left(A - \alpha V \left((1 - \lambda_t) \theta^i_{t+1} + \lambda_t \left(\hat{\theta}^i_{t-1} + \Delta \theta^i_t \right) + \sum_{l=1}^{T-t} \frac{\hat{\theta}_{t+l}}{l} \right) \right) + \sum_{l=1}^{T-t} \bar{p}_{t+l} \gamma (1 - \gamma)^{l-1} = \bar{p}_t + (1 - \gamma)^{2(T-t)+1} \frac{\alpha V \Delta \theta^i_t}{\gamma}. \tag{41}$$

Substituting for the equilibrium prices and the value of v^* gives the policy function in t,

$$\Delta \theta^i_t = \gamma \left(\theta^i_{t+1} - \bar{\theta}^i_{t-1} \right) + \hat{\theta}_t \frac{1}{T}, \tag{42}$$

using which we obtain trades (23). \]

\textbf{Proof.} (Proposition 1: Three-Fund Separation) The result is implied by (23) with $(\hat{\theta}_1, \ldots, \hat{\theta}_T) = 0$. \]

\textbf{Proof.} (Proposition 2: Time Structure of Price Impact) The result is derived in
Proof. (Proposition 3: Security Market Line) The result follows from two observations: first, by (40) with \(\hat{\theta}_1, \ldots, \hat{\theta}_T = 0 \) so that in every period \(t \) the liquidity effect \(\Delta^t \gamma \) = 0, the prices, and hence the asset returns, are as in the competitive model; second, formula (12) holds in the competitive model. ■

Proof. (Proposition 4: Asset Price Overshooting) In Proposition 6, normalize \(t^* = 1 \) (w.l.o.g.) and take the sequence of shocks equal to \(\{\hat{\theta}_1, 0, \ldots, 0\} \). ■

Proof. (Proposition 5: Price Manipulation) Consider an unanticipated round-trip trade of \(N \) risky assets, i.e., a non-zero sequence of trades \((\hat{\theta}_1, \ldots, \hat{\theta}_T) \), such that \(\sum_{t=1}^T \hat{\theta}_t = 0 \). The price vector in each period is given by

\[
\bar{p}_t = v - \alpha T \frac{(1 - \gamma)^2(T-t)+1}{\gamma} \mathcal{V} \hat{\theta}_t + \sum_{k \leq t} \mathcal{V} \hat{\theta}_k,
\]

where \(v \) is the fundamental value in the absence of the round trip, the first element in parentheses is the liquidity effect in \(t \), while the second element corresponds to the fundamental effects of the demand or supply shocks that are induced by the round trip up to \(t \). The cash obtained from the round-trip trade is equal to

\[
\sum_{t=1}^T \hat{\theta}_t \cdot \hat{\theta}_t = \sum_{t=1}^T \left[v - \alpha \frac{(1 - \gamma)^2(T-t)+1}{\gamma} \mathcal{V} \hat{\theta}_t + \sum_{k \leq t} \mathcal{V} \hat{\theta}_k \right] \cdot \hat{\theta}_t = -\alpha \sum_{t=1}^T \frac{(1 - \gamma)^2(T-t)+1}{\gamma} \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_t - \alpha \sum_{t=1}^T \left(\sum_{k \leq t} \mathcal{V} \hat{\theta}_k \right) \cdot \hat{\theta}_t,
\]

where we eliminate element \(v \sum_{t=1}^T \hat{\theta}_t \) by the round-trip assumption. The last sum can be decomposed as follows

\[
\sum_{t=1}^T \left(\sum_{k \leq t} \mathcal{V} \hat{\theta}_k \right) \cdot \hat{\theta}_t = \sum_{t=2}^T \sum_{k < t} \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_k + \sum_t \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_t.
\]

The sum \(\sum_{t=2}^T \sum_{k < t} \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_k \) comprises all \((h, k)\) combinations of \(\hat{\theta}_h \cdot \mathcal{V} \hat{\theta}_k \) such that \(h \neq k \) and each combination enters exactly once. In addition, since the elements are symmetric...
\[(\hat{\theta}_h V \hat{\theta}_k = \hat{\theta}_k V \hat{\theta}_h), \text{the sum, augmented by } \frac{1}{2} \sum_t \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_t, \text{can be written as} \]
\[
\sum_{t=2}^{T} \sum_{k<t} \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_k + \frac{1}{2} \sum_t \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_t = \frac{1}{2} \sum_{k=1}^{T} \hat{\theta}_k \cdot \mathcal{V} \sum_{t=1}^{T} \hat{\theta}_t = 0, \tag{46}
\]
where the final equality follows, again, from the round-trip assumption, \(\sum_{t=1}^{T} \hat{\theta}_t = 0\). We obtain
\[
\sum_{t=1}^{T} \tilde{\theta}_t \cdot \hat{\theta}_t = -\frac{\alpha}{T} \sum_{t=1}^{T} \left(\frac{(1 - \gamma)^{2(T-t)+1}}{\gamma} + \frac{1}{2} \right) \hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_t. \tag{47}
\]

Using that \(\mathcal{V}\) is positive definite, we have \(\hat{\theta}_t \cdot \mathcal{V} \hat{\theta}_t \geq 0\), with a strict inequality for \(\hat{\theta}_t \neq 0\). Since \(\hat{\theta}_t \neq 0\) for at least one \(t\), the proposition’s assertion follows.

References

FIGURE 1: EVOLUTION OF EQUILIBRIUM PORTFOLIOS (A) AND PRICE IMPACTS (B)

A. Evolution of equilibrium portfolios and price impacts:

- Competitive market with \(\gamma' > \gamma \)
- Deep markets vs. Thin markets

B. Evolution of market capitalization and time:

- Deep markets vs. Thin markets
- Competitive market with \(\gamma' > \gamma \)

FIGURE 2: SHORT- AND LONG-RUN DEMAND

- Short-run demand at \(t^* \)
- Long-run demand
Figure 3: Response of Portfolios (A) and Prices (B) to an Unanticipated Supply Shock

Figure 4: Response of Portfolios (A) and Prices (B) to an Anticipated Supply Shock