Problem Set 3

Due in Canvas on Thursday, November 4. Be sure to put your name on your problem set. Put "boxes" around your answers to the algebraic questions.

1. Suppose the price change of a stock is given by:

$$P_{t+1} - P_t = (E_t P_{t+1} - P_t) + \left[\frac{D_{t+2} - E_t D_{t+2}}{(1 + rp + rf)} + \frac{E_{t+1} P_{t+2} - E_t P_{t+2}}{(1 + rp + rf)} \right]$$

Assume no news regarding dividends is coming out between t and t+1 (e.g., each period is one day).
1.1 Why how might changes in expectations from t to t+1 regarding events at t+4 have an impact on the price change from t to t+1? Be explicit about the channel.
1.2 Should the change in the stock price be a completely uncorrelated random error? Show why or why not.
1.3 Suppose P refers to the price of Bitcoin. Further suppose that overnight the US government announced a ban on the use of Bitcoin to take effect one year from today. What would happen to the price of Bitcoin going from today to tomorrow (i.e., what would $P_{t+1} - P_t$ look like)? You can assume that no other information comes in overnight.

Assets		Liabilities		
Reserves	\$50M	Checkable Deposits	\$230M	
Securities	\$25M			
Govt Gecurities	\$25M			
oans	\$150M	Bank Capital	\$20M	

3. Leverage, liquidity, and bank balance sheets

3.1 Consider two banks, H (high bank capital) and L (low bank capital).

High Bank	Capital			Low Bank	Capital		
Assets		Liabilities		Assets		Liabilities	
Reserves	\$9M	Deposits	\$90M	Reserves	\$10M	Deposits	\$96N
Loans	\$71M	Bank Capital	\$10M	Loans	\$70M	Bank Capital	\$4M
ABS	\$20M			ABS	\$20M		

Bank capital is the equity of the owners (shareholders) of the bank. ABS stands for asset backed securities.

Calculate the return on equity (ROE) for each bank, if the rate of return on loans is 5%, and 10% on ABS, and the interest rate on deposits is 2%.

L			

3.2 Show what happens to each of the bank balance sheets when the asset backed securities lose 25% of their value.

High Bank	Capital			Low Bank	Capital		
Assets		Liabilities		Assets		Liabilities	
Reserves	\$9M	Deposits	\$90M	Reserves	\$10M	Deposits	\$96M
Loans	\$71M	Bank Capital	\$10M	Loans	\$70M	Bank Capital	\$4M
ABS	\$20M			ABS	\$20M		

Bank capital is the equity of the owners (shareholders) of the bank. ABS stands for asset backed securities.

High Bank	Capital			Low Bank	Capital		
Assets		Liabilities		Assets		Liabilities	
Reserves	\$M	Deposits	\$M	Reserves	\$M	Deposits	\$_
Loans	\$M	Bank Capital	\$M	Loans	\$M	Bank Capital	\$
ABS	\$M			ABS	\$M		

	oosit Ba			Money Ma	arket Ba				
sets eserves	\$6M	Liabilities Deposits	\$60M	Assets Reserves	\$3M	Liabilities Deposits	\$30M	-	
ans	\$74M		\$30M	Loans borrowing	\$77M	Short term borrowing	\$60M	_	
SS	\$20M	Bank Capital	\$10M	ABS	\$20M	Bank Capital	\$10M	=	
		ach bank mus ue to borrow			erm mo	oney markets	freeze,	, so that the ba	anks
					erm mo	oney markets	freeze,	so that the ba	anks