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Abstract

Uniform price and discriminatory price auctions are the two most common formats

for selling divisible goods. This paper establishes the revenue rankings for these formats

and the Vickrey auction in markets with strategic buyers. Our analysis underscores

the key role that bidder market power plays in design. We further rank the formats in

terms of the criteria employed in the practical design of markets for divisible goods, such

as encouraging bidder participation, fostering more aggressive bidding, and stabilizing

prices. Our model accommodates small and large markets, as well as di¤erent risk

preferences of the buyers and the seller.

JEL classification: D43, D53, G11, G12, L13
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1 Introduction

Markets for electricity, emission permits, gold and Treasury bonds all involve the sale of

multiple units of a good. When placing orders for multiple units, large bidders reduce their

demands in response to price impact. Mitigating bidder market power has been one of

the central challenges in many divisible good markets. Indeed, nearly half of the issue in

Treasury auctions is purchased by the top �ve bidders (U.S. Treasury Report (1998)). The
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concentration levels are even higher in electricity markets. Bidder price impact is of great

practical importance, not only for market designers, but also for bidders in the construction

of their optimal bidding strategy.

In practice, the two mechanisms most commonly used to sell divisible goods are uniform

price and discriminatory price design. In both formats, bidders submit bidding schedules that

specify quantities for various prices. The seller then aggregates these submitted schedules to

determine the stop-out price (i.e., the price that clears the market), and bidders are allocated

units for which their demands exceeded the market-clearing price. The formats di¤er in terms

of payment; in a uniform price (UPA, �single price�) auction, all winning bids are �lled at

the stop-out price, whereas in a discriminatory price (DPA, �pay-your-bid,� or �multiple-

price�) auction, the marginal payment for di¤erent units is collected according to schedules

submitted by the buyers. In a DPA, a buyer thus pays the area below his demand schedule

for the quantities awarded.

The question regarding which of these two designs should be used has excited public in-

terest at least since the report by Friedman (1960). Recent cross-country studies on Treasury

practices reveal that out of 48 countries surveyed by Brenner, Galai and Sade (2009), 24 use

a DPA to �nance public debt, 9 use a UPA, and 9 employ both auction formats, depend-

ing on the type of security being issued.1 Apart from Treasury securities, the two formats

have also become standard designs when selling divisible goods in other �nancial markets,

such as IPOs and repo,2 markets for electricity,3 and the national exchange for sulfur-dioxide

emission permits, which uses a discriminatory price format.

Despite the importance of divisible good markets, providing theoretical results about the

performance of the two designs has proven challenging. Important results are available on

the revenue rankings for large, competitive markets (Swinkels (2001); Jackson and Kremer

(2006)). Little is known, however, about the superiority of either format in markets that

involve strategic bidders with market power. This paper provides those results and exam-

ines the design of divisible good markets more generally in a simple, symmetric-information

setting.

1The remaining 6 countries use a di¤erent mechanism. In the United States, the discriminatory price
auction was the traditional format used by the U.S Treasury to sell securities. The Treasury has been
using this auction format to issue notes and bonds since the 1970s, and Treasury bills have been sold using
multiple-price auctions since 1929. In September 1992, the Treasury began experimenting with the uniform-
price format, encouraged by Milton Friedman as early as 1960 (Friedman (1960)), and in November 1998
adopted this design, which it still uses today, for all marketable securities. Empirical evidence regarding the
superiority of either auction format in the Treasury experiment was inconclusive. (U.S. Treasury Reports
(1995, 1998) provide a detailed overview of the �ndings.)

2The European Central Bank uses auctions in re�nancing (repo) operations on a weekly and monthly basis.
Since July 2000, these auctions have been discriminatory (see Bindseil, Nyborg and Strebulaev (2006)).

3U.K. electricity generators sell their products via daily auctions. A uniform price format was adopted in
1990, but in 2000 the U.K. electricity auctions switched to the discriminatory price format.
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Our model of a divisible good market most closely resembles the classical uniform-price

setting by Klemperer and Meyer (1989). A given quantity of a perfectly divisible good is

sold to I symmetric strategic buyers who have (weakly) decreasing linear marginal utility

(e.g., mean-variance preferences). Supply is uncertain, which in the U.S. and other Treasury

markets, for instance, captures the presence of the so-called non-competitive bids that are

guaranteed to be �lled. We examine the comparative design of three auction formats for

divisible goods: The commonly used uniform and discriminatory price auctions, and� as

a theoretical benchmark� the Vickrey auction (VA).4 By analyzing linear Nash equilibria,

which are unique for all designs, we are able to characterize bidder equilibrium price impact

and deliver sharp comparisons. We study markets with an arbitrary, possibly small, number

of strategic bidders, and both risk averse and risk neutral preferences of the bidders and

the seller. One novel aspect of our analysis is a characterization of market power in the

considered formats, which is instrumental in explaining bidder incentives, rankings of designs

according to a number of criteria employed in practice, and market size e¤ects on the relative

performance of the three auction formats.

Results. We now describe the main predictions.

When bidders have price impact, there is a strong expected-revenue ranking of all designs.

Most notably, the DPA dominates the UPA for all environments considered, and the UPA

generates less revenue than the Vickrey auction in the strong ex-post sense. Since bidders

have downward-sloping demands, even when there is no private information, none of the

designs extract all of surplus. Since each format fails to extract all the surplus for a di¤erent

reason (e.g., payments are less than bids in the Vickrey auction, bids are less than values in

the discriminatory price auction, etc.), one expects the formats to generate di¤erent expected

revenue. The unexpected result is that the ranking of expected revenues is always the same.

Our main result can be explained through the following link between the two designs we

uncover: Suppose that bidders had the same equilibrium price impact (i.e., faced residual

supply with the same slope) in the UPA and the DPA.We show that the reduction of expected

revenue due to optimal order shading in the DPA will then exactly match the loss of expected

revenue due to the uniform payment structure in the UPA with price-taking bidders. The

revenue superiority of the DPA can then be attributed to two e¤ects: In equilibrium in

the UPA, bidders do shade their bids in response to their market power, and also, bidder

equilibrium price impact is higher in the UPA than in the DPA.

In the practical design of divisible good markets, considerations that are separate from

4In our setting, the (sealed-bid) Vickrey auction is equivalent to the ascending-bid clinging auction pro-
posed by Ausubel (2004).
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revenue are important in evaluating market performance. Motivated by the criteria used,

for example, by the U.S. Department of the Treasury (1995, 1998), we further examine

additional criteria of design for divisible good markets� encouraging bidder participation,

viewed as an enhancement of market liquidity (UPA bests DPA); stabilizing the stop-out

price, which is important in practice if other contracts are pegged to the stop-out price (DPA

outperforms UPA); fostering more aggressive bidding (UPA outruns DPA); and increasing

the transparency of an auction (UPA dominates DPA). That analysis highlights three results.

Examination of how the non-competitiveness of market structure� a change in market

size, along with the induced change of bidder market power� a¤ects the expected-revenue

ranking of the considered formats indicates that the expected-revenue advantage of the DPA

weakens in more competitive markets. As the market grows and the bidder price impact

vanishes, the three designs bring the same expected revenue. Hence, in large markets, a risk

neutral seller should be indi¤erent to auction format. One insight from the setting that we

consider is that the competitive-market result does not follow from the standard revenue

equivalence theorem, as the revenue obtained in the three designs is strictly lower than in

the revenue-maximizing mechanism, despite the e¢ cient allocation in all formats.

For small markets with strategic bidders, our model reveals a trade-o¤ between expected

revenue and riskiness for the seller. Precisely, for any distribution of market supply, one can

�nd (risk averse) preferences for which either auction format is preferred by the seller. In

turn, in large markets, while equivalent in expected revenues, the UPA, DPA, and VA are

clearly not equivalent ex post. However, the revenue in the UPA and the VA second-order

stochastically dominates that of the DPA for all distributions of market supply. As a result,

the uniform price and Vickrey formats should be strictly preferred by any risk averse seller.

Further, our analysis draws attention to the critical role of entry in the assessment of

design performance. The view shared by practitioners and theorists alike is that market

design should encourage more competitive market structures. For markets of single objects,

a compelling formalization of this point was o¤ered by Bulow and Klemperer (1996), who

demonstrated that attracting a new bidder is more important for revenue than is the choice of

a particular selling mechanism. We argue that this recommendation is even more important

when selling divisible goods. When bidders have decreasing marginal utility, even when they

are identical, a new bidder increases the total available surplus in the market� an e¤ect not

present in the markets for single objects. One key lesson is that, while entry is greater in the

UPA, from a social-welfare standpoint, entry is excessive in all of the designs. Thus, a seller

concerned about social welfare would prefer the DPA.
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Other Related Literature. To put our model and results in perspective, the reasons

behind the lack of general theoretical guidelines for the design of divisible good markets are

the following. In the seminal analysis of divisible good (�share�) auctions, Wilson (1979)

demonstrated that the uniform price and discriminatory price auctions have a continuum

of (Bayesian) Nash equilibria, which signi�cantly di¤er in the revenues predicted. More

recently, beginning with Ausubel and Cramton (2002) and Wang and Zender (2002), several

studies constructed theoretical examples showing that the sets of equilibria of a DPA and

a UPA cannot be unambiguously ranked in terms of revenue. Given the lack of dominance

of equilibrium sets for the two auction formats, it is hard to compare the revenue or other

criteria in the uniform and discriminatory price auctions without a plausible equilibrium

selection argument. For the uniform price design, the equilibrium selection that has become

the workhorse model in the �nancial microstructure and industrial organization literature is

the linear (Bayesian) Nash equilibrium (Kyle (1989), Vives (2008)). For the discriminatory

price format, despite there being a number of insightful characterizations of optimal bids,

revenue rankings have yet to be provided for markets with strategic bidders.5

Working with a linear Nash equilibrium allows us to overcome both problems discussed

above: This paper provides an analytical characterization of the unique symmetric equi-

librium bidding strategies in the discriminatory price auction with an arbitrary number of

bidders in all settings that admit linear equilibria. Thus, the paper o¤ers a complete charac-

terization of the comparative design of the considered formats for linear Nash equilibria, in

the following sense. In divisible good markets, by making choices contingent on prices, bid-

ders can tailor their demands to each state of the world. In the discriminatory price (but not

in the uniform price or Vickrey format), bidding aggressively in one state a¤ects payments in

other states, and the importance of such cross-state externality depends on the uncertainty

about the residual supply. The dependence of the optimal bid on the type of distribution

raises the question about which distributions admit a linear equilibrium in a DPA. We fully

characterize such distributions and establish rankings for all environments that admit linear

equilibria.

5Federico and Rahman (2003) examined competitive and monopolistic market structures. The present
paper instead studies strategic interactions in markets with I bidders. Hortaçsu (2002a) derived a symmetric
linear Bayesian equilibrium for private-value auctions with two bidders and exponentially distributed private
signals. Unfortunately, Hortaçsu�s result cannot be used to rank the revenues between the UPA and the
DPA, even for markets with two bidders, because there exists no linear equilibrium with two bidders in
the UPA. Working with step bidding functions in a private-value setting with I bidders, Kastl (2008a)
demonstrated that, as the number of bid-points one is allowed to submit increases, the �rst-order condition
obtained by Hortaçsu (2002a) for two bidders obtains in the limit. In response to the lack of theoretical
results for strategic settings, the question of revenue ranking has been studied in the growing empirical
literature that seeks structural methods to compare auction mechanisms, for a given data set of individual
bids, by constructing policy counterfactuals (Hortaçsu (2002b); Wolak (2003, 2007); Février, Préget and
Visser (2004); Armantier and Sbai (2006); Hortaçsu and Puller (2008); Kastl (2008b)).
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Structure of the Paper. Section 2 presents the model of divisible good auctions. Section

3 derives the linear equilibria in the Vickery, uniform price, and discriminatory price auctions

and examines the relative role of market power and uncertainty when bidding in the three

formats. Section 4 reports our central results concerning the ranking of revenues and other

criteria that have been used in design. Section 5 examines which results extend to settings

with private information among other characteristics. Finally, Section 6 o¤ers conclusions.

All proofs are presented in the Appendix.

2 Model Set-up

2.1 General Assumptions

In a market with I � 2 bidders,6 the seller o¤ers for sale I � �Q units of a perfectly divisible

good, where �Q is the quantity per capita. Each bidder i derives utility from the amount of

the divisible good received in an auction, qi, and money. His utility is given by a stochastic

quasilinear utility function u(qi)+moneyi. The utility function u(�) is quadratic in the good
being auctioned and, thus, in terms of money, the marginal utility is linear in qi,

v(�) � @u(�)
@qi

= v � �qi; (1)

where the stochastic intercept v is the same for all bidders, and the parameter � 2 R+
measures the convexity of the utility function.7 The joint c.d.f. of intercept v and per capita

supply, F (v; �Q), is common knowledge. We show that the existence of a linear equilibrium

(in a DPA) requires that F ( �Qjv) be from the Generalized Pareto class with the support of
�Q starting at 0. It then follows in our comparative analysis that the realizations of �Q are

non-negative. Our model permits correlation between the valuation v and the supply �Q,

which is important for the analysis of price volatility. We study the information structure in

which bidders know v, but are uncertain about the supply being auctioned (e.g., Klemperer

and Meyer (1989)), and the seller does not know v. We later show that assumptions about

the bidders�knowledge of the environment can be considerably weakened in our model. It is

6In the UPA (but not the DPA), there exists no linear equilibrium with two bidders. Our characterization
of the DPA does include this case. The non-existence of equilibrium in the UPA with two traders is also
present in closely related models by Klemperer and Meyer (1989) with a vertical demand and Kyle (1989).

7When the auctioned good is a risky asset with a normally distributed payo¤, and the bidders have CARA
utility functions, then � measures risk aversion.
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useful to introduce an index of market size,

 � 1� 1

I � 1 ; (2)

which is monotone in I and ranges between 0 and 1. The closer  is to one, the more

endogenously competitive the market interactions will be. Throughout, endogenous variables

with a bar ���denote equilibrium.

2.2 Auction Formats

We study the comparative design of three auction formats in markets for divisible goods,

the commonly used uniform price and discriminatory price designs, as well as the theoretical

benchmark of the Vickrey auction. Bidders submit weakly downward-sloping bid schedules,

which specify the quantity demanded for any price, qi(p) : R ! R+. The seller then deter-
mines the aggregate demand, Q(p) �

PI
i=1 qi(p), and �nds the maximal price �p for which the

demand equalizes the supply, Q(�p) = I �Q. This price is called a stop-out price.8 In a uniform

price, discriminatory price, or Vickrey auction, the quantity obtained by each bidder corre-

sponds to the bid evaluated at the stop-out price, �qi = qi(�p). The three auction formats di¤er

in the payments made by the bidders (in terms of numeraire). In a uniform price auction,

bidder i pays the stop-out price for each unit obtained, and the total payment is equal to

�qi � �p. In a discriminatory price auction, for each unit, a bidder pays the valuation revealed
in his submitted bid, and the total payment corresponds to the area below the submitted

bid schedule, up to the quantity awarded,
R p0
�p
qi(p)� pdp, where p0 is the price at which the

bid quantity attains the value of zero or, otherwise, p0 equals in�nity. Lastly, in the Vickrey

auction, for the qth unit, bidder i is charged the reported marginal value of the object by

other bidders if the remaining �Q � q units are reallocated e¢ ciently to other bidders; i.e.,

the opportunity cost to others, which is uniquely de�ned, given e¢ ciency. Thus the total

payment of bidder i corresponds to the area below the residual supply faced by bidder i.

Throughout, we evaluate the revenue loss resulting from market power and decreasing

marginal utility in the three formats, relative to the total surplus per capita (TS) equal to

TS = v �Q� 1
2
� �Q2: (3)

In the symmetric information setting, total surplus can be fully extracted;9 it coincides with

8To complete the de�nition of the game, if there is no such price or if multiple prices exist, then no trade
takes place. As we show, there exists a unique stop-out price.

9An example of the optimal mechanism, which extracts the total surplus in the unique Nash equi-
librium, is the following: Bidders report their types �v1; �v2;::: �vI : All bidders with the highest reports,
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the revenue in the benchmark optimal mechanism. This allows us to demonstrate that the

revenue equivalence does not hold when bidders�marginal utility is decreasing, even in large

auctions.

2.3 Linear Equilibrium

It is well known that, in games in which strategies are demand (or supply) functions, the

(Nash) equilibrium is not determinate; that is, there exists a continuum of equilibria the

revenues of which di¤er signi�cantly (see, e.g., Klemperer and Meyer (1989)). This paper

analyzes linear equilibria, in which agents submit bid schedules that are linear in prices. The

strategy space is not restricted to the class of linear bids; rather, in a linear equilibrium,

it is optimal for a bidder to submit a linear bid, given that the other bidders play linear

strategies. Our treatment of bidder behavior is closest to that in the model by Klemperer

and Meyer (1989),10 based on uniform price, in that introducing uncertainty in the residual

supply makes bidders bid optimally for all prices, not just for the equilibrium price, and this

re�nes the set of equilibria.

For the uniform price mechanism, the linear (Bayesian) Nash equilibrium has been widely

used in modeling �nancial, electricity and other oligopolistic markets. In our comparative

design problem, the bene�ts of focusing on the linear equilibrium are threefold. Much of

the di¢ culty associated with the study and design of divisible good markets stems from the

large size of the bidders�strategy space. Examining linear equilibria allows us to reduce that

space to two dimensions� the slopes and the intercepts of the bidders�own schedules. In

regard to the uniform price format, we show that the linearity property also implies that

the complexity of the bidders�problem, which is measured by the information su¢ cient for

the bidders to bid optimally, is in fact one-dimensional and concerns their individual price

impact (Section 4.4). Finally, the equilibria we derive for all three designs are unique, which

allows us to compare the performance of the auction formats in a consistent way.

The selection of a linear equilibrium �nds empirical support in Hortaçsu�s (2002a) study

of the Turkish Treasury auction. Taking a nonparametric approach, Hortaçsu demonstrates

that a straight interpolation through bid points can, on average, explain 92% of the observed

variation and argues that a divisible good auction that generates linear equilibrium bidding

strategies can provide a good description of the data. Similarly, Hortaçsu and Puller (2008)

�nd that linear bids provide an excellent �t in the spot market for electricity in Texas.

�vi = max (�v1; �v2;::: �vI), receive I �Q=�I in terms of the good, where �I � 1 is the number of the bidders
with the maximal bid, and they pay their reported surplus �viI �Q=�I� 1

2�
�
I �Q=�I

�2
. Bidders with lower reports

receive and pay zero. By the Bertrand-type argument, this mechanism implements the outcome in which the
seller extracts the entire surplus from bidders, who bid truthfully, in a unique Nash equilibrium.
10Klemperer and Meyer (1989) did not restrict attention to linear strategies.

8



Furthermore, the linear equilibrium aptly describes �nancial, electricity, and other divisible

good markets in which bidders collect information about their residual market by estimating

their price impact from price-quantity data.11 The evidence suggests that such estimates are

independent of price levels, which can be shown to imply a linear equilibrium. (This will be

clari�ed in our analysis.)

Our analysis of uniform and discriminatory price auctions exploits the following feature of

the linear equilibrium. Fix a pro�le of demands that constitute a linear equilibrium. Applying

market clearing, each bidder i can then be viewed as trading against an upward-sloping, linear

residual supply with a deterministic slope �i and a stochastic intercept x. The residual supply

is found by solving qi = I� �Q�
P

j 6=i qj(p) for p. The slope of the residual supply �i measures

the price impact of trader i. Since the intercept x is a deterministic function of v and the

per capita quantity �Q, its c.d.f. Gi(�) can be derived from F (�jv). Observe crucially that,
from the perspective of bidder i, his price impact �i and distribution Gi(�) contain all of the
payo¤-relevant information about the strategies of other bidders; that is, the payo¤ function

of bidder i is the same for all strategy pro�les of other bidders that induce the same �i and

Gi(�). Looking at the bidding problem in this way allows us to investigate the relative role

of market power (�i) and uncertainty (Gi(�)) on bidding. Moreover, we can �nd equilibrium
in all auction formats in three steps: We �rst �nd the best response of bidder i to a residual

supply function, taking �i and Gi(�) and, thus, the strategies of others as given; next, we
�nd equilibrium price impacts �i, and then derive Gi(�) from F (�).
A realization of the supply function de�nes a state. It is convenient to refer to the

realizations of the residual supply that, for a �xed price, are associated with smaller and

greater quantities as lower states and higher states, respectively.

3 Bidding Behavior and Order Shading

We now characterize and contrast the optimal bidding behavior in the uniform price, dis-

criminatory price and Vickrey auctions. In doing so, we highlight the importance of market

non-competitiveness, and the relative role of market power and uncertainty in bidding and

the structure of order shading. For any quantity q, order shading (OS) is de�ned as the

di¤erence between the marginal utility v � �q and the bidding price p. The details of the

11In his report for the Federal Energy Regulatory Commission (2003), Cramton wrote: �... in my experience
advising dozens of bidders in electricity and other markets, I have found that bidders, either explicitly or
implicitly, develop their bid curves by taking into account the price-quantity tradeo¤ from incremental
increases in bid prices. In some cases, I have observed power companies explicitly compute the residual
demand curves in order to determine their optimal price-quantity bids in power markets.�(p. 26)
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analysis are given in the Appendix, which presents derivations of best responses.

3.1 Vickrey Auction

In a Vickrey auction, the bidder�s payment in each state corresponds to the area below his

residual supply. The familiar truthful-bidding property obtains, that is, bidders do not shade

their bids below their marginal utility. In particular, neither market power nor uncertainty

has any impact on bidding. In the optimum, for any quantity q, the bidding price p coincides

with the marginal utility v � �q. The stop-out price in the Vickrey auction is equal to

�p = v � � �Q: (4)

The payment of bidder i for each unit is determined as the opportunity cost measured by

its hypothetical value to the other bidders had he not participated. The total payment of

bidder i can then be found by using the residual supply faced by bidder i, p(qi) = v + (1�
)�qi � (2� )� �Q.

3.2 Uniform Price Auction

The �rst-order condition we derive for a UPA ((30) in the Appendix) characterizes the

structure of order shading,

OS � v � �q � p = �i � q: (5)

In any given state, the bidder shades his bid just enough to balance the negative price

impact externality that results from increasing the price for all units being purchased in that

state. Since price impact externality is linear and increasing in q, so is the order shading in

the uniform price auction, with no order shading present at q = 0. The optimal bid for a

bidder with price impact �i is equal to

qi(p) =
v � p

�i + �
: (6)

The bid schedule (6) is the best response to a random residual supply with the deterministic

slope �i and an arbitrary distribution Gi(�). As long as price impact �i is positive, the inverse
bid becomes steeper than the marginal utility, since the bidder reduces his order more for

higher quantities.

To pin down the equilibrium price impact for bidder i, �x equilibrium price impacts for

all other bidders, and assume that they adopt the optimal strategy (6). Aggregating the bids

of bidders other than i gives i�s residual supply, qi = I � �Q�
P

j 6=i qj(p), the slope of which

10



can be characterized as

��i =

 X
j 6=i

(��j + �)�1

!�1
: (7)

Condition (7) captures that price impacts mutually reinforce among strategic bidders in a

uniform price auction. That feedback e¤ect increases the overall level of non-competitiveness

in the market. It can be shown that the solution to I non-linear conditions (7) exists if, and

only if, I > 2. Moreover, the solution is unique and symmetric.12 Given the symmetry,

condition (7) becomes ��i = (1� )(��i+ �). The bidders�equilibrium price impact in a UPA
is given by

��i =
1� 


�: (8)

Having endogenized the price impacts, we can determine the equilibrium bidding strategies.

Proposition 1 (Equilibrium in the UPA) In a unique linear Nash equilibrium, the strat-
egy of each bidder with valuation v is equal to

qi(p) =


�
(v � p): (9)

Equilibrium exists if, and only if,  > 0.

Proposition 1 and market clearing give the equilibrium stop-out price in the UPA

�p = v � �


�Q: (10)

In contrast to the Vickrey auction, the equilibrium price in the uniform price design increases

with market size . Intuitively, in a larger uniform price auction, the price impact is smaller,

which reduces the incentives to shade orders.

The derived equilibria in a UPA and a VA have an attractive property that they hold

for any non-degenerate distribution of market supply F ( �Qjv). For the ex post property,
two features of the design are crucial. First, by making choices contingent on prices, a bid

can be conditional on the state of the world, thereby allowing a bidder to hedge away any

uncertainty about residual supply; furthermore, there is no cross-state externality in the

payments. While the ability to (potentially) bid state-by-state is brought by the divisible

good setting and is present in all three auction formats, the lack of cross-state externality is

design-speci�c and does not appear in the DPA. In Section 4.4, we compare just how much

bidders have to know about the market in order to bid optimally for all prices� a concern

that arises in practical auction design when attracting new bidders.

12With two bidders ( = 0), the solution to conditions (7) does not exist.
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3.3 Discriminatory Price Auction

In a VA and a UPA, bidders solve a continuum of independent optimization problems, one

for each realization of the residual supply. In a DPA, constructing the bid and, hence, the

derivation of an equilibrium is more challenging because bidding for one realization of the

residual supply does a¤ect payments for other realizations. Consequently, in contrast to

a UPA and a VA, the probability of di¤erent realizations matters for the trade-o¤s being

optimized and the best response in a DPA depends on the distribution of the intercept of

the residual supply, Gi(�).

3.3.1 The Basic Trade-o¤

We report the Euler Equation that describes the optimal behavior in a DPA,

�@x(�)
@q

[v � �q � p] =

"
�i �

�
@qi(�)
@p

��1#
Gi(x)

gi(x)
: (11)

As in the UPA and the VA, condition (11) equalizes the marginal bene�t and the marginal

cost of a small deviation for each realization of the supply. Heuristically, appealing to the

mapping between quantities and states, the marginal bene�t in a given state is equal to the

marginal utility v � �q from the greater quantity obtained in that state. The marginal cost

has two components: The greater payment in the state, which is equal to p, and a negative

externality on the payment that more aggressive bidding in�icts in all higher states (captured

in the bracket on the right-hand side of the equation). The latter cost component, which is

not present in the UPA or the VA, depends on the probabilistic importance of all higher states

relative to the considered state and is, therefore, weighted by the ratio Gi(x)=gi(x). Thus,

the Euler equation in the DPA equalizes the net marginal bene�t within the considered state

with the negative externality in�icted on the payments in all higher (but not lower) states.

In the UPA and the VA, the net marginal change in the utility triggered by a deviation in a

given state is zero.

In the symmetric equilibrium, q = �Q for all i, its distribution coincides with the primitive

distribution of �Q. This allows for re-casting the Euler equation in terms of the distribution

of the equilibrium quantity q rather than x. Since, in equilibrium, x(q) is an a¢ ne decreasing

transformation of q, the c.d.f. of q can be found as �Gi(q) = 1 � Gi(x(q)). It follows that

the density of q is �gi(q) = �gi(x) � @x(�)=@q. The inverse hazard ratio of the equilibrium
quantity is de�ned as

�(q) � (1� �Gi(q))=�gi(q): (12)
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Written to reveal the structure of order shading, the �rst-order condition (11) becomes,

OS � v � �q � p = �(q)[�i � (@qi(�)=@p)�1]: (13)

Condition (13) identi�es the role of market power in bidding in a DPA. Unlike in a UPA,

the price impact e¤ect for any given quantity (within any given state) is only a second-order

e¤ect. Since the marginal payment for every unit is determined by the submitted schedule,

a changing bid in one state has a price impact e¤ect only locally, in that state. Nevertheless,

price impact does have a �rst-order e¤ect on the optimal bid. For any quantity, order shading

coincides with the negative externality on the payments in higher states (higher quantities),

in�icted by more aggressive bidding, and the latter is a function of �i. Thus, the magnitude

of order shading in a given state can be quanti�ed in terms of two factors: The bidder�s

price impact (�i) and the slope of the individual bid function (@qi(�)=@p), weighted by the
probabilistic importance of higher states relative to that state (�(q)).

In the derivation of (13), we assumed that the considered q is in the support of the

equilibrium quantity. When density �gi(q) is equal to zero, (12) is not well-de�ned and (13)

does not apply. Note that if q is smaller than the quantities in the support, a bidder has

an incentive to submit the smallest possible bid. Aggressive bidding for such a q brings

no bene�t of greater quantity, while it does increase the payments in higher states. Given

that submitted bids are required to be non-increasing, the optimal bid has �at parts. Note

that the �at-bid parts do not occur for the quantities to the right of the support. For such

quantities, the submitted bids have no e¤ect on the equilibrium quantities nor on the payment

in any of the possible states, and bidders are indi¤erent to what they submit. Without loss

of generality, we assume that, for quantities that exceed the upper bound of the support,

bidders submit continuations of their linear bids given by (13).

3.3.2 Structure of Order Shading

Before exploring the impact of bidder uncertainty and market power on the optimal bid in

a DPA, we �rst investigate the functional form of the bid. In the UPA as well as the VA,

bidders� state-by-state optimization assures that the linearity of the optimal bid function

then follows from the linearity of the marginal utility and the order shading. In the DPA,

the dependence of the shape of the optimal bid on the distribution of the residual supply (x)

raises the question of which distributions of x admit linear best responses. Observe �rst that,

since both �i and @qi(�)=@p are constants, the Euler equation (13) de�nes a linear schedule
only if the inverse hazard ratio is a linear function of the quantity, that is, �(q) = �0+�1q for

some �0; �1 2 R. We refer to this condition as the linear inverse hazard ratio (LIHR). The
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question then becomes which distributions of equilibrium quantity �q satisfy LIHR. Lemma 1

characterizes the class of all such distributions.

Lemma 1 (LIHR) Suppose �Gi(q) has a convex support. �Gi(q) exhibits LIHR if, and only
if, it belongs to the class of Generalized Pareto distributions, the c.d.f. of which is given by

�Gi(q) = 1� (1 + �
q � �

�
)�

1
� ; (14)

where �; � 2 R and � 2 R++:

Parameter � determines the location, � de�nes the scale, and � describes the shape

of the distribution.13 We follow the convention that � = 0 de�nes the limit exponential

distribution. Lemma 1 identi�es the set of all distributions that are compatible with linear

bidding strategies in a DPA. As the equilibrium quantity q is an a¢ ne transformation of the

negative of x, the distribution of �x exhibits LIHR if, and only if, q exhibits it as well.

Apart from providing us with a precise understanding of the kinds of environments we

can analyze for the DPA, Lemma 1 uncovers the relationship between bidder uncertainty
and the structure of order shading in a DPA. Let us express the inverse hazard ratio in terms

of the parameters of the Generalized Pareto distribution,

�(q) = � � ��| {z }
��0

+ �|{z}
��1

q: (15)

The class characterized by Lemma 1 encompasses distributions with decreasing (� < 0),

constant (� = 0), and increasing (� > 0) inverse hazard ratios. Support of any Generalized

Pareto distribution has a lower bound, given by �. Whenever � < 0, the support also

has an upper bound, equal to �(� � ��)=�. Among distributions with compact support,

� < �1 concentrates mass on higher quantities, � = �1 corresponds to a uniform distribution,
whereas the distributions with �1 < � < 0 put relatively greater mass on lower quantities.

For � = 0 (exponential distribution) and � > 0 (the class of Pareto distributions), the support

is unbounded. Figure 1.A illustrates how the shape parameter � a¤ects the support and the

concentration of mass.

Order shading in a DPA (13) can now be understood through the properties of the supply

distributions. Order shading and inverse hazard ratio are decreasing, constant, and increasing

13Conveniently, the class of distributions with the LIHR property can be parameterized either by �0; �1; q�,
where the last parameter is the median of the distribution or, alternatively, as the space of the parameters
�; �; �; and that the linearity of an inverse hazard ratio is preserved under additive (i.e., changing the location)
or positive multiplicative (i.e., changing the scale) transformations of a random variable.
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in q for negative, zero, or positive �, respectively (see Figure 1.B). For the exponential

distribution, the inverse hazard ratio is constant, �(q) = �0, and the probabilistic importance

of higher states is the same for all q. As a result, order shading is also independent from

q and the bid is parallel to the marginal utility. The best response to an exponentially

distributed residual supply was �rst derived by Hortaçsu (2002a) in a DPA for two bidders

with independent private values. Lemma 1 reveals that, except when � = 0, the Generalized

Pareto class induces bids that can be �atter (� < 0) or steeper (� > 0) than the marginal

utility, which re�ects the decreasing and increasing with q, respectively, relative importance

of higher states. In addition, for � < 0, the bidding involves no distortion for the highest

(rightmost) realization of the residual supply at the upper end of the support. At this point,

there is no negative externality on the payments in higher states (as there are no such states),

and the bid coincides with the marginal valuation.

In summary, order shading di¤ers qualitatively between the DPA and the UPA in the

following respects. Unlike in the UPA, the bid in the DPA is shaded at zero quantity, and

for all distributions with compact support, the bid coincides with the marginal utility at the

upper end of the support. In the UPA, there is no shading at zero quantity, and bids are

strictly below the marginal utility at the upper-end quantity. Moreover, order shading in the

DPA need not be increasing in quantity.

3.3.3 Equilibrium in a Discriminatory Price Auction

Having determined how bidder uncertainty is re�ected in bidding, we now turn attention to

how market primitives, including supply uncertainty, a¤ect order shading through endoge-

nous price impact. The following counterpart of (7) characterizes bidder price impact �i in

a DPA

�i =

 X
j 6=i

�
��j
1� �

+
�

1� �

��1!�1
: (16)

Condition (16) sheds light on the subtle nature of strategic interdependence in the DPA and

indicates that the nature may di¤er from that in the UPA, depending on the sign of the

shape parameter � in the distribution of the market supply. Notably, for markets with � < 0,

the price impact of bidder i depends negatively on the price impact of other bidders; with

higher market power, other bidders are induced to shade more, which �attens their (inverse)

bids, thereby, reducing the price impact of bidder i. In turn, the mechanism of mutual

o¤setting (rather than reinforcement) of price impact lowers the overall level of equilibrium

market power. Incidentally, the distinct nature of strategic interdependence also explains

why, unlike in the UPA, equilibrium in the DPA exists even with two bidders. For markets

with � > 0, order shading steepens the bids of i�trading partners and market power reinforces,
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as in the UPA. When � exceeds 1=(2 � ), the reinforcement occurs without bounds, and

equilibrium fails to exist.

The equilibrium price impact of a bidder in the DPA is given by

�i =
(1� )�

1� (2� )�
: (17)

It is apparent from (17) that, in large discriminatory price auctions, bidders become (stop-

out) price takers, that is, they do not a¤ect the price by changing their bids. Observe further

that, in markets with � < 0, equilibrium converges more slowly to the price-taking limit

in the DPA than in the UPA. Underlying the di¤erence in the adjustment of price impact

with market size is precisely the positive (negative) interdependence of market power in

the UPA (DPA). The reduction of price impact in aggregation brought about by additional

participants in the DPA is partially o¤set by the steepening of individual bids encouraged

by more competitive trading.

We are ready to derive equilibrium in a DPA. Recall that, since the bidders are identical,

in equilibrium, each bidder receives a per capita supply �Q. It follows that the distribution of

the equilibrium quantity q can be matched with the primitive distribution, �Gi(q) = F (qjv).
By Lemma 1 and the Euler equation (13), the model admits a linear equilibrium in a DPA

only if F ( �Qjv) is given by (14), which we assume. One di¢ culty in the derivation of a linear
equilibrium in a DPA stems from the �at bid parts. As explained in Section 3.3.1, when

support of the equilibrium quantity is bounded away from 0, then it is optimal for bidders to

submit bids with a kink at the lower end of the support. Such bidding is inconsistent with

the linear equilibrium. The subclass of the Generalized Pareto distributions that admits a

linear equilibrium consists of the distributions with the lower bound of support equal to 0.

Therefore, we hereafter set � = 0.

Assumption 1: The conditional distribution of the residual supply F
�
�Qjv
�
is distributed

according to the Generalized Pareto with location parameter � = 0.

Proposition 2 characterizes bids in a linear equilibrium of a DPA.14

14To the best of our knowledge, the characterization of the set of (possibly non-linear) Nash equilibria by
Wang and Zender (2002) provided for a class of supply distributions that is a strict subset of ours is the
only existing analytical characterization of equilibria in a DPA with I strategic bidders. This paper focuses
on linear equilibria and Proposition 2 characterizes equilibrium bids in all environments that admit linear
equilibria. In the Supplementary Material, we provide a precise translation between the parameterizations
used in Wang and Zender (2002) and this paper.
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Proposition 2 (Equilibrium in the DPA) In the unique symmetric linear equilibrium,

the strategy of bidder i is given by

qi(p) =
1� (2� )�

�
(v � p)� (2� )�: (18)

Equilibrium exists only if � < 1=(2� ).

One other novel feature of the bid in the DPA, compared to the bid in the UPA, is

that bidders shade their valuation irrespective of market size and, in particular, in the limit

( ! 1). Although in all auction formats considered bidders become (stop-out) price takers

in large markets, in the DPA they still a¤ect the payments for the winning units, and only

one of the two determinants of order shading� namely price impact� vanishes in the limit

(cf. (13)). Averaging the optimal bids (18) across all bidders and using market clearing

solves for the stop-out price in the DPA

�p = v � �

1� (2� )�
�Q� (2� )��

1� (2� )�
: (19)

4 Rankings

This section presents a comparative analysis of the UPA, DPA, and VA with respect to

revenues (Section 4.1), as well as the volatility of the stop-out price (Section 4.2), encouraging

bidder participation (Section 4.3), and simplicity (Section 4.4). We examine small and large

markets and consider risk averse as well as risk neutral preferences of the bidders and that

of the designer. Throughout, two assumptions are maintained. Motivated in Section 3.3.3,

Assumption 1 ensures that the DPA admits a linear equilibrium� in particular, that there

are no �at bid parts. The possibility of relaxing Assumption 1 is discussed in Section 5. In

addition, the following assumption is maintained.

Assumption 2: The support of �Q does not exceed the threshold at which bidders�prefer-

ences are satiated (v � � �Q � 0).
Assumption 2 simply captures that per capita supply is not large enough to cross the

inelastic part of the demand; without it, a negative stop-out price would be observed for some

realizations of �Q. The non-satiation assumption implies that the support of the distribution

of �Q is bounded, and hence � < 0. Section 5 relaxes this assumption.
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4.1 Revenue

Consider a market with a �nite, possibly small, number of strategic bidders ( < 1) with

decreasing marginal valuations (� > 0). Theorem 1 establishes the expected-revenue rankings

of the UPA, DPA, and VA, and compares the revenues with the total surplus potentially to

be extracted.

Theorem 1 (Revenue Ranking) Let � > 0 and  < 1. In the unique symmetric linear

equilibrium, for any v,

E(TSjv) > E(RDjv) > E(RV jv) > E(RU jv); (20)

whenever equilibria exist.

The result is striking: even though the optimal bidding in a DPA depends on the under-

lying distribution of the residual supply, the comparison of the mechanisms� including the

commonly used UPA and DPA� does not. In particular, the dominance of a DPA over a

UPA holds for all Generalized Pareto distributions.15 One of the arguments often invoked

in support of the UPA is that (conjectured) smaller demand reduction may lead to greater

revenue. In all of the environments considered in this paper, the UPA design indeed fosters

more aggressive bidding, measured by (the inverse of) the expected order shading. (See the

proof of Theorem 1 in the Appendix.) Nevertheless, Theorem 1 shows that weaker expected

order shading is not su¢ cient for the UPA to outperform the DPA.

To understand the expected-revenue dominance of the DPA over the UPA in non-competitive

auctions, it is useful to pin down the e¤ects from which the revenue di¤erences derive in the

two formats. These are (1) coarseness of the uniform price mechanism, which leaves some

surplus to a bidder even if he bids his marginal utility; (2) distinct order shading; and (3)

greater equilibrium price impact in the UPA. Lemma 2 identi�es a link in bidder behavior

between the DPA and the UPA that illuminates the role of the three e¤ects in the revenue

ranking in our main result. Consider a bidder whose marginal utility coincides with the

equilibrium inverse bid in the UPA, v�(q) = v � �

q, and who faces a residual supply with

the slope (price impact) as in the UPA equilibrium. The lemma asserts that the expected

revenue that a seller could then extract in the DPA corresponds exactly to the expected

per-capita revenue in the UPA with marginal utility v(q) = v � �q. Thus, order shading in

the DPA by a bidder with preferences v�(q) is just enough to retain the surplus that is left in

the UPA to a bidder with preferences v (q). Let �pU denote an equilibrium price in the UPA.
15In a study of Turkish Treasury auctions, Hortaçsu (2002b) found that the DPA leads to higher revenues

than the revenue obtainable from the Vickrey auction, which Hortaçsu attributed to the allocational inef-
�ciency in a DPA with heterogenous bidders. Our result shows that the discriminatory price mechanism
brings higher revenue than does the Vickrey mechanism even when allocation is e¢ cient in both auctions.
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Lemma 2 (Strategic Equivalence) Consider a bidder with marginal utility v�(q) =
v� �


q who faces a residual supply with the same slope as a bidder with marginal utility v��q

in the symmetric equilibrium in the UPA. The best-response bid for the qth unit in the DPA

is equal to E(�pU j�pU � v� (q)).

Crucially, it follows from Lemma 2 that order shading in the DPA by a bidder with pref-

erences v�(�) and price impact as in equilibrium from the UPA reduces the seller�s expected

revenue by exactly how much surplus is left to a bidder in the UPA with true preferences

v(�). Since the actual preferences are v(�) > v�i (�) and the expected revenue in the DPA is
monotone in � (cf. bids (18)), the link in Lemma 2 then implies that the expected revenue in

the DPA (with the price impact from equilibrium in the UPA) is strictly higher than in the

UPA (e¤ects (1) and (2)). The expected-revenue advantage of the DPA is further boosted by

the lower equilibrium price impact in the DPA (e¤ect (3)). Later we show that Lemma 2 can

be viewed as a strategic counterpart of the result obtained by Swinkels (2001) for competitive

settings.

The revenue dominance from Theorem 1 does not generically hold ex post. As the next

result demonstrates, the dominance of the Vickrey format over the UPA does hold in the

strong state-by-state sense.

Proposition 3 strengthens Theorem 1 beyond the risk neutral preferences of the seller.

Proposition 3 (Revenue Ranking; Arbitrary Risk Preference of the Seller)
Let � > 0 and  < 1. For any strictly increasing utility function of the seller �u(�); in the
unique symmetric linear equilibrium,

E(�u (TS) jv) > E
�
�u
�
RV
�
jv
�
> E(�u

�
RU
�
jv): (21)

This result gives further support to the Vickrey auction, relative to the UPA, when

bidders have market power. The strong ex post dominance of the Vickrey auction over the

uniform price auction can be attributed to two e¤ects, both of which favor the VA and can

be explained through the structure of price impact. Suppose �rst that bidder i in the UPA

best responds to truthful bidding of other bidders, so that the residual supplies in the two

auction formats coincide, and bidder i�s price impact �i is the same. Even if the two designs

induced identical equilibrium price impact, the VA would then extract more surplus than the

UPA from a bidder: In contrast to the UPA, the payment in a Vickrey is not uniform across

units; rather, a bidder obtains each unit at a discount which varies in quantity, relative to

the stop-out price. The discount is maximal for the �rst unit, in which case it is equal to

�i �Q: In the UPA, bidder i shades his bid in response to his price impact �i, and lowers the
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price� and, hence, the payment for all units� exactly by �i �Q (cf. (5)). Therefore, the bidder

payment for any unit obtained in the Vickrey auction is bounded from below by the price

in the UPA. The revenue in the UPA is additionally hurt by the higher equilibrium price

impact than in the VA, due to the mutual reinforcement of price impact (cf. explanation of

(7)) present in the UPA. This reduces the equilibrium price in the UPA strictly below the

payment for any unit in the VA.

The key to explaining the state-by-state dominance of Vickrey over a uniform price auc-

tion is that the residual supply determines the discount in a Vickrey auction as well as the

price impact in the UPA. We should stress that Proposition 3 holds beyond the class of

Generalized Pareto distributions (see Section 5). In contrast to the Vickrey and uniform

price formats characterized in Proposition 3, the seller�s preference for the DPA does depend

on his risk attitude. (We provide intuition below by means of Proposition 5.)

We turn next to evaluating the performance of the three mechanisms in large markets. As

the market size increases, the expected revenue to be extracted as a fraction of the expected

total surplus E(TSjv) increases monotonically in . By the continuity of the expected

revenues in , the ranking from Theorem 1 must hold at least weakly in the limit in large

auctions as  ! 1. Proposition 4 demonstrates that in fact the DPA, the UPA, and the VA

yield the same expected revenue in the competitive limit. Nevertheless, the common limit

revenue does not attain the total surplus. Thus, even in the competitive limit, the seller

cannot extract the total surplus. When increasing the market size, we keep the distribution

of per capita supply �xed.

Proposition 4 (Revenue Ranking in Large Auctions) Let � > 0, and �x the distri-
bution of �Q. In the unique symmetric linear equilibrium,

E(TSjv) > lim
!1

E(RDjv) = lim
!1

E(RV jv) = lim
!1

E(RU jv): (22)

In the competitive limit markets, the residual supply faced by each bidder is perfectly

elastic, and hence, for each realization of market supply �Q, the payment for each unit coin-

cides in the UPA and the VA, and the revenue in the VA and the UPA is the same. That

these expected revenues coincide with that in the DPA becomes noteworthy if one looks more

closely at the individual bidding. In the large competitive UPA, bidding becomes truthful,

as in the Vickrey auction. With discriminatory pricing, by contract, bidders still shade their

marginal utility (see Section 3.3.1). It follows that the reason why the seller is unable to

extract the total surplus in the limit di¤ers across the mechanisms: In the DPA, this results

from order shading, whereas in the UPA and the VA, it is due to the payment structure
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itself, which leaves consumer surplus to the bidder.

In a study of large auctions, Swinkels (2001) obtained the expected-revenue equivalence

between the UPA and the DPA in a discrete-bid setting with independent private-values.16

Our model is a continuous-bid, complete information counterpart of the setting analyzed

by Swinkels (2001), and our Proposition 4 extends the result by Swinkels to our special

small-market setting. Swinkels showed that the bid for unit q in the DPA equals E(�pU j�pU �
v (q)); i.e., the expected payment per unit conditional on the bid for that unit to be winning

coincides with the expected price in the competitive uniform price auction, thereby providing

an intuitive connection to the revenue equivalence result in auctions of single objects. Lemma

2 is consistent with this interpretation� in large auctions, equilibrium price impacts become

the same (zero) in the two formats, and bidders do not shade their marginal utility in the

UPA (v� (q) = v (q)). Lemma 2 also implies that the connection does not carry over to small

auctions due to strategic considerations that arise in the presence of market power.

One insight from our simple setting with symmetric information is that the equality of

the expected revenue in a large DPA, UPA and VA is not a straightforward generalization

of the revenue equivalence theorem for unit demands. In all three auction formats, the

allocation is e¢ cient, while the revenue is strictly lower than the revenue brought by the

optimal mechanism equal to total surplus. In the competitive limit, ��= (v (1� 2�)� ��)

percent of the total surplus remains unextracted. Figure 2.A illustrates Theorem 1 and

Proposition 4: The DPA dominates the UPA and the VA in expected revenue for all  < 1,

and the advantage of the DPA disappears in large auctions.

Examining the distribution of payment induced by di¤erent formats more carefully reveals

that, when bidders have market power, the seller faces a risk-revenue trade-o¤ in design.

Consider �rst the large competitive markets, for which no such trade-o¤ arises. It follows

from Proposition 4 that a risk neutral seller who is concerned about the expected revenue

will be indi¤erent among the three mechanisms. Proposition 5 asserts that a risk averse seller

strictly prefers the UPA (and the VA) to the DPA in large enough markets. Let �u(�) denote
the utility function of the (revenue-maximizing) seller.

Proposition 5 (SOSD) Let � > 0. For any strictly concave increasing utility function �u(�),
in the unique symmetric linear equilibrium,

lim
!1

E(�u(TS)jv) > lim
!1

E(�u(RU)jv) = lim
!1

E(�u(RV )jv) > lim
!1

E(�u(RD)jv): (23)

16For large auctions, Jackson and Kremer (2002) found that ranking is ambiguous when common values
are present. In our model, there are no informational considerations arising from correlation of valuations,
which makes our model closer to that of Swinkels (2001).
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In large auctions, the expected-revenue advantage of the DPA disappears, and the UPA

generates a more favorable distribution of revenue (Figure 2.B). UPA should thus be preferred

by a risk averse seller.

Theorem 1 and Proposition 5 jointly characterize a trade-o¤ faced by a seller when se-

lecting an auction format in small markets with strategic bidders. For markets with  < 1

that are large enough, the DPA is characterized by higher expected revenue, as well as higher

variance than the UPA. More generally, for all market sizes  < 1, risk averse preferences

exist for which either format is strictly preferred by the seller: For any , the distribution

of revenue in the UPA crosses (once) the one in the DPA from below (as shown in the proof

of Proposition 5). Theorem 1 then implies that the second-order stochastic dominance does

not extend to small auctions. Our model thus recommends that the UPA is more likely to be

superior in markets with many bidders, whereas the DPA might be favored in small markets.

The analysis so far has assumed that the bidders�marginal utility is decreasing. Let

� ! 0. The marginal utility �atten to become constant at v, and so do the bid schedules.

In the limit, all three mechanisms lead to bidding in accordance with the marginal utility.

In addition, in all auction formats, the competitive price obtains; the limit equilibrium is

also the equilibrium for � = 0.17 Proposition 6 establishes that, when bidders have constant

valuations, the considered designs are revenue-equivalent and permit a full extraction of the

expected total surplus by the seller. This holds irrespective of market size.

Proposition 6 (Revenue Equivalence with Constant Marginal Utility) Let  <
1. For any increasing utility function of the seller �u(�); in the unique symmetric linear
equilibrium,

E(�u (TS) jv) = lim
�!0

E
�
�u
�
RV
�
jv
�
= lim

�!0
E(�u

�
RD
�
jv) = lim

�!0
E(u

�
RU
�
jv): (24)

Proposition 6 holds state-by-state. When the bidders�marginal utility is constant, the

limit revenues in all auction formats amount to the total surplus v� �Q. Underlying truthful

bidding in the limit (Bertrand) equilibrium are two implications of the constant marginal

utility. First, both the price impact e¤ect in the UPA and the cross-state externality in the

DPA, identi�ed as the determinants of order shading in the respective design (cf. (5) and

(13)), disappear. Further, when bidders�marginal utility is independent of quantity, the three

auction formats are strategically equivalent to the �rst-price auction with unit demands: the

highest bid wins; winning a positive amount of the good auctioned becomes random; and,

17In the limit, the �at bid functions do not determine the allocation at the equilibrium price. In order to
close the model for � = 0, one needs to specify the allocation rule. Since bidders are left without any surplus
in any case, �at bidding is actually an equilibrium for any allocation rule.
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in the absence of cross-state externalities, bids for all (any) units are perfectly correlated.

The second reason behind the optimality of no bid shading is then that the valuations and,

therefore, the stop-out price are deterministic at the interim stage.

It is interesting to contrast the implications of the convergence reported in Propositions

5 and 6. Unlike the convergence in market size, with the convergence of marginal utility,

regardless of market size, none of the designs gives rise to order shading in the limit, bidders

have no price impact, and the stop-out price is deterministic at the interim stage and equal

to v.

For large markets with asymmetric information, Jackson and Kremer (2006) demon-

strated that when Q is �xed, as I ! 1 (and, hence, �Q ! 0) the seller extracts the entire

surplus in the UPA and the DPA. This result obtains in our simpler setting; the thrust of

the mechanism is essentially the same as in Proposition 6.

4.2 Price Volatility

Apart from the �scal consequences of design, as traditionally emphasized by auction theory,

another criterion often used to evaluate the performance of auction formats is the volatility

of the stop-out price. For example, the purchase or sale of U.S. government securities is

one of the key open market operations of the Federal Reserve. By adjusting the level of

reserves in the banking system through trade of securities, the Fed can o¤set or support

cyclical or seasonal shifts in funds. The trade of Treasury securities thereby a¤ects short-

term interest rates. Thus, the design of the market for Treasury auctions plays a crucial role

in the e¤ectiveness of stabilization policy; the Central Banks tend to prefer auction formats

that minimize the variance of the stop-out price. Proposition 7 establishes the rankings of

unconditional (as well as conditional on v) volatility in the three auction formats considered.

Proposition 7 (Volatility of the Stop-Out Price) Let � > 0 and Cov(v; �Q) = 0.

In the unique symmetric linear equilibrium,

V ar(�pU) > V ar(�pV ) > V ar(�pD): (25)

The DPA gives rise to the lowest price volatility among the three formats for any dis-

tribution in the Generalized Pareto class with � < 0. Note that price volatility is inversely

related to market size in the uniform price, but not in discriminatory price auctions. In the

DPA, the stop-out price becomes more volatile, and the bids steepen as the market grows

and the equilibrium price impact weakens. This re�ects that, in contrast to the UPA and VA,

smaller price impact steepens individual bids in the DPA. Thus, the ranking of price volatil-

ity does not follow from the di¤erences in bidders�(endogenous) price impact. Additionally,
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when � ! 0, so that the marginal utility becomes �atter, the price volatility monotonically

decreases to zero in all three auction formats.

The assumption that v and �Q are uncorrelated is admittedly strong in many markets.

For instance, when the Central Bank is informed about shocks to bidder endowments (which

a¤ect valuations), then the Bank is likely to adjust supply �Q as part of its stabilization policy,

which induces a positive correlation between �Q and v. More generally, a non-zero covariance

will be observed when the seller announces the supply before the bids are submitted and

after he observes the signals about bidders�valuations. Nowhere has the analysis in previous

sections relied on v and �Q being independent; the revenue rankings derived in Section 4.1 hold

for markets with an arbitrary covariance Cov(v; �Q). In contrast, the ranking of the volatility

of equilibrium prices depends on the covariance Cov(v; �Q). Speci�cally, when the positive

Cov(v; �Q) exceeds a certain threshold, the conclusions of Proposition 7 reverse in that the

UPA generates the lowest price variance of all formats. In studying market design for the

stabilization policy of the Central Bank, it is thus important to allow Cov(v; �Q) 6= 0. (The
Appendix provides rankings of volatility of the stop-out prices for an arbitrary Cov(v; �Q).)

The advantage of the DPA with respect to price stability is even more pronounced when,

instead of price volatility, one compares the volatility of the average payment per unit. In

the UPA, per-unit payment coincides with the stop-out price; in the DPA, the volatility per

unit amounts only to 25% of the volatility of its stop-out price; in the VA, the volatility of

the per-unit payment is at least as high as the volatility of the stop-out price; precisely, it is

higher by 25% � (3� )2 > 100%.

One of the instruments used in practice to reduce the volatility of the stop-out price is

the adjustment of supply to submitted bids. Our model suggests that this policy is more

e¤ective in the UPA than in the DPA. This holds because of the mutual reinforcement and

o¤setting mechanisms that determine equilibrium price impact in the UPA and the DPA

with � < 0, respectively (described in Sections 3.2 and 3.3.3).

4.3 Participation

The analysis so far has been carried out for a given number of bidders I for all auction

formats. This describes well many markets with large institutional investors, which often

feature natural barriers to the entry of outsiders; similarly, entry is exogenously determined

in primary dealer markets that are present in many countries. When the design of a new

market is considered, however, one should take into account that the positive surplus left for

bidders encourages others to join the auction. We now endogenize the participation rate in
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the utility of the bidders to examine how bidder incentives to enter the market di¤er in the

three designs and how endogenous entry a¤ects the revenue rankings.

One of the lessons from the auction theory for indivisible goods is that a seller should

favor auction formats that encourage more participants (e.g., Bulow and Klemperer (1996)).

With an additional bidder, other participants bid more aggressively. We argue that this

recommendation is even more relevant in the context of divisible good markets as, apart from

the pure competitive e¤ect of reduced order shading, each additional participant increases

the total surplus in the auction, even if the bidders have identical marginal utilities. We call

the latter e¤ect� which is not present in auctions with unit demands� a surplus e¤ect. For

a quick intuition, consider a seller selling two units of a good to two potential bidders, each

with the utility function 2q � 0:5q2. Allocating the two units to one bidder brings utility
and a total surplus of 2. If, however, the seller attracted an additional bidder, each would

receive one unit, which would increase the total utility and the surplus to 3. If the good were

indivisible instead, with identical bidder valuations, the total surplus would be independent

of the number of bidders.

To endogenize entry, we analyze our model with an in�nite pool of potential entrants.

Having learned v, the bidders sequentially choose whether or not to join an auction. Entering

involves a �xed cost c. We assume that the auctioneer sells Q units to all bidders, and

therefore, the per capita supply �Q = Q=I is endogenous. De�ne IU , ID and IV as the

maximal integers for which the expected payo¤ is not less than c for any bidder, in the

UPA, DPA and VA, respectively. (In the Appendix, these three statistics are shown to be

well-de�ned and unique, as the individual net surpluses are monotonically decreasing to zero

in I.) Let � > 0 and  < 1. We �rst determine the number of participants and the expected

revenue in the unique subgame perfect Nash equilibrium, in the second stage of which the

linear Nash equilibrium is played: for any v,

IU � IV � ID: (26)

There exist values of parameters for which the inequalities are strict (see proof of Proposition

8). The key feature of the UPA in encouraging more entry than other auction formats is

that, in equilibrium, it leaves more surplus to the bidders: Given the �xed number and

symmetry of the bidders, the allocations in all auction formats are Pareto e¢ cient, and the

total surplus is shared between the bidders and the seller. The ranking of market sizes then

follows from the revenue rankings in Theorem 1. The dominance of UPA with regard to the

number of participants is not signi�cant. Figure 3.A depicts how the number of participants

varies with the entry fee c. The market size in the UPA exceeds that for the VA and the

DPA. Additionally, for most values of c, the di¤erence between IU and ID is one bidder. The
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weak relative advantage of UPA in encouraging entry is consistent with the evidence from

the U.S. Treasury experiment.

The foregoing discussion prompts the following question: Does the small entry advan-

tage su¢ ce to revert the revenue rankings established for markets with a given number of

participants? Proposition 8 provides an a¢ rmative answer.

Proposition 8 (Revenue Ranking with Endogenous Entry) There exists a range
of values of parameters for which E(RU jv) > E(RDjv).

Indeed, due to the surplus e¤ect as well as the competitive e¤ect, a small di¤erence in

the number of bidders translates into a signi�cant revenue change. As a result, the UPA

can dominate the DPA and the VA in both expected revenue and participation. (Figure 3.B

plots the per capita revenue in the three types of auctions with endogenous participation as

a function of entry cost c.) The ranking reversal results from a perverse mechanism. With

perfectly divisible goods, it is not optimal to implement the mechanism that maximizes rev-

enue, given I. With positive entry cost, such a mechanism leaves zero surplus to the bidders,

which may prevent enhancing the potential revenue to-be-extracted from the competitive

and the surplus e¤ects.

Our numerical simulations suggest that the revenue reversal is a robust phenomenon due

to the high sensitivity of the revenue to the number of bidders. The reversal is more likely

when bidders are more risk averse (i.e., have a higher �). That is because, even though

higher � adversely a¤ects the entry advantage of a UPA, it strengthens the surplus e¤ect at

the same time, and the latter e¤ect typically dominates.

How do the participation levels in the three auction formats compare with the socially

optimal market size? For auctions of single objects, Levin and Smith (1994) demonstrate

that markets encourage entry levels that are excessive from a social point of view. Ignoring

the integer problem (i.e., treating I as a real number), in the proof of Proposition 8 we show

that the endogenized number of participants exceeds the Pareto e¢ cient market size in all

three auction formats. This, in turn, provides an argument in favor of the DPA, the market

size of which is the closest to being e¢ cient. In all auction formats, excess entry arises

because each bidder ignores the negative externality of his participation on the net utility of

other bidders. Nevertheless, our simulations indicate that such excess participation is not a

quantitatively signi�cant problem.
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4.4 Simplicity of an Auction Format

Auction markets are typically anonymous in that bidders and sellers alike know little about

the number, the valuations, and the identities of the participants other than themselves. One

of the arguments advanced by Friedman (1960) in support of the uniform price design is that

bidders need to know less in order to act optimally, as compared to the discriminatory price

auction. Just how much do auction participants need to know in either auction format? It

follows from our analysis that, in the UPA, the bidding strategy in a linear equilibrium is

remarkably simple, namely, to construct an optimal bidding schedule under uniform pricing,

the only information a bidder has to have� aside from his own valuation� is his own price

impact (see (6)). In particular, to respond optimally to arbitrary pro�les of strategies of

all other bidders, he does not have to know the (interim) distribution of residual supply

in the auction, or even the number of participants against whom he is bidding, let alone

their identities or preferences. The price impact statistic summarizes all the payo¤-relevant

information about the strategic environment. While speci�c to the setting considered in the

paper, this insight provides a justi�cation for focusing on the linear equilibrium and might be

attractive in models based on mean-variance preferences in �nancial settings, among others.

The low complexity of equilibrium behavior in the UPA stands in marked contrast to the

DPA, where bidding optimally for all prices in a linear equilibrium requires that a bidder

knows the distribution of the residual supply in addition to knowing his price impact.18

Clearly, one�s own valuation is the only information required for optimal bidding in the VA.

5 Extensions

We brie�y discuss which results can and which cannot be extended beyond the environments

studied in the paper. In the previous sections, we assumed that preferences are non-satiated

for any realization of �Q. In fact, even if the quantities exceed the satiation point for some

realizations, all the results except for Proposition 5 hold as long as � < 0. In this section, we

consider departures from the model to: (1) Generalized Pareto distributions of supply with

unbounded support; (2) distributions of supply outside of the Generalized Pareto class; (3)

independent private values; (4) a non-linear Nash equilibrium; and (5) non-quadratic utilities

of bidders.

Supply with Unbounded Support (� � 0). We report how the rankings derived in this
18The low complexity of bidding in the UPA versus the DPA could be captured by di¤erential entry costs,

in light of which the reversals of the revenue ranking with endogenous participation in favor of the UPA,
studied in Section 4.3, might be more signi�cant.
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paper are a¤ected when the distribution of the supply is unbounded, � � 0. Since, for non-
negative �, an (arbitrary) negative stop-out price can be observed with positive probability,

we �nd such values of parameters less plausible than � < 0. We view this section as a robust-

ness check.19 To compare the revenues and price volatilities in the three auction formats, we

need to restrict attention to distributions of the supply �Q for which the expected revenues

are �nite. This requires that the second moment exist, which translates into a restriction on

the shape parameter, � < 1=2.

While the dominance of the DPA over the UPA in expected-revenue terms holds for all

� < 1=2, the revenue ranking between the DPA and the benchmark VA depends on the value

of the shape parameter �. For example, the two auction formats are revenue equivalent when
�Q is distributed exponentially. More generally, E(RDjv) � E(RV jv), with the equality of
expected revenue attained if, and only if, � = 0. The equality of revenues established in

Proposition 4 and Proposition 6 extends to any � < 1=2.

The rankings of price volatility, in turn, are a¤ected by the value of �. Let �� � (1� ) = (2� ).

Then, for all � 2
�
0; ��
�
,

V ar
�
�pU
�
� V ar

�
�pD
�
� V ar

�
�pV
�
, (27)

whereas for � 2
�
��; 1=2

�
,

V ar
�
�pD
�
� V ar

�
�pU
�
� V ar

�
�pV
�
. (28)

Beyond Generalized Pareto. By the �rst-order condition (13) and Lemma 1, a linear

Nash equilibrium is inconsistent with the discriminatory price format for distributions of �Q

outside of the Generalized Pareto class. We can still rank the uniform price and Vickrey

auctions under quite general conditions. The revenue rankings established in this paper

extend to all nondegenerate distributions of �Q. Underlying the strong rankings is the state-

by-state dominance of the ex post equilibria in the UPA and the VA demonstrated in Section

4.1. The rankings of the volatility of the stop-out price from Section 4.2 extend for the UPA

and the VA in a straightforward manner.

Independent Private Values. A comparative analysis that includes the DPA is not fea-

sible with a linear equilibrium.20 Speci�cally, with heterogenous valuations, the lower bound

19For � � 0, the support of �Q is unbounded and the supply exceeds the satiation point for some realizations.
When the stop-out price is negative, the revenue in a DPA is calculated assuming that bidders pay the area
below the bid when the bid schedule is positive and the area above the bid when it is negative. Note that,
for any unbounded distribution, the probability of the negative stop-out price can be made arbitrarily small
by setting v su¢ ciently high.
20Note that the characterizations of best-response bids from this paper apply regardless of whether the

28



of support of the equilibrium quantity becomes a function of the realization of the intercept

of marginal utility, whereas the supports of �q that are consistent with a linear equilibrium

require a lower bound at zero for all realizations of a bidder�s valuation. Otherwise, a best

response has �at bid parts when the lower bound of the support is strictly positive, or is

discontinuous at zero when zero is in the interior of the support. This problem does not arise

in our model with symmetric valuations as, for each bidder, equilibrium quantity �qi coincides

with �Q, the support of which starts at zero.21

Our derivation of the best response in the UPA and the VA entailed no assumptions

about support of equilibrium quantity, and we can compare the two formats when private

values are introduced. Assume that intercepts vi are independent of �Q. The Vickrey auction

dominates the uniform price auction if the variability of individual intercepts of marginal

utility, V ar (vi), is not too high relative to the variability and expectation of the supply.

Proposition 9 (Revenue Ranking with IPVs) E
�
RV
�
> E

�
RU
�
if, and only if,

V ar (vi) <
(2� )2

2
�2
�
V ar

�
�Q
�
+ E2

�
�Q
��
: (29)

For the intuition, note that in the uniform price auction, the variability of vi has no impact

on the expected revenue except through the average realization 1
I

P
i2I vi, since the revenue

is linear in individual intercepts vi. As is well known, when bidders are asymmetric, the

Vickrey auction may yield low revenues. Keeping the same average 1
I

P
i2I vi, realizations for

which the valuation of one bidder is signi�cantly higher compared to other bidders�valuations

lead to lower revenue than realizations with identical valuations.22 Hence, greater V ar (vi)

reduces the expected revenue of the Vickrey auction, relative to the UPA.

Non-linear Nash Equilibria. Analyzing the linear equilibrium, which is unique in all

formats and the selection of which has some empirical support (see Section 2.3), allows us to

obtain sharp rankings. How robust are our predictions to relaxing the linearity assumption?

As is well known, in games with demand schedules as strategies, Nash equilibrium has weak

predictive power� the set of Nash equilibria and the corresponding outcomes is large. In a

uncertainty about residual supply comes from randomness in �Q or valuations of other bidders. Thus, for a
�xed family of residual supplies, best responses with independent private values are the same as derived in
this paper in all three formats.
21Given the impossibility of analyzing heterogeneous valuations in linear equilibria, Rostek and Weretka

(2010) derived revenue rankings for a linear "-quilibrium for DPA, which allows bidders to bid suboptimally
(by linearily extending their bids from the positive quadrant) and such extensions are relevant for an allocation
in equilibrium with arbitrary small probability.
22An insight of Ausubel and Cramton (2004) from their study of the Vickrey auction is that reserve pricing

and restricting quantity allows the seller to overcome the problem of low revenue due to asymmetric bidder
valuations.
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model of a procurement auction with an exogenous downward-sloping demand, Klemperer

and Meyer (1989) demonstrated that when utilities are quadratic and uncertainty (e.g., noise)

has unbounded support, Nash equilibrium in the UPA is unique in the set of strategies that

are piecewise di¤erentiable functions and the equilibrium is linear. Their result applies

directly to our UPA model (with a vertical supply); thus, in our analysis for Generalized

Pareto distributions with � > 0, the UPA equilibrium is unique within a large class. For the

empirically more plausible distributions � < 0, the set of Nash equilibria in the UPA is not

determinate. To the best of our knowledge, no results concerning the uniqueness of linear

equilibria in the DPA have yet been established, even for unbounded support of uncertainty.

Non-quadratic Bidder Utilities. In the uniform price model by Klemperer and Meyer

(1989), bidder preferences need not be quadratic. No results are available in the literature

about determinacy of equilibrium for non-quadratic utilities, even for UPA with unbounded

support of uncertainty. Recent in�uential literature with discrete strategy spaces accommo-

dates arbitrary preferences (Swinkels (2001); Jackson and Kremer (2006)), but only for large

auctions.

6 Conclusions

This paper examines the relative performance of two auction formats� uniform and dis-

criminatory price auctions� both commonly used in divisible good markets, as well as the

theoretical benchmark of Vickrey mechanism in environments with symmetric valuations.

For risk neutral sellers, our results support the DPA relative to the UPA in non-competitive

markets with a �xed number of bidders when expected return and price stability are the

criteria. Even though the UPA encourages more aggressive bidding, the DPA yields higher

expected revenue in all of the considered environments. The expected-revenue advantage of

the DPA weakens in larger markets. In competitive markets, the two auction formats bring

the same (expected) revenue, but the UPA o¤ers less risky revenue than does the DPA and,

hence, is more attractive to risk averse sellers. When bidders have market power, risk averse

sellers face a trade-o¤ between the expected return and revenue riskiness. Design preference

will then depend on the seller�s degree of risk aversion and the size of the market. Table 1

summarizes the performance of all auction formats.
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Table 1. Revenue Rankings with Risk Averse Bidders

Seller

Auction Risk neutral Risk averse

Small TS�DPA�Vickrey�UPA TS�Vickrey�UPA
Large TS�DPA�Vickrey�UPA TS�Vickrey�UPA�DPA

We also show that, when the design can target potential entrants, the UPA encourages

a (weakly) greater participation. Even if quantitatively small, the di¤erence in participation

may reverse the revenue ranking in small auctions.

The model presented in this paper assumes symmetric bidders. Therefore, we cannot

compare the e¢ ciency of the auction formats (since the equilibrium allocations are trivially

e¢ cient), or analyze the distribution of awards, the interaction between private information

and price impact, or the winner�s curse. As argued in Section 5, addressing these important

questions requires a departure from the linear Bayesian Nash equilibrium, which we do in

Rostek and Weretka (2010) in a model with private and mixed values.
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Appendix

Please note: We provide a more detailed version of Appendix than is intended for publication.

In all three auction formats, to derive a best response to a stochastic residual supply, we

�rst discretize the distribution of x by partitioning its support into a countable number of

intervals of equal length �x (see Figure 4). Each discrete realization of the supply function,

which de�nes a state and is indexed by s, originates at the midpoint of the corresponding

interval. The probability associated with the interval in state s, �s, is equal to the probability

of the interval assigned by the distribution function Gi(�). For the discretely distributed
residual supply, we �nd a best response function (Proposition 1, Proposition 2). As the

length of the interval goes to zero, �x ! 0, the limit bid constitutes a best response to a

continuously distributed residual supply.

Proof. Proposition 1 (Equilibrium in the UPA) We derive the �rst order condition of a
bidder in a UPA, who faces a residual supply with slope �i. Consider a small deviation from

a bid schedule around a price-quantity pair (p; q);a pair that is observed in equilibrium given

state s. The deviation increases the equilibrium quantity by dq and the stop-out price by

dp = �idq in state s; in no other state are the stop-out prices or equilibrium quantities altered

(cf. Figure 5.B). This translates into the marginal utility gain by dq � �s � (v � �q). The

deviation increases the payment only for state s, in two ways. First, more units are purchased

at the stop-out price p, which yields the change in payments of dq�p; second, more aggressive
bidding increases the stop-out price for all units q, and hence the payment increases linearly

by q � �idq. Optimality requires that the marginal bene�t and cost associated with a small

deviation be equal,

dq � �s � (v � �q) = dq � �s � (p+ �i � q): (30)

The Euler equation (30) holds for any �x and, by the Maximum Theorem, in the limit as

�x! 0. This gives (5). The following steps are in the text.
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Proof. Lemma 1 (LIHR) (If) The density of q is given by

�gi(q) =
1

�

�
1 + �

(x� �)

�

��( 1�+1)
; (31)

therefore,

�(q) � 1� �Gi(q)

�gi(q)
= � � �� + �q; (32)

and hence, the inverse hazard ratio is linear on the whole compact support.

(Only if) Suppose �Gi(q) satis�es LIHR on the whole support. We now show that it is a

Generalized Pareto distribution. LIHR implies that there exist two constants �0; �1 2 R such
that the inverse hazard rate can be written as �(q) = �0 + �1q. Since �(q) is well-de�ned,

�gi(q) > 0 on the whole support, and hence, �Gi(q) is strictly increasing. Therefore, there exists

a unique q� 2 R such that �Gi(q�) = 1
2
. For any q in the support, the following condition

must be satis�ed

�gi(q) =
1� �Gi(q)

�0 + �1q
: (33)

Di¤erential equation (33) is continuous in the interior of the convex support as �0+�1q > 0.

Condition (33) de�nes a unique �Gi(q) on the interior of the support, up to a constant. It

follows that there can exist, at most, one �Gi(�) such that its inverse hazard ratio is �0+�1q and
its median is given by q�. If �1 = 0, the only solution to (33) is an exponential distribution;

hence, it is within the class. Consider any �1 6= 0, and de�ne � � �1 and

� � �0 + �1q
�

2�1
; (34)

� � 1

�1

�
�0 + �1q

�

2�1
� �0

�
: (35)

Notice that since evaluated at the median value, hazard ratio �0 + �1q� > 0 is positive, so is

� > 0. Therefore, parameters �; � 2 R and � 2 R++ de�ne a Generalized Pareto distribution.
It is straightforward to verify that the hazard rate of this distribution is given by �0+�1q and

its median is q�. By the previous uniqueness argument, there can be at most one distribution

with two such properties and, hence, the obtained Pareto Distribution coincides with �Gi(q),

and belongs to the class of Generalized Pareto functions.

Proof. Proposition 2 (Equilibrium in the DPA) We derive the �rst order condition of
a bidder in a DPA, who faces a residual supply with slope �i and the c.d.f. of the intercept

x of the residual supply Gi(�) and the corresponding density gi(�). With a discrete x, agent
i is bidding against a (at most) countable family of residual supplies, and his best response

34



is a step function. Therefore, in deriving the best response, we can restrict attention to

the class of step functions.23 Consider a local perturbation of a bid to a new step function

around (p; q); observed in state s: In state s, the perturbation increases the obtained quantity

by dq and the stop-out price by dp = �idq and does not a¤ect either of the two variables

in any other state (cf. Figure 5.C). With the deviation increasing his quantity in state s,

bidder i enjoys the marginal bene�t of dq � �s � (v � �q). The cost of the deviation is the

following. Similarly to UPA, in state s, the payment increases for two reasons. Additional

units purchased at price p augment the payment by dq � p, and more aggressive bidding

raises the price by dp = �idq. Since the payment for all units up to q � �q is determined
by the upper part of the bid function, the increased price changes the payment for only

�q units. Consequently, the price impact e¤ect in a DPA is smaller than in a UPA, and

given by �q��idq. The two e¤ects are depicted in Figure 5.C. In addition, more aggressive
bidding in�icts a negative externality on the payments in all higher states. In all higher

states, the payment increases by �q��idq and �p� dq. The total marginal cost associated
with aggressive bidding amounts to

dq � �s � (p+ �i�q) + dq � (�p+ �i�q)�
X
k>s

�k: (36)

At the optimum, the marginal bene�t balances the marginal cost. Alternatively, the Euler

equation equalizes the net marginal bene�t in state s with the negative externality in�icted

on the payments in all higher (but not lower) states

�s

�x

�x

�q
� (v � �q � p� �i�q) = (

�p

�q
+ �i)�

X
k>s

�k: (37)

Condition (37), which de�nes the optimal bid, characterizes the trade-o¤ faced by each bidder

in the discriminatory auction. The Euler equation (37) gives a necessary optimality condition

for an arbitrarily �ne partition of the intercept into intervals of size �x. We now let �x! 0.

Since, by assumption, the distribution Gi(�) is smooth, we obtain

�s

�x
= gi(x) + o(1): (38)

By the Maximum Theorem on compact intervals, the best response converges uniformly to

the unique linear best reply qi(p). Thus, the ratio
�q
�p
converges to the slope of the best

23More precisely, we �rst �nd a best response within the class of step functions. Since, for an arbitrary
downward-sloping function, there exists a step function that dominates it in terms of payo¤, the best response
found in the restricted class is a best response in the class of weakly decreasing functions.
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response,
�q

�p
=
@qi(�)
@p

+ o(1); (39)

and the ratio �x
�q

converges to the negative of the slope of the a¢ ne function x(q) that

maps the equilibrium quantities into the intercepts, which is the relation observed in a linear

equilibrium,
�x

�q
= �@x(�)

@q
+ o(1): (40)

The minus sign re�ects the fact that the equilibrium relation x(q) has a negative slope. Note

that with an in�nitely �ne grid, the within-state price impact e¤ect disappears as �q ! 0

and the payments for all units up to q are �xed by the upper part of the bid schedule. It

follows that

�i�q = o(1): (41)

Substituting (38), (39), and (40) into (37), ignoring the o(1) elements, and observing that

the probability of all higher states coincides with Gi(x), gives the limit Euler equation (11).

In equilibrium, q = �Q, and therefore the inverse hazard ratio of the equilibrium quantity,

coincides with the inverse hazard ratio of �Q, and it is given by �(q) = �+ �q. The �rst-order

condition becomes

v � �q � p = (� + �q)(�i +  i); (42)

where  i � �(@qi(�)=@p)�1 is the absolute value of the slope of the inverse bid and is constant
in the linear equilibrium. Solving for q gives the optimal bid function

qi(p) =
v � p� �(�i +  i)

�(�i +  i) + �
; (43)

and hence

�
�
@qi(�)
@p

��1
�  i = �(�i +  i) + �; (44)

which, after solving for  i, gives

 i =
��i
1� �

+
�

1� �
: (45)

Since the residual supply is a horizontal sum of the inverse bids by other bidders, its slope

is equal to 1=(I � 1) = 1 �  of the average slope of the inverse individual bids of other

participants, (16). In the symmetric equilibrium, �i = (1 � ) i for all i, which gives price

impact

�i =
(1� )�

1� (2� )�
: (46)
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Combining (45) and (46) gives

�i +  i =
(2� ) �

1� (2� ) �
: (47)

The Euler equation (42) can be rewritten in terms of exogenous parameters as

qi(p) =
1� (2� )�

�
(v � p)� (2� )�: (48)

The equilibrium stop-out price is obtained by market clearing qi(�p) = �Q and averaging (48)

across all bidders

�p = v � �

1� (2� )�
�Q� (2� )��

1� (2� )�
: (49)

Proof. Theorem 1 (Revenue Ranking) For any realization of �Q, the revenues per capita
in three auction formats are given by

RU = v �Q� �


�Q2; (50)

RD =

�
v � (2� ) ��

1� (2� ) �

�
�Q� 1

2

�

1� (2� ) �
�Q2; (51)

RV = v �Q� 1
2
�(3� ) �Q2; (52)

and the total surplus per capita is de�ned in (3). In the linear equilibrium, all the revenue

functions are quadratic in �Q. The �rst two moments of random variable �Q with Generalized

Pareto distribution with � = 0, � > 0 and � < 1=2 are given by

E( �Q) =
�

1� �
; (53)

E( �Q2) =
2�2

(1� �)(1� 2�) : (54)

We obtain the interim expected revenues,

E(RU jv) =
�

1� �

�
v � 2



��

(1� 2�)

�
; (55)

E(RDjv) =
�

1� �

�
v � (2� ) ��

1� (2� ) �
� 1

1� (2� ) �

��

(1� 2�)

�
; (56)

E(RV jv) =
�

1� �

�
v � (3� )

��

(1� 2�)

�
: (57)
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For all  2 (0; 1), � > 0 and � < 0, strict inequalities E(RDjv) > E(RV jv) > E(RU jv)
hold, while for � 2 (0; 1=2), one obtains E(RV jv) > E(RDjv) > E(RU jv). Since, for any
realization of �Q, the total surplus dominates revenue in any of the three auctions, the surplus

is also greater in expectation. We now compare the expected order shading in three auction

formats. By truthful bidding, there is no order shading in a VA. The expected order shading

in a UPA is

E(OSU) = (1� )
��

1� �
; (58)

whereas in a DPA it is given by

E(OSD) =

�
(2� ) (1� 2�)
1� (2� )�

�
��

1� �
: (59)

It can be shown that E(OSD) > E(OSU) for all

� <
1

(1 + )(2� )
; (60)

which holds for all � < 1
2
.

Proof. Lemma 2 (Strategic Equivalence) From (42) and (45), and given the residual
supply with slope ��U , the optimal order shading is given by

v � �


q � p = (� + �q)

�
��U

1� �
+

�

1� �

�
: (61)

Using that the equilibrium price impact in the UPA is ��U = 1�

�; the inverse bid is

pi (q) = v � 1

1� �

�


q � �

1� �

�


q: (62)

For a �xed qth unit, the conditional expectation of price in the UPA is given by

E(�pU j�pU � v� (q)] =
1

1� F (qjv)

��
�Z

q

�pUf
�
�Qjv
�
d �Q =

1

1� F (qjv)

��
�Z

�q

�
v � �


�Q

�
f
�
�Qjv
�
d �Q:

(63)
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Integrating by parts and substituting for f
�
�Q
�
and F

�
�Q
�
,Z �

v � �


�Q

�
f
�
�Q
�
d �Q =

�
v � �


�Q

�
F
�
�Q
�
+
�



Z
F
�
�Q
�
d �Q (64)

=

�
v � �


�Q

� 
1�

�
1 +

�

�
�Q

�� 1
�

!
+
�



 
�Q+

�

1� �

�
1 +

�

�
�Q

�� 1
�
+1
!
;

and, hence,

E(�pU j�pU � v� (q)] = v � 1

1� �

�


q � �



�

1� �
= pi (q) : (65)

Proof. Proposition 3 (Revenue Ranking; Arbitrary Risk Preference of the
Seller) The assertion follows from (3), (50), and (52).

Proof. Proposition 4 (Revenue Ranking in Large Auctions) Take a limit of (55),
(56) and (57), as  ! 1. In all three auctions, the expected revenues are equal and given by

E(RU jv) = E(RDjv) = E(RV jv) = �

1� �

�
v � 2��

1� 2�

�
: (66)

The expected revenue in large auctions is strictly smaller than the expected total surplus.

The total expected surplus per capita is given by

E(ROptjv) = �

1� �

�
v � ��

(1� 2�)

�
: (67)

The fraction of surplus not extracted by the seller is equal to

��

v(1� 2�)� ��
: (68)

(This value can be seen in Figure 2.A at  = 1.)

Proof. Proposition 5 (SOSD) For any realization of �Q, the revenue in large uniform price
and Vickrey auctions is given by

RU = RV = v �Q� � �Q2; (69)

whereas in a DPA, it is

RD =

�
v � ��

1� �

�
�Q� 1

2

�

1� �
�Q2: (70)

39



(The revenues for di¤erent realizations of the supply are depicted in Figure 2.B.) In all

formats, the revenues are zero for �Q = 0; and the revenue function in the UPA and the VA is

steeper than that of the DPA at zero. Consequently, RU( �Q) > RD( �Q) for all su¢ ciently small
�Q > 0. As the di¤erenceRU( �Q)�RD( �Q) is quadratic in �Q andRU(0) = RD(0) = 0, there is at

most one �Q� > 0 in the support of both random variables, for which R� � RU( �Q�) = RD( �Q�).

Since, the revenues are equal in expectations, thresholds �Q� and �R� exist in the interior of the

support and the image, respectively. In Figure 2.B, they are given by R� = 0:9 and �Q� = 0:7.

For any scalar R 2 (0; �R) where �R is the maximal realization of revenue in the UPA, de�ne
�QU and �QD as the realizations of supply that give revenue R in the UPA and the DPA,

respectively (i.e., RU( �QU) = RD( �QD) = R). By continuity and monotonicity of functions,

such scalars exist and are unique. R� partitions the interval
�
0; �R

�
into two subsets: for all

R < R�; the corresponding scalars satisfy �QD > �QU . By monotonicity, the probability of

revenue weakly less than R equals F ( �QU jv) in the UPA and F ( �QDjv) in the DPA. It follows
that, in the interval (0; R�), the c.d.f. of the DPA revenue is strictly higher than that of the

UPA. By an analogous argument, for all R > R�, the UPA c.d.f. function is greater than

that of the DPA. This establishes single-crossing of the two c.d.f.s at R�, which is su¢ cient

for the UPA revenue to stochastically dominate the DPA in the second-order sense.

Proof. Proposition 6 (Revenue Equivalence with Constant Marginal Utility)
Take the limits of (55), (56) and (57) as �! 0. In all three auctions, expected revenues are

equal and coincide with the expected total surplus

E(RU jv) = E(RDjv) = E(RV jv) = E(ROptjv) = �v

1� �
: (71)

Proof. Proposition 7 (Volatility of the Stop-Out Price) The result follows from
the unconditional variances of the equilibrium prices in the UPA, DPA and VA,

V ar
�
�pU
�
= V ar (v) +

�
�



�2
V ar

�
�Q
�
; (72)

V ar
�
�pD
�
= V ar (v) +

�
�

1� (2� )�

�2
V ar

�
�Q
�
; (73)

V ar
�
�pV
�
= V ar (v) + �2V ar

�
�Q
�
: (74)
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Proof. Proposition 8 (Revenue Ranking with Endogenous Entry) To determine
the number of participants and the expected revenue in the unique subgame perfect Nash

equilibrium, we �rst ignore the integer problem. In any auction format, the endogenous

number of bidders is determined by the equality between expected utility from participation

and entry cost

U = vE(q)� 1
2
�E(q2)� E(Payment) = c: (75)

We assume that the total supply Q is �xed and Generalized Pareto with exogenous

parameters �0 > 0; �0 2 R and �0 = 0. For the UPA, using that the revenue is given by (50),
condition (75) becomes

2� 

2
�
1

I2
E(Q2) = c: (76)

Substituting from the de�nition of  in (2) ; we solve (76) for the positive root

IU(c) = 1 +

�
1 +

��02

c(1� �0)(1� 2�0)

�0:5
; (77)

where we used the second moment formula for Q from (53). Condition (77) determines

participation in the UPA as a function of c. Next, we derive an analogous function for DPA.

Note that since per capita supply �Q coincides with Q scaled down by coe¢ cient 1=I > 0, it

is in the class of Pareto distribution functions and is de�ned by parameters � = �0=I, � = �0

and � = 0. For the DPA, condition (75) becomes

(2� ) ��0

1� (2� ) �0
1

I2
E (Q) +

�
(2� ) �0

1� (2� ) �0

�
1

2

1

I2
�E
�
Q2
�
= c: (78)

Applying the de�nition of  and the expectation (53), gives

(1� �0)cI2 � cI � ��02

(1� 2�0) = 0; (79)

which has the (positive) solution given by

ID (c) =
1

2 (1� �)
+

�
1

4 (1� �)2
+

��02

c(1� 2�0) ((1� �))

�0:5
: (80)

For the VA, condition (75) is
(2� )

2I2
�E
�
Q2
�
= c; (81)
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the (positive) solution of which is given by

IV (c) =
1

2
+

�
1

4
+

��02

c (1� �0) (1� 2�0)

�0:5
: (82)

IU(�) > ID(�) and IU(�) > IV (�), and the ranking between the DPA and the VA depends

on the sign of �0. In particular, for �0 < 0, we have IV (�) > ID(�). In the three auction
formats, the number of participating bidders (given c) is the greatest integer that is less than

or equal to derived IU(c), ID(c) and IV (c) and, hence, the asserted participation ranking

holds with weak inequalities. Simulations indicate that for some values of parameters, the

rankings are strict (see Figure 2.A). Using the derived market sizes in expected revenues (55)

and (56), numerical simulations show that there exists a range of values of parameters for

which E(RU jv) > E(RDjv).
The Pareto e¢ cient entry maximizes the surplus

vE (Q)� 1

2I
�E
�
Q2
�
� cI: (83)

The optimal number of entrants IPE is equal to

IPE =

�
��02

c (1� �0) (1� 2�0)

�0:5
(84)

and is strictly smaller than IU ; IV and ID.

Proof. Proposition 9 (Revenue Ranking with IPVs) Using the revenue in the UPA
(50) with �v = 1

I

P
i vi, the expected revenue is

E
�
RU
�
= E (vi)E

�
�Q
�
� �


E
�
�Q2
�
: (85)

In the VA, the residual supply of bidder i is found by solving I �Q = 1
�

X
j 6=i

(vj � p) + qi for p

p (qi) = �v�i � � (2� ) �Q+ � (1� ) qi; (86)

and the individual quantity obtained is

qi =
1

� (2� )
(vi � �v�i) + �Q: (87)
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The residual supply and quantity obtained in equilibrium gives per-capita revenue

RV =
1

2

�
�v + �v�i � (3� ) � �Q

� �
�Q+

1

(1� ) �
(�v � �v�i)

�
=

=
1

2

�
[�v + �v�i] �Q� (3� ) � �Q2 +

1

(1� ) �

�
�v2 � �v2�i

�
� (3� )

(1� )
(�v � �v�i) �Q

�
:(88)

In expectations,

E
�
RV
�
= [E (vi)] �Q�

(3� ) � �Q2

2
+

1

(1� ) �
E
�
�v2 � �v2�i

�
= (89)

= [E (vi)] �Q�
(3� ) �E

�
�Q2
�

2
� (1� )

(2� ) �
V (vi) : (90)

The ranking then follows from (85) and (90) :
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FIGURE 3: ENDOGENOUS PARTICIPATION AND REVENUE RANKING REVERSAL (                                                         ) 

A.)   B.) 

1,1,1,3,0 =−==== vξρσμ

1=s

2=s

3=sxΔ

xΔ

xΔ

xΔ

Su
pp

or
t  
of
  x

 

Higher states 

)(xg

1=s2=s3=s4=s
xΔxΔxΔxΔ

Higher states 

4π 3π
2π 1π

4=s

x

A.) RESIDUAL SUPPLY   B.) PROBABILITIES

price

quantity

FIGURE 4:  DISCRETE  RESIDUAL SUPPLY  



 

LEGEND: 
                OPTIMAL BID 
                DEVIATION 
                REALIZED RESIDUAL SUPPLY 
                NOT REALIZED RESIDUAL SUPPLY 
                PAYMENT  WITHOUT DEVIATION 
                INCREASE IN PAYMENT  

quantity

FIGURE 5: EFFECTS OF A DEVIATION ON PAYMENT 

B.) PAYMENT IN A UNIFORM PRICE AUCTION  

C.) PAYMENT IN A DISCRIMINATORY PRICE AUCTION 

1=s

2=s

3=s

1=s

2=s

3=s

qΔ

pΔ

dq

Mdq
p

4=s

4=s

priceprice price price

quantity quantity quantityq

dq
q

qΔ

pΔ

qΔ

pΔ

Mdq
p

quantity quantity quantity quantity

priceprice price price

quantity

A.) PAYMENT IN A VICKREY AUCTION  

1=s

2=s

3=sMdq
p

4=s

priceprice price price

quantity quantity quantityq
dq


	dga1.pdf
	Uniform vs Discriminatory Figures.pdf

