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“Policymakers and other analysts have often relied on quotes from commodity futures markets to derive 
forecasts of the prices of key commodities…  The poor recent record of commodity futures markets in 
forecasting the course of prices raises the question of whether policymakers should continue to use this 
source of information and, if so, how.”        Ben Bernanke, June 9, 2008 
 

Commodity prices have arguably played an important role in accounting for historical macroeconomic 

fluctuations.  The two oil price shocks in the 1970s remain the most common explanation for the Great 

Inflation of the 1970s and the stagflationary patterns observed after these episodes.1  Hamilton (2009) 

argues that the oil price run-up of 2007-2008 can account for much of the early stages of the Great 

Recession.  Hamilton (1983) and Bernanke, Gertler and Watson (1997) note the broader point that most 

US recessions have been preceded by large oil price increases.  The evidence linking commodity price 

shocks to macroeconomic fluctuations is not limited to oil prices, however.  For example, the oil price 

shocks of the 1970s were accompanied by twin food price shocks of similar magnitude, a point 

emphasized early on by Bosworth and Lawrence (1982) and more recently by Blinder and Rudd (2008).  

In addition, small developing economies have often been dependent on a primary commodity for much of 

their exports (e.g. Chile and copper) and have experienced dramatic boom-bust patterns as a result of 

commodity price changes.  

 Given this historical relationship between commodity prices and macroeconomic fluctuations, 

forward-looking policy-makers and researchers have long been interested in predicting commodity price 

movements.2  This paper studies one source of information about future prices: commodity futures 

markets.  In particular, we examine whether futures prices are (1) unbiased and/or (2) accurate predictors 

of subsequent prices, in the markets for energy, precious metals, base metals, and agricultural 

commodities.  While there is a long literature studying futures prices for energy markets and particularly 

oil (see Alquist and Kilian 2010 for a recent example), we build on this literature by extending the 

analysis to other commodity markets and by emphasizing recent changes in the properties of futures 

prices.  In our view, a re-examination is warranted in light of recent public policy concerns about sharp 

movements in a broad range of commodity prices, the large inflows of new speculative funds into energy 
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markets, as well as the fact that the use of futures for non-energy markets has grown particularly rapidly 

in recent years.   

 We first document, using commodity futures data since 1990 at multiple horizons, that there are 

significant differences in the properties of commodity futures both within and across commodity groups.  

For example, precious and base metals stand out in how strongly one can reject the null of unbiasedness.  

In addition, futures prices for these commodities display very limited predictive content for future price 

changes.  Much like exchange rate forward prices (e.g. Meese and Rogoff 1983, Engel 1996, and Cheung, 

Chinn and Garcia Pascual 2005), metals futures do not typically outperform random walks in terms of 

squared forecast errors.  The limited predictive content of metal commodities could be consistent with 

their historical use by global investors to hedge against aggregate risks such as inflation, thereby 

potentially causing futures prices to depart from being unbiased predictors of subsequent price changes, 

particularly if such financial flows were disproportionately targeted to specific futures horizons (e.g. 3-

month versus 6-month futures contracts).  Consistent with the particularly poor predictive content of 

precious metals, we document that one could have significantly increased the proportion of predicted gold 

price changes by incorporating, above and beyond the information in the gold futures basis, information 

from energy futures prices.  For example, one could have doubled the proportion of gold price changes 

accounted for at the 12-month ahead horizon (9% vs 18%) and at the 6-month horizon (5% vs 10%) 

simply by using the contemporaneous natural gas futures basis in addition to the gold basis.  

 In contrast, energy and agricultural commodities hew more closely to the unbiasedness 

hypothesis.  Futures contracts for these commodities also do relatively better in terms of predicting 

subsequent price changes or the sign of price changes than those of precious or base metals.  And in some 

cases, futures prices significantly outperform random walk forecasts.  Thus, futures prices for energy and 

agricultural commodities display significantly stronger predictive content and present less systematic 

deviations from those properties expected to hold in efficient markets than is the case for metals futures. 

 However, we also document significant variation within commodity groups.  In particular, oil 

futures prices seem to fare worse in predicting subsequent price changes than other energy commodities, 
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particularly natural gas and gasoline.  This is especially visible both in terms of mean squared errors as 

well as in predicting the sign of subsequent price changes.  Given the very high correlation among the 

prices of different energy products, such differences in the predictive content of their respective futures 

prices is unexpected.  In fact, we show that significantly improved oil price forecasts could have been 

made by utilizing information from other energy futures prices, thereby almost doubling the fraction of 

subsequent oil price changes which could be accounted for at 6-month and 12-month futures horizons.  

 We then consider whether the cross-commodity and cross-horizon variation in unbiasedness can 

be accounted for by the liquidity of each market, since a lack of liquidity could potentially drive persistent 

deviations from efficiency in a market.  We follow Bessembinder and Seguin (1993) and quantify the 

liquidity of each commodity at each futures horizon (3-month, 6-month or 12-month) using the ratio of 

volume of contracts traded to open-interest.  Consistent with liquidity playing a role in unbiasedness, we 

find that markets with higher volumes traded relative to the number of outstanding futures contracts (open 

interest) do indeed display weaker evidence against the null of unbiasedness.  However, differences in 

liquidity across futures markets can account for only a small fraction of the cross-sectional variation 

(10%) and fail to account in particular for the degree to which precious metals fail tests of unbiasedness.  

 We also consider the time variation in the properties of futures contracts via rolling 5-year 

regressions for each commodity at each horizon.  The robust evidence against the null of unbiasedness in 

precious metals is driven primarily by the early 2000s, during which U.S. interest rates were held very 

low amidst deflationary concerns on the part of the Federal Reserve.  During this period, gold and silver 

prices began to rise in a sustained fashion while the gold basis (the difference between longer-horizon 

futures and the 1-month futures) fell.  A similar pattern occurred in base metal markets, with large 

deviations from the null of unbiasedness over this time period.  Metal commodity futures markets have 

again displayed large movements away from unbiasedness over the last five years, suggesting a 

potentially systematic link between their deviations from market efficiency and global economic 

conditions. 
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 While the properties of futures prices across commodity groups experienced little comovement 

over the 1990s, this feature of the data disappeared over the course of the mid-2000s.  First, all 

commodity groups experienced convergence in their average estimated basis coefficients toward the null 

of unbiasedness over the mid-2000s.  This time period presents the weakest evidence against 

unbiasedness across commodities of any period in our sample.  However, since the mid-2000s, all four 

commodity groups have experienced persistent deviations in the estimated coefficients on the basis away 

from unbiasedness.  Similar results obtain using relative mean squared errors or tests of directionality: 

there appears to have been a sharp reduction in the predictive content of commodity futures in recent 

years.  This could potentially reflect a number of factors, such as changing risk premia following the 

global financial crisis or the increased financial investment into commodity futures.  But the fact that 

rolling directionality tests point to a persistent and common decline in the predictive content of 

commodity futures since the early 2000s suggests that this feature of the data is unlikely to be driven 

solely by the recent global economic turmoil. 

 Section 1 discusses the theory of storage and its implications for the properties of futures prices, 

as well as some of the previous empirical evidence on futures prices.  Section 2 describes our data.  

Section 3 presents baseline empirical results for the predictive content of commodity futures from 1990 to 

2012.  Section 4 investigates the robustness of our findings to conditional heteroskedasticity, whether the 

cross-sectional variation in unbiasedness is related to liquidity of each market, and time variation in the 

properties of futures prices. Section 5 concludes. 

 

 

 

 

1. Theory and Previous Work 

The notion that the futures price is the best forecast of the spot price is an implication of the efficient 

market hypothesis. In an efficient market, new information is reflected instantly in commodity prices.  If 
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this is true, then price patterns are random, and no system based on past market behavior can do other 

than break even. The link between efficiency and forecastability arises from realizing that the difference 

between the current futures price and the future spot price represents both the forecasting error and the 

opportunity gain or loss realized from taking certain positions.  The requirement that the forecasting error 

is zero on average is consistent with both market efficiency (the absence of profitable arbitrage 

opportunities) and the unbiasedness property of the forecaster. 

The futures price of a storable commodity such as crude oil is determined by the spot price and 

the cost incurred while the commodity is stored awaiting delivery sometime in the future.  The cost 

associated with holding the commodity until the delivery date is known as the cost-of-carry.  The cost-of-

carry consists of the cost of storing oil in a tank (and perhaps insurance) and the financial cost in the form 

of the opportunity cost of holding oil, or the cost of funding, and perhaps a risk premium.3 

 The spot/futures pricing relationship is based on the assumption that market participants are able 

to trade in the spot and futures markets simultaneously, i.e. they can utilize spot/futures arbitrage. The 

relationship between the futures rate and the current spot rate is given by:  

 ௧݂,௧ି௞ െ ௧ି௞ݏ ൌ ݀௧,௧ି௞ ൅ ܳ௧,௧ି௞     (1) 

where f t,t-k is the observed (log) time t-k futures contract price that matures at time t, and st-k  is the time t-

k spot rate, dt,t-k the log cost-of-carry (the sum of storage costs minus convenience yield, plus interest costs 

and a risk premium), and Qt,t-k is a term accounting for the marking-to-market feature of futures. The 

object on the left hand side of (1) is called the “basis” in the commodity futures literature.4 

 If we assume the log spot rate follows a time random walk with drift, and expectations are 

rational, then the time t-k expectation of the change in the spot rate will equal the basis and the marking-

to-market term. Hence, in the regression of the change in the spot rate on the basis,  

௧ݏ   െ ௧ି௞ݏ ൌ ߙ ൅ ൫ߚ ௧݂,௧ି௞ െ ௧ି௞൯ݏ ൅  ௧    (2)ߝ

α  subsumes the terms on the right hand side of (1), as well as the parameters defining the time series 

process governing the spot rate, while α = 0 and β = 1 if the basis is the optimal predictor of the change in 
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the spot rate.  It is important to recall that rejection of the null hypothesis is then a rejection of a 

composite hypothesis, including both market efficiency and unbiased expectations. 

 Note that one can equivalently express the basis relationship in terms of futures prices at different 

horizons, rather than the ex-post spot price.  For example, we can replace the spot price in (2) with the 

previous period’s 1-month futures price to get 

   ௧݂,௧ିଵ െ ௧݂ି௞ାଵ,௧ି௞ ൌ ߙ ൅ ൫ߚ ௧݂,௧ି௞ െ ௧݂ି௞ାଵ,௧ି௞൯ ൅  ௧    (3)ߝ

to similarly investigate the unbiasedness of futures prices (ߚ ൌ 1) or market efficiency (ߙ ൌ 0, ߚ ൌ 1).  

The null of 0 = ߚ is interesting as well, since in this case the basis has no predictive content for 

subsequent price changes.  Hence, while we will focus in our empirical estimates primarily on the 

unbiasedness hypothesis, the additional questions of whether ߚ is different from zero as well as the 

market efficiency condition will also be of interest.  In practice, we will focus on specification (3) for 

reasons we discuss in section 2, but we reach almost identical results using specification (2) because, for 

most commodities, the correlation between ex-ante 1-month futures prices and ex-post spot prices is 

nearly 1. 

The basis equation is useful not only for assessing hypotheses such as unbiasedness and market 

efficiency, but also to provide quantitative measures of the predictive content of commodity futures.  For 

example, the R2 of the regression yields the proportion of subsequent price changes which could be 

accounted for ex-ante using the futures basis.  In section 3.2, we also consider two related approaches to 

quantify the predictive content of commodity futures.  The first is comparing the root mean squared 

forecast error of futures prices relative to that of a random walk.  Comparisons to naïve random walk 

forecasts have long been used to quantify predictive content since the random walk provides a simple 

benchmark to assess the additional information in futures prices (e.g. Meese and Rogoff 1983).  Second, 

following Pesaran and Timmermann (1992), we assess the frequency at which the sign of the basis 

correctly predicts the sign of subsequent price changes. 
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The literature examining the behavior of commodity futures markets is fairly extensive. Early 

work focused primarily on studying the efficiency of futures markets and yielded diverse conclusions. 

Many studies provided evidence for efficient markets and an equally large number provided evidence that 

contradicts an efficient market (unbiased futures price prediction) interpretation.  For energy markets, 

Serletis (1991) found evidence consistent with efficient crude petroleum markets.  Bopp and Lady (1991), 

however, found that either the spot or the futures price can be the superior forecasting variable depending 

on market conditions, and the information content of the two price series is essentially the same.  A 

related literature has focused on the long-run properties of the spot and futures prices, in the context of 

cointegration (Crowder and Hamed 1993, Moosa and Al-Loughani 1994, Herbert 1993 and Walls 1995), 

again finding mixed results.   

 More recent work has focused on the quantitative ability of futures prices to predict subsequent 

price changes.  For example, Alquist and Kilian (2010) and Alquist, Kilian and Vigfusson (2012) find 

little evidence that oil futures prices systematically outperform random walks but also document that 

alternative sources of oil forecasts (statistical models, surveys of professionals and policy-makers) only 

infrequently do better.  We find similar results for oil futures as they do, but we also highlight that futures 

markets in other energy markets tend to do better, particularly for gasoline and natural gas.  Chernenko, 

Schwarz and Wright (2004) compare the properties of oil and natural gas futures prices to those of 

exchange rate and interest rate futures.  Other approaches to improving on the performance of futures 

prices have considered adjusting for risk premia (Pagano and Pisani 2009) or using information from 

exchange rates (Chen, Rogoff and Rossi 2009, Groen and Pesenti 2010).  In the same spirit as these 

papers, we present new evidence that one could have improved upon oil and gold futures prices in terms 

of predicting the subsequent price changes of each by exploiting information from other commodity 

futures prices, particularly heating oil and natural gas.  Even closer to our approach is Reichsfeld and 

Roache (2011) who study a similar set of commodity futures prices.  However, we emphasize both the 

qualitative and quantitative differences observable across as well as within commodity groups.  
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Furthermore, we also consider the time variation in predictive content as well as potential sources for the 

observed heterogeneity across commodities. 

 

2.  Data 

We consider four different types of commodity prices: energy, agricultural products, precious metals and 

base metals.  For energy, we include petroleum, natural gas, gasoline, and heating oil.  Corn, soybeans 

and wheat are the three agricultural commodities in our sample.  For precious metals, we consider gold 

and silver while our set of base metals consists of aluminum, copper, lead, nickel, and tin.  Thus, our data 

includes four energy products, two precious metals, five base metals, and three agricultural commodities.  

Having a diverse set of commodities is useful for a number of reasons.  First, comparisons across 

commodities provide a metric for quantifying the predictive content of futures for one commodity (e.g. 

how do oil futures compare to gasoline futures?).  Second, some commodities (metals in general, precious 

metals in particular) have long been used as hedging mechanisms against broader macroeconomic risks 

such as inflation or interest rate volatility because of the ease with which they can store substantial 

monetary assets at little additional cost.5  In contrast, other commodities may be expensive to store (e.g. 

natural gas) or may have limited durability (e.g. some agricultural products).  As a result, one might 

expect differences in predictive content of futures markets across commodities depending on the liquidity 

of the markets, the ease with which the commodities can be stored, and whether they have a history of 

being used as a store of value to hedge against macroeconomic uncertainty.     

 Commodity futures have historically been traded on a variety of exchanges.  All four energy 

products that we consider are traded on the New York Mercantile Exchange, as are gold and silver.  All 

five base metals futures are from the London Mercantile Exchange while our agricultural commodities are 

from the Chicago Mercantile Exchange.  All data on volumes and prices for these commodities come as 

reported by Bloomberg.  Appendix 1 provides details on the specific series used for each commodity type.   

 We focus on end-of-month values for each commodity futures.  For most of these commodities, 

futures prices are consistently available since January 1990 at the 1-month, 3-month, 6-month and 12-
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month horizons.  For base metals, futures prices are not available prior to July 1997, while our heating oil 

futures are reported by Bloomberg as of April 1990.  In the case of agricultural commodities, futures 

contracts are not available for delivery every month.  For example, in the case of corn and wheat, futures 

contracts are available for delivery in March, May, July, September and December, whereas soybean 

futures exist for seven months out of the year.  Gasoline futures have a break in 2006 with the switch 

from reformulated gasoline to RBOB gasoline in that year.  In our empirical analysis, we use the original 

futures series (HU) until December 2005 and switch to the new futures contract (RB) as of January 2006.   

 To measure the basis and ex-post price changes, we use the lagged 1-month futures price rather 

than ex-post spot prices.  One reason is that spot prices are not consistently available from Bloomberg 

over the entire sample for some commodities (e.g. corn).  Thus, using the 1-month futures yields 

consistency across commodity types.  Second, in some markets (such as oil), most spot trading is 

effectively done using 1-month futures contracts because of delivery lags.  As a result, the 1-month 

futures price is the more relevant measure to use for comparison with longer-horizon futures contracts.  

Third, with spot prices, one needs to ensure that the ex-post spot price is from the day at which the 

contract expires.  In contrast, using the one-month futures ensures that different futures contracts have the 

same date of contract expiration (e.g. the 6-month futures contract from January 1990 has the same 

expiration as the 1-month futures from May 1990).  But none of our results are sensitive to the use of 1-

month futures instead of ex-post spot prices.  This reflects the fact that the correlation between ex-post 

spot prices and the ex-ante one-month futures is very close to one.   

 In the case of gasoline, all HU futures prices are compared to subsequent HU prices, and RB 

futures are compared to subsequent RB prices. For agricultural commodities, we use only the months 

immediately prior to delivery dates.  This yields five observations per year in the case of corn and wheat 

and seven observations per year in the case of soybeans.  When no contract is available for delivery at 

precisely the 3-month, 6-month, or 12-month horizons, we use the nearest horizon futures contract which 

is available. 
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 Figure 1 plots the log of the 1-month futures prices for each of our fourteen commodities, 

grouped by commodity type, and normalized by their April 1990 value (July 1997 for base metals).  For 

the energy market, there is significant comovement among the prices of different commodities, 

particularly for oil, heating oil and gasoline.  Energy prices were stable for much of the 1990s, but have 

risen 100-150 log points since then.  Agricultural commodities similarly display strong comovements 

with one another.  Unlike energy commodities, there was no persistent increase in agricultural prices until 

the end of 2005, since when these commodities have risen approximately 100 log points.  Gold and silver 

also exhibit strong comovement with one another and a persistent increase since the early 2000s of over 

150 log points but have otherwise been much less volatile than energy and agricultural prices.  Finally, 

base metals show less comovement with one another than agricultural commodities, particularly in the 

case of aluminum, but otherwise follow similar patterns, with a general rise in prices from the early 2000s 

to the end of 2007. 

 Consistent with section 1, we define the h-month basis at time t as the log-deviation between the 

time-t futures price for a contract expiring at time t+h and the time-t futures price for a contract expiring 

at time t+1 ሺ ௧݂ା௛,௧ െ ௧݂ାଵ,௧ሻ.  To assess the properties of the basis, we will compare them to the ex-post 

change in 1-month futures prices from time t to time t+h-1 ൫ ௧݂ା௛,௧ା௛ିଵ െ ௧݂ାଵ,௧൯.  Given our data, we can 

construct a 3-month, 6-month and 12-month basis for all commodities. 

 Figure 2 provides illustrative evidence of the relationship between the 6-month basis for energy 

and agricultural commodities ሺ ௧݂ା଺,௧ െ ௧݂ାଵ,௧ሻ and the ex-post change in futures prices over the next 5 

months ൫ ௧݂ା଺,௧ାହ െ ௧݂ାଵ,௧൯ for each month t.  Three of the energy products (natural gas, heating oil and 

gasoline) display a striking ability of the basis to accurately predict subsequent changes in prices.  While 

there are clear periods in which ex-post changes in prices were not reflected in the ex-ante basis (e.g. the 

price declines of 2009), the figure documents clear predictive power in the ex-ante basis for a number of 

historical price changes.  In contrast to heating oil, gasoline and natural gas, the 6-month basis for oil 

prices appears to anticipate a much smaller fraction of subsequent price changes.  While part of this 
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difference reflects the greater seasonal (and therefore predictable) variation in gasoline, natural gas and 

heating oil markets, similar results hold at the 12-month frequency as well.  This visual evidence of a 

different predictive content across energy commodities futures prices is striking given the very strong 

correlation among oil, gasoline, and heating oil prices documented in Figure 1.   

 Agricultural commodities appear to lie in between these extremes: the bases for corn, soybeans 

and wheat seem to have anticipated many of the price changes of the early to mid 1990s, but each 

commodity experienced persistently positive bases in the late 1990s and early 2000s with no 

corresponding systematic price increases ex-post.  There also appears to be little systematic link between 

the basis and ex-post price changes for each agricultural commodity since the mid to late 2000’s.  Finally, 

for agricultural and energy commodities, one can see that ex-post price changes have become more 

volatile in the latter half of the sample, but no such increase in volatility is visible in the basis.  This 

suggests a decline in the predictive capacity of these futures markets since the early 2000s, a point which 

we investigate more formally in subsequent sections. 

 Figure 3 displays the equivalent relationships between the basis and ex-post price changes for 

precious metals and base metals.  The contrast between these figures and those for energy and agricultural 

commodities is striking: there appears to be almost no relationship at all between the basis and ex-post 

price changes for any of the metal commodities.  While the volatility of price changes for metals is very 

similar to that of energy and agricultural products, the volatility in the basis for each metal commodity is 

very small compared to that observed for the other categories.  Furthermore, it is difficult to identify any 

period in which the basis seemed to correctly anticipate subsequent price changes.  This visual evidence 

suggests that metal markets, and their futures prices in particular, may have very different properties than 

other commodity markets.   

  

3. The Predictive Content of Commodity Futures Prices 

The visual evidence in Figures 2 and 3 is strongly suggestive of differences in the predictive content of 

futures prices across different types of commodities.  In this section, we investigate these differences 
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using more formal statistical methods to characterize the nature and extent of differences in the properties 

of futures prices across commodity markets.   

 

3.1 Basis Regressions 

To more formally evaluate the properties of commodity futures prices, we first turn to a statistical 

analysis of the relationship between the basis and ex-post price changes.  Specifically, we estimate 

equation (3) by OLS using data from 1990 to 2012, or as available, for each commodity and futures 

horizon (3-month, 6-month, and 12-month).  Standard errors are constructed as in Newey-West (1987).  

We present estimates of β, the coefficient on the basis, and test statistics for the null hypothesis that α = 0 

and β = 1 in Table 1.  

For the crude oil market, the estimates for β at the 3, 6 and 12-month horizons are not statistically 

distinguishable from unity, as documented in Chinn, Leblanc and Coibion (2005) and Alquist and Kilian 

(2010), but are statistically different from zero.  Hence, we can reject the null hypothesis that the oil basis 

is uninformative about subsequent oil price changes (i.e. β=0) but not the unbiasedness hypothesis (β=1).  

In addition, one cannot reject the joint hypothesis of efficient markets (α = 0 and β = 1) at any horizon.  

However, consistent with the visual evidence in Figure 2, the quantitative ability of the oil basis to 

account for ex-post price changes is consistently quite low, with a maximum R2 of 0.07 at the 12-month 

horizon. 

 The point estimates are similar for other energy commodities.  The joint hypothesis of efficient 

markets (α = 0 and β = 1) is only infrequently rejected.  The coefficient on the basis is statistically 

different from zero for all energy commodities and horizons, while the null of unbiasedness (β = 1) can 

only be rejected at the 5% level for natural gas and heating oil at the 6-month horizon.  Consistent with 

the visual evidence in Figure 2, the basis for natural gas and gasoline can account for a much larger 

component of ex-post price changes than for oil: their R2’s at the 3 and 6-month horizons are around 20-

25% compared to 3% and 6% for oil at those same horizons.6  Surprisingly given Figure 2, the basis for 
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heating oil does not account for a larger share of ex-post price changes than for oil prices at the 6-month 

horizon.  However, gasoline, natural gas and heating oil all have modestly higher R2’s at the 12-month 

horizon than oil.  In short, these results suggest that all four energy futures markets are characterized by 

unbiasedness and market efficiency, but the quantitative ability of these futures to predict ex-post price 

changes varies significantly across energy commodities, particularly at shorter horizons.  

The evidence for agricultural commodities, as was the case with energy commodities, is 

consistent with market efficiency: we cannot reject the joint hypothesis of α = 0 and β = 1, nor can we 

reject the unbiasedness hypothesis for any agricultural commodity at any horizon.  Furthermore, we can 

strongly reject the null that the basis is uninformative about future price changes (β=0) for all three 

agricultural commodities.  However, there are again quantitative differences across commodities in the 

predictive content of futures prices: soybeans and corn futures account for a much larger fraction of 

subsequent price changes than wheat, especially at longer horizons.  Strikingly, while the predictive 

content of wheat futures is broadly similar to that of oil at the 12-month horizon, corn and soybeans 

futures have R2’s  approximately twice as large as those found in energy markets at the same horizon, 

although the latter is reversed at short horizons.  Thus, agricultural futures, like energy futures, display 

properties consistent with unbiasedness and market efficiency, but again exhibit non-trivial quantitative 

differences in predictive content across commodities. 

The visual evidence on base metals in Figure 3 indicated that there was very little variation in the 

basis and that what little variation there was did not appear helpful in predicting ex-post changes in 

commodity prices.  The results in Table 1 confirm this impression: across base metal commodities and 

futures horizons, we can never reject the null that β=0, i.e. that the futures basis is uncorrelated with 

subsequent price changes.  Furthermore, while the standard errors are very large due to the lack of 

historical variation in the basis, we can reject the null of unbiasedness in more than half of the cases, and 

the joint hypothesis of market efficiency is frequently rejected as well.  In addition, the R2’s are all 

extremely low (only two out of 15 exceed 2%) such that, in quantitative terms, the basis appears to be of 

almost no use in predicting ex-post price changes.  
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Finally, replicating the same analysis for gold and silver yields even more drastic results.  First, 

the nulls of market efficiency and unbiasedness are both consistently rejected at the 5% level at all 

horizons.  Furthermore, the point estimates of β  are all negative for gold and silver, and the null of β=0 

can even be rejected at the 5% level at all horizons for gold.  In fact, gold is the only commodity for 

which the evidence points to a robustly negative relationship between the basis and subsequent price 

changes.  Thus, not only is the null of unbiasedness and market efficiency rejected for gold (as is the case 

for most metal commodities), but the negative relationship between the basis and subsequent price 

changes suggests that there are unique factors operating in this commodity market, and possibly in the 

silver market as well.  The negative relationship between the futures basis for gold and, to a lesser extent, 

silver is analogous to the forward discount anomaly observed in exchange rates (Engel 1996), which 

suggests that the unique role played by precious metals as a hedge against inflation may make them 

behave more like exchange rates than typical commodities. 

Basis regressions therefore suggest a remarkable contrast across commodity groups as well as, 

albeit to a lesser extent, within commodity groups. For energy and commodity markets, futures prices are 

consistent with unbiasedness and the more general predictions of market efficiency (with few exceptions). 

In contrast, in metal commodity markets, futures prices are either completely uninformative about 

subsequent price movements or, in the case of gold and to a lesser extent silver, have pointed in the wrong 

direction on average.   

 

3.2 Alternative Metrics to Measure the Predictive Content of Commodity Futures 

Basis regressions provide a natural metric, based on theory, to assess the extent to which futures prices 

satisfy expected properties such as unbiasedness or market efficiency.  In this section, we consider two 

additional methods to quantify the predictive content of commodity futures.  First, we measure the size of 

the implied forecast errors from commodity futures and compare them to random walk forecasts.  Second, 

we assess, following Pesaran and Timmermann (1992), whether the sign of the basis is generally 

informative about the sign of subsequent price changes.  For the first test, we present the root mean 
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squared forecast error (RMSE) from futures prices relative to that of a random walk, and assess the 

statistical significance of differences between the two using bootstraps of the random walk process.7  For 

the second test, we present the fraction of times in which changes in the sign of the basis correctly 

predicted the sign of the subsequent changes in price changes over the same horizon and assess the 

statistical significance of the results following Pesaran and Timmermann (1992).  Note that the traditional 

test of directionality would assess the extent to which the sign of the basis would correctly predict the 

sign of subsequent price changes.  However, for gold futures, the basis is almost always positive in our 

sample, so test statistics cannot be constructed.  As a result, we perform the equivalent test using first-

differences of the basis and price changes, i.e. we assess whether the sign of changes in the basis predicts 

the sign of changes in price changes.8   

Table 2 presents results of both tests applied to the entire sample from 1990 to 2012, or as 

available.  For relative RMSE’s, energy futures prices consistently yield smaller squared forecast errors 

than a naïve forecast, although the differences are only statistically significant for natural gas and 

gasoline.  Across energy commodities, futures prices fare better relative to random walks at shorter 

horizons.  As with the basis regressions, natural gas and gasoline futures have the greatest ability to 

predict subsequent prices, while oil and heating oil do relatively worse.  Similar results obtain with the 

directionality tests: the change in the natural gas and gasoline basis more frequently predicts the sign of 

subsequent changes in price changes than do oil and heating oil futures.  In most cases, changes in the 

basis are more informative about the direction of future price changes at longer horizons. 

For agricultural commodities, futures prices help predict the direction of subsequent price 

changes, especially at longer horizons, but yield little improvement in terms of squared forecast errors 

relative to a random walk.  Base metals, as was the case with basis regressions, display little predictive 

content in commodity futures: relative squared forecast errors for futures are no smaller than random walk 

predictions and changes in the basis offer little insight for predicting the sign of subsequent price changes 

at short horizons.  Changes in the basis, however, are more informative about subsequent price changes at 

longer horizons, although quantitatively the effects are generally smaller than for energy markets.  



17 
 

Precious metal futures prices also achieve no better outcomes than random walk forecasts in terms of 

squared forecast errors.  While changes in the basis at long-horizons for precious metals are statistically 

informative about changes in subsequent prices, the quantitative magnitudes are again much smaller than 

those found in other commodity categories.  It should also be emphasized that the fact that the basis for 

gold is positive almost every single month in the sample is another anomalous feature of this market 

which is absent in all other commodity futures markets.  More broadly, the inability of metals futures 

markets, and especially precious metals, to outperform random walks along most metrics is reminiscent of 

results from the exchange rate literature (Meese and Rogoff 1983, Cheung, Chinn and Garcia Pascual 

2005).  Similarly, the fact that estimated coefficients on the basis for metals markets are insignificantly 

different from zero or negative is analogous to the common finding of a negative coefficient on the 

forward basis of exchange rates when predicting ex-post changes in exchange rates (e.g. Frankel and 

Chinn 1993, Engel 1996).  This suggests that, historically, metal commodity futures which have been 

used by financial investors as hedges against broader macroeconomic risks display properties more akin 

to those found in exchange rates than to energy and agricultural commodities.   

We also compare the predictive content of commodity futures to those of simple univariate 

ARIMA models.  To do so, we generate rolling out-of-sample forecasts from an ARIMA representation 

of each commodity futures at each horizon, starting in January 2003.  We then compare these forecasts to 

random walk benchmarks in terms of root mean squared forecast errors.  Because these out-of-sample 

forecasts are over a different time sample, we also construct root mean squared forecast errors of futures 

prices relative to random walks over the equivalent time periods.  The results, also shown in Table 2, 

indicate that univariate ARIMA models systematically fared much worse than futures prices and random 

walks in predicting subsequent prices.  For every commodity at every horizon, the relative RMSE of 

futures is lower than that of univariate forecasts.  It should also be noted that while most futures prices 

achieve worse or unchanged relative RMSE over this restricted time period, that of silver and especially 

gold futures are substantially improved.  For example, the relative RMSE of gold futures prices at the 12-

month horizon goes from 0.99 over the whole sample to 0.81 (the lowest of any commodity) over the 
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sample since 2003.  This result again reflects the fact that the gold basis has been systematically positive.  

During the 1990s and early 2000s, gold prices were fairly constant or falling so the positive basis was 

systematically worse than a no-change forecast.  Since the early 2000s, on the other hand, gold prices 

have been rising so the positive basis implies that longer horizon futures prices outperformed no-change 

forecasts on average.  

 

3.3 The Efficiency of Oil and Gold Futures Prices 

The basis regressions highlighted two key features of the data.  First, oil futures prices have not been as 

effective in predicting ex-post oil price changes as other energy commodities.  Second, metal 

commodities, and particularly gold, futures prices display significant departures from unbiasedness.  The 

fact that oil futures prices can account for much less of subsequent price changes than other energy 

commodities is particularly striking given the fact that price changes across energy commodities are 

highly correlated.  In this section, we investigate whether information from non-oil commodities is 

informative about ex-post oil and gold price changes after controlling for the basis of each.  This is a test 

of the efficiency of futures prices, the notion that futures prices should embody all relevant information 

about future prices.  We focus specifically on oil and gold futures for two reasons.  First, these two 

markets have historically received a disproportionate amount of attention, oil for its macroeconomic 

implications and gold because of its traditional role as an inflation hedge.  Second, each of these 

commodities stands out in its commodity class in some respect: oil futures account for a smaller share of 

subsequent price changes than natural gas or gasoline futures, while gold displays the sharpest evidence 

against unbiasedness among all metal commodities.  

To assess whether one could have better predicted oil price changes using information from non-

oil futures markets, we estimate the standard basis equation for oil prices at each horizon, augmented with 

the contemporaneous basis from natural gas and heating oil commodities at the same horizon.  The results 

at the 3-month, 6-month and 12-month horizons are presented in Panel A of Table 3.  Across horizons, we 

find evidence that useful information for predicting ex-post oil price changes was present in non-oil 
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futures prices even after controlling for the oil price basis.  At the 3-month horizon, the additional 

predictability of oil prices coming from heating oil and natural gas prices is quite small, with the adjusted 

R2 rising only from 3% to 4%.  However, at the 6-month and 12-month horizons, information in these 

other energy futures prices significantly raises the predictability of oil price changes, with adjusted R2’s 

rising from 6% and 7% to 10% and 11% respectively, almost doubling each. This again suggests that the 

limited predictive content of oil futures prices relative to other energy commodities does not stem solely 

from seasonal pricing patterns.   

Second, we investigate whether gold price changes are similarly predictable ex-post using ex-ante 

information from other commodity markets.  For simplicity, we focus on additional predictive power 

from natural gas futures, since these futures seem to be able to predict the highest fraction of their own 

ex-post price changes relative to other commodities.  Again, we estimate our baseline basis specification, 

in this case for gold at each horizon, augmented to include the natural gas basis at the equivalent horizon, 

using the entire sample from 1990-2012.  The results, presented in Panel B of Table 3, point to significant 

available information not being incorporated in gold prices: at each horizon, the natural gas basis has 

additional predictive power above and beyond the information incorporated in gold futures prices.  As 

with oil, the effects are relatively large, especially at longer forecast horizons.  The adjusted R2’s at the 6-

month and 12-month horizons rise from 5% and 9% to 10% and 18% respectively.  These represent large 

potential quantitative gains in predictability. 

In short, these results point to significant differences in predictive content of futures prices across 

commodity types.  First, metals futures, and especially those of precious metals, fail most tests of 

unbiasedness and market efficiency.  In addition, these futures prices fare no better than random walk 

forecasts in most respects.  In contrast, energy and agricultural commodities futures hew more closely to 

unbiasedness and market efficiency.  There is useful information in futures prices in terms of predicting 

subsequent price changes, both in terms of signs of price changes and in RMSE’s relative to random 

walks.  Finally, there is significant heterogeneity within commodity groups as well.  Oil markets account 

for a much smaller share of ex-post price changes than some energy markets, despite the very high 
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correlation in their spot prices.  This is reflected in the fact that information in non-oil futures prices could 

have been used to improve upon the forecasts embedded in oil futures prices.   

 

4. Possible Sources of Variation in Predictive Content of Commodities 

The previous section identifies significant cross-sectional variation in the predictive content of 

commodity futures prices.  For example, within energy commodities, natural gas and gasoline futures 

appear to explain a larger share of subsequent price changes than do oil or heating oil futures.  Even larger 

differences exist across commodity groups, with metals (and especially precious metals) displaying much 

weaker predictive content than energy or agricultural commodities.  In this section, we consider several 

potential sources for this variation.  The first is statistical: we control for potentially heterogeneous 

conditional heteroskedasticity across commodities.  Second, we assess whether the cross-sectional 

variation in predictive content reflects different levels of liquidity across commodity markets.  Third, we 

investigate time variation in the properties of futures prices across commodities.  

 

4.1 GARCH Effects  

In the previous analysis, we allowed for serial correlation and heteroskedasticity of a general form, using 

robust standard errors to make inferences regarding statistical significance. However, it is well-known 

that asset prices, including derivatives based on underlying commodities, often display systematic 

conditional heteroskedasticity. This understanding motivates a formal GARCH approach to modeling the 

heteroskedasticity.9   

 First, we test for the presence of conditional heteroskedasticity. Formal tests of the null of no 

ARCH effects in the simple basis regressions are rejected the 1% level for all commodity markets at all 

horizons.  Thus, modeling the heteroskedasticity in errors is likely to increase the efficiency of the 

estimates.  As a result, we present in Table 4 estimates of the basis specifications for each commodity and 

time horizon using GARCH(p,q), where p and q terms are chosen via the AIC criterion for each 

commodity at each horizon.10   
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 The use of GARCH reduces the standard errors of our point estimates by a substantial amount, 

approximately 50% on average across commodities and horizons. The results confirm the qualitative 

results from the previous section but yield more robust rejections of market efficiency than was 

previously the case.  For example, Wald tests now point to rejections of market efficiency at the 5% level 

for all energy futures other than 12-month heating oil.  Similarly, the reduced standard errors lead to more 

pervasive rejections of the null of unbiasedness.  For example, we can now reject unbiasedness for natural 

gas futures at all horizons.  Similar results obtain for other commodity groups.  In agricultural products, 

the null of unbiasedness can now be rejected for soybeans at the 6-month horizon and for wheat at the 12-

month horizon.  For base metals, we can reject the null of unbiasedness for 8 out of 15 commodity-

horizons at the 5% level, whereas this ratio was only 5 out of 15 in Table 1. 

 Despite this, the quantitative ability of different futures markets to account for subsequent 

changes in prices is largely unchanged: it is still the case that natural gas and gasoline futures anticipated 

much larger fractions of ex-post price changes than oil futures at the 3 and 6-month horizons.  Similarly, 

the predictive content of energy and agricultural futures overall vastly exceeds that of base and precious 

metals.  In the same vein, we can always reject the null hypothesis that the basis has no predictive power 

for ex-post price changes among energy and agricultural commodities, whereas metal commodities 

frequently display coefficients on the basis which are not statistically different from zero or else point in 

the wrong direction.  Thus, while explicitly modeling potential conditional heteroskedasticity at the level 

of each futures market yields more pervasive and consistent rejections of unbiasedness and market 

efficiency across commodity markets, the variation in the quantitative ability of different futures markets 

to account for ex-post price changes remains.  

 

4.2   Liquidity across Futures Markets 

Unbiasedness and broader forms of efficiency require that markets be sufficiently liquid for agents to 

readily and costlessly change positions in response to incoming information.  One potential source of 

heterogeneity across commodity markets in terms of the predictive content of their futures markets is 
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therefore the liquidity of each financial market.  To quantify the liquidity of different futures markets, we 

use a measure similar in spirit to what is commonly done in the financial development literature.  There, 

research frequently measures the depth of equity markets via the rate at which shares are traded, which 

can be proxied by the value of the traded volume of shares relative to market capitalization (Beck and 

Levine, 2004).  The latter has no direct equivalent in futures markets, where the number of contracts 

between traders need not be directly tied to the underlying stock of commodities available for delivery.  

However, one can use the ratio of volume of trades to open interest as a measure of liquidity.  Open 

interest refers to the number of contracts outstanding that have not been closed or delivered upon.  The 

ratio of volume of contracts traded relative to open interest therefore provides a measure of how many 

contracts have been traded relative to the stock of futures contracts outstanding.  This provides a useful 

metric of liquidity in futures markets (Bessembinder and Seguin 1993).    

 Using daily data on volume of trades and open interest from Bloomberg, we construct a 

commodity and horizon-specific measure of liquidity defined as the median over daily ratios of volume to 

open interest from January 1st, 2000 to August 23rd, 2012.  Data on volumes and open interest prior to 

2000 is often sparsely available for a number of commodities, so we restrict our attention to this common 

period.  We use the median over all daily ratios since average values can be sensitive to extreme values in 

volumes traded over just a few days.  Thus, volume to open-interest ratios are measured for each 

commodity at each forecasting horizon (i.e. gold 6-month futures).  In Panel A of Table 5, we show 

results from regressing these cross-sectional measures of liquidity on dummies for 6- and 12-month 

horizons and dummies for the commodity being in the precious metal group, the base metal group, or the 

agricultural commodities group.  Column 1 shows that over 25% of the cross-sectional variation can be 

accounted for simply by the forecasting horizon: both 6-month and 12-month futures have significantly 

lower ratios of traded volumes to open-interest relative to 3-month futures.  Combined with dummies for 

each commodity group, 40% of the cross-sectional variation in volume-open interest ratios is accounted 

for, with precious metals having significantly lower ratios than energy commodities while agricultural and 

base metal futures do not exhibit statistically significant differences in liquidity relative to energy futures.  
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Thus, liquidity varies in a systematic manner across contract horizons and some commodity types, but 

also contains significant variation above and beyond commodity grouping and forecasting horizon.   

 We then assess whether the cross-sectional variation in unbiasedness across futures markets is 

systematically related to the liquidity in each market.  To do so, we regress the t-statistic for the null of 

unbiasedness (i.e. β = 1) from the GARCH estimates of Table 4 on a constant and our measure of market 

liquidity. The results are presented in Panel B of Table 5.  We find a significant negative relationship 

between the t-statistics for unbiasedness and the depth of each market: commodity markets with high 

volumes to open interest ratios display systematically weaker evidence against the null of unbiasedness.  

In Figure 4, we present a scatter plot of volume to open interest ratios versus t-statistics for unbiasedness.  

The figure illustrates that the negative correlation between the two is not driven by specific outliers.  

Indeed, a negative relationship is visible within each class of commodities.  Furthermore, we also show in 

Panel B of Table 5 that the negative relationship continues to hold when we control for either the time-

horizon of each futures market or the commodity category.  Thus, the fact that more liquid markets are 

also those for which it is harder to reject the null of unbiasedness is not driven by any specific commodity 

group like precious metals.   

However, differences in liquidity, at least as measured by volume to open interest ratios, can 

account for only a relatively small fraction – 10% – of the cross-sectional variation.  Simply including 

category-level fixed effects accounts for just as much of the cross-sectional variation as liquidity 

differences.  In particular, the fixed effect for precious metals is large and statistically significant.  This 

suggests that factors other than liquidity considerations explain the strong deviations from unbiasedness 

observed for gold and silver.  This is consistent, for example, with their traditional role as instruments to 

hedge against inflation fears.  

How do other aspects of the predictive power of futures vary with liquidity? We have undertaken 

comparable analyses relating to forecast RMSEs, and fail to detect any impact. Similarly, the predictive 

power measured using the direction of change metric is also unrelated to the depth of the respective 
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futures markets. Hence, we conclude that liquidity accounts for at most a small proportion of the average 

variation in the predictive power of futures prices across different commodities. 

    

4.3   Time Variation in the Predictive Content of Commodity Futures 

Our baseline approach to basis regressions made use of the longest time sample available for each 

commodity.  However, this could mask important time variation in the properties of these futures markets.  

To assess whether the predictive content of commodity futures has changed over time, we therefore 

consider 5-year rolling OLS estimates of the basis equation for each commodity and forecasting 

horizon.11  We then plot time-varying estimates of β, the coefficient on the basis, in Figure 5 along with 

95% confidence intervals.  In each case, the time shown is the last month of the 5-year rolling period 

associated with the corresponding estimates of the basis coefficient.  For agricultural commodities, the 

rolling regressions are done at the same frequency as before, which reflects the number of contract 

deliveries per year (5 per year for corn and wheat, 7 per year for soybeans).  Given 5-year rolling 

estimates at this frequency, we then linearly interpolate all missing monthly values for presentation in the 

figures.  Time-varying estimates for base metals start only in 2002 because of the absence of data pre-

1997.   

 The results suggest that there has indeed been some significant time variation in the predictive 

content of a number of commodity futures.  For example, the unbiasedness hypothesis could be rejected 

for oil futures in the mid-to-late 1990s at the 3-month horizon and again over the mid-to-late 2000s at 12-

month horizons.  Heating oil displays similar patterns.  Indeed, each energy commodity displays 

deviations from unbiasedness at some point over the sample, but most of these deviations are transitory.  

Interestingly, petroleum, natural gas, heating oil and gasoline all display unusual behavior in estimates of 

the basis coefficient over the last five years.  For all four, estimates of β using 12-month horizon futures 

rise substantially at the very end of the sample, covering years from 2007 to 2012. The 3 and 6-month 

futures for heating oil instead point to dramatic declines in the basis coefficient during this same time 

period.  Because the standard errors are large over such short samples, we cannot generally reject the null 
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of unbiasedness at 12-month horizons, but the results do suggest potentially unusual behavior by energy 

futures prices during this time period.   

 Panel B, which plots coefficients for precious metals and agricultural commodities, presents even 

starker evidence of time variation.  For example, the coefficient on the gold basis experienced dramatic 

declines during the early to mid 2000s, which likely explain the rejection of unbiasedness over the entire 

sample.  Indeed, the unbiasedness hypothesis could generally not be rejected for gold futures either prior 

to or after the early 2000s although the same is true for the null of β = 0.  Thus, the lack of predictive 

content in gold futures appears to be a pervasive feature of the time series, while the negative relationship 

between the gold basis and subsequent spot prices appears to be driven primarily by a specific historical 

episode.  Silver futures present very similar time variation.  The coefficients on the gold and silver basis, 

especially at longer horizons, follow a cyclical pattern which loosely tracks U.S. interest rates over this 

time period.  These persistent and cyclical swings in the relationship between the gold basis and 

subsequent gold price changes likely reflect the common use of gold as a hedging instrument by global 

investors to protect themselves against potential inflation risks, particularly during low-interest rate 

periods such as the early 2000s or since 2008.  Similar large and erratic swings in the basis coefficient are 

visible for a number of base metal commodities (Panel C) over this same time period.  Copper, for 

example, exhibits a rapid increase in the basis coefficient over recent years which closely resembles the 

pattern in 12-month energy futures markets. 

 To summarize potential cross-sectional heterogeneity in time variation, we present in Panel A of 

Figure 6 the average, across all commodities and all horizons within each category, of the absolute value 

of the estimated basis coefficients from the rolling regressions minus one.  Thus, these plots illustrate the 

average deviation from unbiasedness over time within each commodity category.  In Panel B of Figure 6, 

we also plot the average, across all commodities and all horizons within each category, of the t-statistics 

for the null of unbiasedness from the rolling regressions.  There are several features worth noting from 

this figure.  First, the fact that average deviations from unbiasedness are much more pronounced for 

precious and base metals than for energy and agricultural commodities is a characteristic of almost all 
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periods.  However, in the case of precious metals, statistical evidence against the null of unbiasedness is 

primarily driven by the period during the early 2000s.  This same time period was also associated with 

sharp increases in deviations from unbiasedness in agricultural and base metal futures markets.  In 

contrast, energy futures markets saw declines in both the deviation of point estimates from the null of 

unbiasedness as well as in the t-statistics for the unbiasedness null during the same sample period.  Thus, 

this time period is characterized by sharp disparities in the behavior of futures markets: strong evidence 

for unbiasedness in energy markets but simultaneous departures from unbiasedness in agricultural, base 

and precious metal markets.  These correlated movements across commodity markets stand in sharp 

contrast to the earlier period ending around 2001, during which there was little visible comovement in 

unbiasedness across any commodity groups.  

 In contrast, in the samples ending between 2005 and 2007, we can observe a convergence toward 

unbiasedness across commodity groups, both in point estimates and t-statistics.  Indeed, the 5-year 

periods ending around 2007 are the only ones within the sample when a broad convergence in point 

estimates is visible, with the null of unbiasedness clearly not being rejected across all commodity groups.  

However, this period was shortlived: all four commodity groups experienced persistent increases in 

deviations of point estimates from unbiasedness over the course of subsequent years, with a strong 

comovement apparent among all commodities in the period ending in 2009, although this is not matched 

by an increase in t-statistics for precious metals.  Nonetheless, a key feature of Figure 6 is that every 

commodity group displays larger deviations from the null of unbiasedness over the last few years relative 

to the period ending in 2007.  While the changes in t-statistics are muted relative to the changes in point 

estimates due to the higher standard errors visible in Figure 5 for most commodities during this recent 

time period, the pervasive increase in deviations of point estimates from the null of unbiasedness since the 

mid to late 2000s across commodity markets suggests a common driving force.  Whether this reflects 

changes in the risk premia (e.g. Hamilton and Wu 2012), the growing financial investment flows into 

commodity futures markets since the early 2000s or other factors is an important question for future 

research to address. 



27 
 

 In Figure 7, we provide similar 5-year rolling results, averaged across all commodities and 

horizons within each class, for RMSE’s relative to random walks (Panel A) and directionality tests (Panel 

B).  For the latter, we present the fraction of correct sign predictions, using directionality tests in first-

differences as in section 3, relative to their unconditional expectation.  For energy commodities, the 

results suggest broad stability in predictive content, with some gradual declines over the sample:  

RRMSE’s rise from an average of around 0.90 in the 1990s to almost 0.98 in the last five years, while 

fractions of correct sign predictions fell from 0.18-0.19 in the 1990s to 0.13 in recent years.  Time 

variation in the predictive content of agricultural futures is dominated by the large decline in the early 

2000s, deteriorations in predictive content since the mid-2000s are again visible using either RRMSE’s or 

tests of directionality.  Thus, both energy and futures markets display the same kind of declining 

predictive content over recent years using these measures as was the case in Figure 6 based on estimated 

basis coefficients.   

Results using precious metals are divergent along the two metrics: improving predictive content 

based on RRMSE’s over much of the sample but declining predictive content according to directionality 

tests. The former once again reflects the systematically positive basis in gold and silver futures prices, 

combined with the gradual rise in gold and silver prices since the early 2000s, which accounts for the 

persistent decline in RRMSE’s.  However, the deterioration in tests of directionality for precious metals 

suggests it would be misleading to conclude that predictive content has improved.  Base metals display 

little trend in RRMSE’s, but a gradual decline in predictive content using directionality tests are again 

visible since the early 2000s.  Thus, across most measures of predictive content, we observe quite general 

declines in the ability of futures prices to predict subsequent price changes since the early 2000s.  The fact 

that this trend has been persistent and ongoing since the early 2000s suggests that the ultimate source is 

unlikely to be related to global economic conditions since 2008 but rather reflects deeper forces which 

predate the crisis.  

 

6.  Conclusion 
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Commodity prices have long played an important role in accounting for economic fluctuations.  

Forecasting changes in commodity prices is therefore an important task for forward-looking policy-

makers.  The growing use of futures markets has raised the question of how much information these 

prices incorporate about future movements in spot prices.  We show that while energy futures can 

generally be characterized as unbiased predictors of future spot prices, there is much stronger evidence 

against the null of unbiasedness for other commodities, especially for precious and base metals.  

Furthermore, these differences in unbiasedness translate into differences in forecasting ability: precious 

and base metals fare worse than energy or agricultural markets in terms of squared forecast errors or 

predicting the sign of subsequent price changes.  There are also notable differences within commodity 

classes.  For example, oil futures markets have accounted for smaller fractions of subsequent price 

changes than did natural gas or gasoline markets, despite the very high comovement amongst their prices.  

Surprisingly, we find that information from futures prices in other energy markets could have been used 

to help predict subsequent oil price changes between 1990 and 2012.  The same is true for gold prices.  In 

both cases, information in other commodity futures markets could have yielded significant quantitative 

improvements in forecasting ability. 

 Despite dramatic growth in these commodity futures markets over time, recent years have not 

been characterized by notably stronger evidence for unbiasedness in futures markets.  In fact, we find 

that, across commodity groups, point estimates of the basis coefficient have moved away from the null of 

unbiasedness since the mid-2000s.  This represents a significant reversal from previous years, during 

which all commodity groups displayed strong convergence toward unbiasedness.  Furthermore, this 

comovement among the properties of futures prices appears to be relatively new: there seemed to be no 

such comovement prior to the 2000s.  This suggests that common factors are becoming increasingly 

important in driving commodity futures prices, but these factors are not necessarily increasing the 

predictive content of commodity futures.  Some of the more prominent explanations include the 

financialization of commodity markets via index funds (Tang and Xiong 2010), changing risk premia 

associated with the global financial crisis, or departures from full-information rational expectations.  
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While we do not directly address the ultimate source of the historical changes in predictive content, the 

results from the rolling directionality tests indicate that the decline in the predictive content of commodity 

futures prices has been ongoing since the early 2000s, so that explanations based on changing risk premia 

are unlikely to be successful in explaining this feature of the data.  A crucial task for future research is 

therefore to determine why the predictive content of futures prices has declined in this fashion.  Doing so 

could shed light on whether this decline is likely to persist, or even worsen (as might be implied by 

growing financialization), or whether it will recede as global economic and financial conditions stabilize.  

In the meantime, the limited predictive content of commodity futures in recent years suggests that 

policymakers should be wary of placing too much weight on futures prices to forecast future commodity 

price changes. 
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1 See Blinder and Rudd (2008) for a recent exposition of this viewpoint and Barksy and Kilian (2002) for a 

contrarian view. 

2  See Wu and McCallum (2005) and Chen et al. (2009) for examples.                                                                                                        

3 Williams and Wright (1991) provide an excellent overview of the behavior of commodity prices and futures. See 

also Fama and French (1987) and Pindyck (2001). 

4 The discussion and notation is based upon the exposition in Brenner and Kroner (1995). 

5 Roache and Rossi (2009), for example, document that gold prices respond differently to economic news than other 

commodities, consistent with their role as an inflation hedge. 

6 This higher R2 for gasoline and natural gas than for oil at the 3 and 6-month horizons only partly reflects 

predictable seasonal variation in gasoline and natural gas prices.  If we seasonally adjust gasoline and natural gas 

futures prices prior to estimation, the R2s are still significantly higher than those obtained for oil futures.  For 

example, the R2 for natural gas prices at the 3-month horizon declines from 24% to 14%, still well above the 3% 

obtained for oil futures prices. 

7 Results using absolute mean squared errors are qualitatively similar to RMSE’s. 

8 We present results for traditional tests of directionality in levels in Appendix Table 2. 

9 See Hamilton (2007) for further motivation of GARCH. 

10 For the results in Table 4, we restrict both the p and q GARCH terms to be second-order or less.  Relaxing this 

assumption does not materially affect the results.  However, more general forms of GARCH lead to excessive 

sensitivity to individual observations and a resulting lack of robustness of results.  We do not present GARCH 

estimates of gold and silver at the 12-month horizons because of missing observations within the sample for each of 

these commodities.  Qualitatively similar results obtain using Arch-in-Means. 

11 We use OLS for rolling regressions because GARCH estimates are exceedingly sensitive to individual 

observations in short samples and more generally have poor small-sample properties. 
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Table 1: Regressions of Ex-Post Price Changes on the Basis 
 3-Month Horizon  6-Month Horizon  12-Month Horizon 
 β  Se(β) Wald   R2   N     β  Se(β) Wald   R2  N       β  Se(β) Wald   R2   N 
                   

Energy Products                   
Oil 0.74 (0.33) 0.37 0.03 269  0.89 (0.38) 0.28 0.06 266  0.75 (0.27) 0.05 0.07 260  
Natural Gas 1.02 (0.11) 0.35 0.24 266  0.77** (0.11) 0.06 0.19 263  0.74 (0.20) 0.27 0.10 255  
Heating Oil 0.68 (0.19) 0.08 0.06 269  0.57** (0.22) 0.02 0.05 266  0.86 (0.26) 0.12 0.10 260  
Gasoline 1.03 (0.23) 0.09 0.18 269  0.93 (0.16) 0.04 0.21 266    0.61* (0.21) 0.002 0.10 260  

                   

Base Metals                   
Aluminum  -0.27 (0.91) 0.36 -0.00 179  -0.03 (1.37) 0.74 -0.01 176   0.08 (0.89) 0.51 -0.01 170  
Copper  -0.67*** (0.65) 0.04 -0.00 179  -0.56* (0.87) 0.16 -0.00 176  -1.04*** (0.71) 0.003 0.04 170  
Lead   0.27 (0.98) 0.05 -0.01 179   0.52 (1.27) 0.02 -0.00 176   1.16 (0.86) 0.02 0.03 170  
Nickel   0.33 (1.06) 0.63 -0.01 179  -0.56* (0.89) 0.59 -0.00 176  -0.49 (1.11) 0.31 0.00 167  
Tin  -0.13** (0.48) 0.51 -0.01 179  -0.51*** (0.57) 0.08 -0.00 176  -0.46*** (0.53) 0.046 0.00 167  

                   

Precious Metals                   
Gold -1.70*** (0.69) <0.01 0.03 269  -1.32*** (0.53) <0.01 0.05 266  -1.29*** (0.40) <0.001 0.09 259  
Silver -1.34*** (0.97) 0.03 0.00 269  -1.42*** (0.86) 0.01 0.02 266  -1.06*** (0.54) <0.001 0.04 259  

                  

Agricultural Products                  
Corn 1.08 (0.30) 0.65 0.08 113  1.04 (0.31) 0.65 0.11 112  1.32 (0.23) 0.22 0.20 109  
Soybean 0.91 (0.20) 0.54 0.10 158  1.17 (0.36) 0.76 0.17 155  1.21 (0.34) 0.51 0.18 153  
Wheat 0.91 (0.19) 0.41 0.05 113  0.93 (0.28) 0.73 0.08 112   0.72 (0.25) 0.31 0.08 109  
                   

 
Note: The table presents estimated results by OLS of equation (3) in the text for different commodities and futures prices horizons.  Statistical significance at the 10%, 5%, and 1% level 
are denoted by *, **, and *** respectively.  For β, the null is that β=1. Se(β) are Newey-West standard errors.  “Wald” reports p-values for the joint restriction of α=0 and β=1.  R2 is the 
adjusted R2 while N is the number of observations.  See section 3.1 for details. 
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Table 2: Predictive Content of Commodity Futures Relative to Random Walks and Univariate Statistical Models 
              

Predictability over Whole Sample: 1990-2012  Out of Sample Root Mean Squared Errors: 2003-2012  

 Futures RMSE relative to 
random walk 

 Fraction of correct sign 
predictions by Futures 

 Futures RMSE relative to 
random walk 

 ARIMA RMSE relative to 
random walk 

 

    3-mo 6-mo 12-mo  3-mo 6-mo 12-mo  3-mo 6-mo 12-mo  3-mo 6-mo 12-mo  

          
Energy Products           

Oil 0.93 0.95 0.99 0.61*** 0.70*** 0.69*** 1.00 1.00 1.02 1.54*** 1.35*** 1.28* 
Natural Gas 0.88** 0.92 0.96 0.68*** 0.73*** 0.73*** 0.95 0.99 1.01 1.32*** 1.27* 1.19 
Heating Oil 0.94 0.96 0.96 0.56** 0.66*** 0.66*** 0.98 1.01 1.00 1.46*** 1.34*** 1.28* 
Gasoline 0.76*** 0.71*** 0.85 0.70*** 0.71*** 0.70*** 0.60*** 0.53*** 0.80 1.38*** 1.12 1.18 

      
Precious Metals       

Gold 1.00 1.00 0.99 0.51 0.56** 0.57** 0.96 0.90 0.81 1.29*** 1.21* 0.94 
Silver 1.01 1.00 1.00 0.54 0.59*** 0.56** 0.99 0.98 0.97 1.32*** 1.29** 1.04 

      
Base Metals       

Aluminum 1.01 1.01 1.01 0.64*** 0.65*** 0.71*** 1.01 1.01 1.01 1.59*** 1.50*** 1.27** 
Copper 1.01 1.02 1.07 0.56* 0.71*** 0.62*** 1.01 1.03 1.08 1.59*** 1.48*** 1.30** 
Lead 1.01 1.02 1.04 0.51 0.60*** 0.61*** 1.01 1.02 1.03 1.53*** 1.42*** 1.64*** 
Nickel 1.00 1.01 1.00 0.55 0.65*** 0.64*** 1.01 1.02 1.02 1.52*** 1.38*** 1.38*** 
Tin 1.00 1.01 1.03 0.51 0.55 0.59*** 1.00 1.01 1.02 1.59*** 1.44*** 1.58*** 

      
Agricultural Products       

Corn 0.93 0.93 0.85 0.69*** 0.65*** 0.74*** 0.91 0.91 0.82 1.65*** 1.49*** 1.57*** 
Soybean 0.96 1.15** 0.90 0.50 0.63*** 0.61*** 0.93 1.18* 0.90 1.39*** 1.26*** 1.14 
Wheat 0.95 1.06 0.90 0.64*** 0.65*** 0.67*** 0.97 1.03 0.82 1.26** 1.25* 1.23 

    
        

      
 

      
 

Note: The first 3 columns display the root mean squared forecast error of commodity futures at each forecast horizon from 1990 to 2012, or as available, relative to the relevant forecast 
error measure from a random walk (without drift) prediction.  The *, **, and *** denote whether the p-value of the two-sided test of the null that the forecast error measure was generated 
by a random walk process is less than 10%, 5%, and 1% respectively.  p-values are calculated by simulating random walk processes with same variance as in each commodity market and 
generating a distribution of RMSEs for each commodity at each forecast horizon.  Columns 7-9 do the same exercise using data from 2003-2012.  Columns 10-12 report equivalent 
statistics for out-of-sample forecasts of ARIMA models.  Columns 4-6 report the fraction of periods in which the sign of the change in the futures basis correctly predicted the sign of the 
change in subsequent price changes.  Statistical significance follows Pesaran and Timmermann (1992).  See section 3.2 for details.  
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Table 3:  Predictability of Ex-Post Oil and Gold Price Changes  
 

  Panel A:  Predictability of Oil Price Changes 
  3-Month Horizon  6-Month Horizon  12-Month Horizon 
  (1)  (2)  (3)  (4)  (5)  (6) 
Constant  0.01 (0.01)   0.01 (0.01)  0.04 (0.03)  0.03 (0.03)  0.08** (0.04)  0.05 (0.04) 
Oil Basis  0.74** (0.33)   0.90*** (0.34)  0.88** (0.38)  1.36*** (0.45)  0.75*** (0.27)  0.35 (0.45) 
Heating Oil Basis     -0.36** (0.18)     -0.86*** (0.30)     0.09 (0.44) 
Natural Gas Basis      0.16 (0.10)     0.26** (0.12)     0.38** (0.18) 
                   
R2  0.03  0.04  0.06  0.10  0.07  0.11 
N  269  266  266  263  260  255 
                   

  Panel B: Predictability of Gold Price Changes 
  3-Month Horizon  6-Month Horizon  12-Month Horizon 
  (1)  (2)  (3)  (4)  (5)  (6) 
Constant   0.03*** (0.01)   0.03*** (0.01)   0.06*** (0.01)   0.06*** (0.01)   0.14*** (0.02)   0.12*** (0.02) 
Gold Basis  -1.70** (0.69)  -1.54** (0.66)  -1.32*** (0.53)  -1.28** (0.52)  -1.30*** (0.40)  -1.11*** (0.40) 
Natural Gas Basis      0.09*** (0.03)      0.12*** (0.04)      0.23*** (0.06) 
                   

R2  0.03  0.05  0.05  0.10  0.09  0.18 
N  269  266  266  263  259  255 
                   

 
Note: The table reports estimated coefficients from basis equations.  Panel A regresses changes in ex-post oil prices on the oil price basis as well as the basis for heating 
oil and natural gas at each forecasting horizon.  Panel B presents equivalent results for gold price changes, using the gold basis and the natural gas basis at each 
forecasting horizon.  *, ** and *** denote statistical significance (from zero) at the 10%, 5%, and 1% levels respectively, using Newey-West standard errors.  See 
section 3.3 in the text for details. 
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Table 4: GARCH Regressions of Ex-Post Price Changes on the Basis 

 3-Month Futures  6-Month Futures  12-Month Futures 
 β Se(β) Wald R2 N  β Se(β) Wald R2 N  β Se(β) Wald R2 N 
                   

Energy Products                   
Oil 0.50** (0.23) 0.001 0.02 269    1.02 (0.14) <0.001 0.01 266  1.07 (0.08) 0.002 0.02 260  
Natural Gas 1.26** (0.11) 0.001 0.22 266    0.79*** (0.07) <0.001 0.19 263  0.43*** (0.07) <0.001 0.08 255  
Heating Oil 0.73* (0.16)    0.04 0.06 269    0.84 (0.12) <0.001 0.01 266  1.08 (0.09) 0.23 0.06 260  
Gasoline 1.21** (0.10) 0.002 0.17 268    1.00 (0.06) <0.001 0.21 266  0.77*** (0.06) <0.001 0.04 260  
                   

Base Metals                   
Aluminum   0.08*** (0.44) 0.03 -0.01 179    1.95** (0.45) 0.07 -0.06 176   1.07 (0.23) <0.001 -0.09 170  
Copper  -0.92*** (0.66)  0.003 0.00 179   -0.91*** (0.35) <0.001 0.00 176  -0.84*** (0.19) <0.001 0.04 170  
Lead   0.59 (1.00) 0.09 -0.01 179    2.71*** (0.57) 0.43 -0.07 176   2.91*** (0.22) <0.001 -0.07 170  
Nickel   0.14* (0.46) <0.001 -0.02 179    0.74 (0.29) 0.001 -0.06 176   0.33*** (0.18) <0.001 -0.12 167  
Tin   1.38 (0.71) 0.27 -0.01 179    1.22 (0.45) 0.67 -0.06 176   0.89 (0.34) 0.01 -0.18 167  
                   

Precious Metals                   
Gold -2.34*** (0.52) <0.001 0.02 269  -2.02*** (0.29) <0.001 0.02 266        
Silver -1.28*** (0.72) <0.001 0.00 269  -0.90*** (0.26) <0.001 -0.03 266        
                   

Agricultural Products                  
Corn   1.17 (0.42)  0.70 0.07 113    1.25 (0.21)  0.003 0.09 112     0.94 (0.12) <0.001 0.05 109  
Soybean   0.86 (0.25) <0.001 0.10 158    0.63*** (0.14) 0.01 0.12 155     0.91 (0.16) 0.08 0.11 153  
Wheat   0.83 (0.33) 0.36 0.05 113    0.65 (0.27) 0.26 0.07 112     0.61** (0.18) <0.001 0.04 109  
                  

 
Note: The table presents estimated results by GARCH of equation (3) in the text for different commodities and horizons.  Statistical significance at the 10%, 5%, and 1% level are denoted 
by *, **, and *** respectively.  For β, the null is that β=1. Se(β) are Newey-West standard errors.  “Wald” reports p-values for the joint restriction of α=0 and β=1.  R2 is the adjusted R2 
while N is the number of observations.  GARCH dynamics are up to (2,2), with specific values chosen by AIC for each commodity and horizon separately.  See section 4.1 for details. 
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Table 5:  Market Liquidity and Unbiasedness 
 

  Panel A:  Dependent variable is ratio of volume to open interest 
  (1)  (2)  (3) 
          

Constant   0.27*** (0.03)   0.16*** (0.03)   0.26*** (0.03) 
6-Month Futures  -0.17*** (0.04)     -0.17*** (0.03) 
12-Month Futures  -0.18*** (0.05)     -0.18*** (0.04) 
Precious Metals      -0.11*** (0.04)  -0.11*** (0.03) 
Base Metals      0.03 (0.06)   0.03 (0.04) 
Agricultural     -0.01 (0.04)  -0.01 (0.03) 
          

N  42  42  42 
R2  0.37  0.06  0.47 
          

  Panel B:  Dependent variable is t-statistic for unbiasedness 
  (1)  (2)  (3) 
          

Constant   3.89*** (0.80)   4.03*** (1.00)   3.11*** (0.89) 
Volume/OI  -7.23** (3.07)  -7.76** (3.38)  -5.61* (3.00) 
6-Month Futures     -0.48 (0.91)    
12-Month Futures      0.04 (1.04)    
Precious Metals         3.99** (1.55) 
Base Metals         0.81 (1.01) 
Agricultural        -1.21* (0.70) 
          

N  40  40  40 
R2  0.10  0.05  0.30 
          

 

 

Note:  Panel A presents regressions of commodity and horizon specific measures of the ratio of volumes traded relative to open 
interest on dummies for horizons of futures contracts and/or dummies for commodity group.  Panel B presents results from 
regressing t-statistics for the null of unbiasedness from Table 4 on measures of volume to open interest for each commodity and 
futures contract horizon, as well as dummies for the specific horizon or the specific commodity group.  Dummies indicate levels 
relative to energy products or 3-month horizons.  *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
respectively using White standard errors. 
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Figure 1: Historical 1-Month Commodity Futures Prices 

 
 

Note: The figure plots the log of the 1-month futures price for each commodity, indexed to an initial value.  For base metals, the index period is July 1997.  For all 
others, the index period is April 1990. 
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Figure 2:  Ex-Post Price Changes and Ex-Ante Basis for Energy and Agricultural Futures 

 
 
Note:  The figure plots, for each commodity, the 6-month futures basis (the log-deviation between the current 6-
month futures contract and the current 1-month futures contract) and the subsequent 5-month change in the 1-month 
futures contract for that commodity.  The timing of ex-post price changes conforms precisely to timing of ex-ante 
basis such that vertical difference each period represents forecast errors.  See section 2 in the text for details. 
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Figure 3:  Ex-Post Price Changes and Ex-Ante Basis for Base and Precious Metal Futures 
 

 
 
Note:  The figure plots, for each commodity, the 6-month futures basis (the log-deviation between the current 6-
month futures contract and the current 1-month futures contract) and the subsequent 5-month change in the 1-month 
futures contract for that commodity.  The timing of ex-post price changes conforms precisely to timing of ex-ante 
basis such that vertical difference each period represents forecast errors.  See section 2 in the text for details. 
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Figure 4:  Ratios of Volume Traded to Open Interest versus Unbiasedness across 
Commodities 

 

 
 
Notes:  The figure presents a scatter plot of the ratio of volume traded to open interest for each commodity at each 
futures horizon against the t-statistic for the null of unbiasedness from regressions in Table 4.  See section 4.2 in the 
text for details.
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Figure 5:  Rolling Estimates of Basis Equation for each Commodity and Futures Horizon 
 

Panel A: Energy Futures 
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Panel B:  Agricultural Futures and Precious Metals 
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Panel C:  Base Metals 
 

 
 
Note: Each figure plots estimates of the coefficient on the futures basis from equation (3) in rolling 5-year 
regressions along with 95% confidence intervals (dashed lines) for each commodity and forecasting horizon.  See 
section 4.3 in the text for details. 
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Figure 6:  Average Deviations from Unbiasedness across Commodities over Time 
 

Panel A:  Average Absolute Value of Estimated Coefficient on Basis Minus One 

 
 

Panel B: Average Absolute Value of t-Statistic for Null of Unbiasedness 

 
Notes: Panel A plots the average across commodities and horizons (3, 6 and 12 months) of the absolute values of 
estimated coefficients from rolling regressions in Figure 5 minus one, i.e. absolute deviations from unbiasedness.  
Averages are taken across each commodity within each group. Panel B plots the average across the same 
commodities and horizons of the absolute values of the t-statistics for unbiasedness from rolling regressions in 
Figure 5.  See section 4.3 in the text for details. 
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Figure 7: Time variation in Predictive Content of Commodity Futures 
 

Panel A:  Time variation in RMSE’s by Commodity Group Relative to Random Walk 

 
 

Panel B:  Time variation in Fraction of Relative Correct Sign Predictions 

 
 
Note: Panel A plots rolling RMSE’s relative to that of a random walk over the preceding 60 months, 
averaged across 3, 6, and 12-month horizons for all commodities within each commodity group.  Panel 
B plots 5-year rolling fractions of correct sign predictions (using first-differences of basis) minus their 
unconditional expectation, averaged across 3, 6 and 12 month horizons for all commodities within each 
commodity group.  See section 4.3 for details.  
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Appendix Table 1:  Bloomberg Mnemonics for Futures Prices and Available Samples 

 

      Available Sample 

  Market  
Futures 

Ticker 
 1-mo. 3-mo. 6-mo. 12-mo. 

Energy          

   Oil  NYMEX  CL  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

   Natural Gas  NYMEX  NG  1990:4-2012:7 1990:4-2012:7 1990:4-2012:7 1990:6-2012:7 

   Heating Oil  NYMEX  HO  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

   Gasoline  NYMEX  HU/RB  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

Agricultural          

   Corn  LME  C  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

   Soybeans  LME  S  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

   Wheat  LME  W  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

Precious Metals          

   Gold  NYMEX  GC  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

   Silver  NYMEX  SI  1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 1990:1-2012:7 

Base Metals          

   Aluminum  CME  LA  1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 

   Copper  CME  LP  1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 

   Lead  CME  LL  1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 

   Nickel  CME  LN  1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 

   Tin  CME  LT  1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 1997:7-2012:7 

 
Note: For gasoline futures, we use HU price data until December 2005 and RB price data starting in January 2006.  
However, all comparisons of ex-ante futures price predictions to ex-post price realizations are done using equivalent 
price series (e.g. December 2005 HU 3-month futures are compared to February 2006 HU 1-month futures). 
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Appendix Table 2:  Directionality Tests in Levels vs. First Differences 
 
 Level Specification  First-Difference Specification  

 3-mo 6-mo 12-mo  3-mo 6-mo 12-mo  
         
Energy Products         

Oil 0.48 0.47 0.58**  0.61*** 0.70*** 0.69***  
Natural Gas 0.57** 0.59*** 0.56  0.68*** 0.73*** 0.73***  
Heating Oil 0.54 0.51 0.60**  0.56** 0.66*** 0.66***  
Gasoline 0.61*** 0.66*** 0.64***  0.70*** 0.70*** 0.70***  

         
Precious Metals         

Gold 0.51n.a. 0.60 n.a. 0.69n.a.  0.51 0.56** 0.57**  
Silver 0.54 0.59*** 0.63***  0.54 0.59*** 0.56***  
         

Base Metals         
Aluminum 0.54 0.56 0.47*  0.64*** 0.65*** 0.71***  
Copper 0.51 0.50 0.51  0.56* 0.71*** 0.62***  
Lead 0.46 0.52 0.50  0.51 0.60*** 0.61***  
Nickel 0.51 0.54 0.55*  0.55 0.65*** 0.64***  
Tin 0.50 0.54 0.48  0.51 0.55 0.59  

         
Agricultural          

Corn 0.53 0.60*** 0.63***  0.69*** 0.65*** 0.74***  
Soybean 0.54 0.58** 0.60***  0.50 0.63*** 0.61***  
Wheat 0.53 0.59** 0.61***  0.64*** 0.65*** 0.67***  

         
 
Note:  The table presents the fraction of times in which the sign of the basis correctly predicted the sign of 
subsequent price changes at the same horizon (columns 1-3) or in which the sign of the monthly change in the basis 
correctly predicted the sign of the monthly change in price changes at the same horizon (columns 4-6).  Statistical 
significance as in Pesaran and Timmermann (1992) at the 10%, 5% and 1% levels are indicated by *, **, and ***.  
For gold in levels specification, test statistics cannot be constructed because of insufficient negative values of the 
basis, which is indicated by n.a.. 


