Production Function, Average and Marginal Products, Returns to Scale, Change of Variables

Production Function:

links inputs to amont of output. Assume we have 2 inputs: Labor (L) and Capital (K), and we use Y for output . Then we write:

Y = F(L, K), where F() is the production Function. We make a number of assumptions about this function.

Examples:

- (1) Y = L . K
- (2) Y = L + K
- (3) $Y = L^{1/3} \cdot K^{1/3}$
- (4) $Y = L^{1/2} \cdot K^{1/2}$

Average Product and Marginal Product of a Particular Input

Labor:

Average Product of Labor (APL): Y/L

Marginal Product of Labor (MPL): changes in Y / Changes in L (for small changes) = partial derivative of F(L, K) with respect to L.

Capital:

Average Product of Capital (APK): Y/K

Marginal Product of Capital (MPK): changes in Y/ Changes in K (for small changes) = partial derivative of F(L, K) with respect to K

Returns to Scale:

Percentage of change in Y when we change all inputs in the same proportion.

Increasing Returns to Scale (IRS):

% change in Y > % change in L = % change in K

Constant Returns to Scale (CRS):

% change in Y = % change in L = % change in K

Decreasing Returns to Scale (DRS):

% change in Y < % change in L = % change in K

Formal Proof for Cobb Douglas

Let $Y = F(K,L) = K^{\alpha} L^{\beta}$, where α , β are positive constants.

We want to see what happens to Y when K and L increase in the same proportion. Let λ be a constant bigger than 1 (i.e. if $\lambda = 1.5$ this means that K and L increase by 50%).

$$F(\lambda K,\,\lambda L)=(\lambda K)^\alpha\;(\lambda L)^\beta=\;\lambda^\alpha\;K^\alpha\;\;\lambda^\beta\;L^\beta=\;\lambda^{\alpha+\beta}\;\;K^\alpha\;L^\beta=\;\lambda^{\alpha+\beta}\;F(K,L)=\;\;\lambda^{\alpha+\beta}\;Y$$

If $\alpha+\beta>1$, $\lambda^{\alpha+\beta}>\lambda$ and % change in Y>% change in L=% change in K, then the function has IRS.

If $\alpha+\beta=1$, $\lambda^{\alpha+\beta}=\lambda$ and % change in Y = % change in L = % change in K, then the function has CRS.

If $\alpha+\beta<1$, $\lambda^{\alpha+\beta}<\lambda$ and % change in Y<% change in L=% change in K, then the function has DRS.

Some production functions exhibit the same type of returns to scale everywhere (like the 4 examples presented here), while others don't.

In our examples it is easy to find the type of returns to scale by looking at a couple of points.

Ex 1: Y= L	. K		
L	K	Y=L.K	
1	1	1	
2	2	4	\Rightarrow IRS
3	3	9	
Ex 2: $Y = L$	+ K		
L	K	Y = L + K	
1	1	2	
2	2	4	\Rightarrow CRS
3	3	6	
Ex. 3 : Y =	$L^{1/3} \cdot K^{1/3}$		
L	K	$Y = L^{1/3} \cdot K^{1/3}$	
1	1	1	
8	8	4	\Rightarrow DRS
27	27	9	
Ex. 4: Y = 1	$L^{1/2} \cdot K^{1/2}$		
L	K	$Y = L^{1/2} \cdot K^{1/2}$	
1	1	1	
4	4	4	\Rightarrow CRS
9	9	9	

Change of Variable

Sometimes it is convenient to make a change of variable in order to reduce the number of variables in our problem by one. When the production function exhibits CRS we can do this very easily.

Ex. 2:
$$Y=L+K$$

Lets divide both sides by L,
 $Y/L=1+K/L$
define two new variables : $y=Y/L$ and $k=K/L$, then
 $y=1+k$
and we have only 2 variables in our problem.

$$\begin{split} Ex. \ 4: \ Y &= L^{1/2} \ . \ K^{1/2} \\ Lets \ divide \ both \ sides \ by \ L \ (or \ L^{1/2} \ . \ L^{1/2}), \\ Y/L &= (L^{1/2} \ . \ K^{1/2)} \ / \ L = \ (L^{1/2} \ / \ L^{1/2}). \ (\ K^{1/2} \ / \ L^{1/2}) = 1 \ . \ (K/L)^{1/2} \\ define \ two \ new \ variables : \ y &= Y/L \ and \ k = K/L \ , \ then \\ y &= k^{1/2} \end{split}$$

and we have only 2 variables in our problem.

Notice that our new function looks like this:

Since,

L	K	k=K/L	$y=k^{1/2}$
2	2	1	1
2	8	4	2
2	18	9	3