Abstract

This paper explores ways to integrate model uncertainty into policy evaluation. We describe a general framework that includes both model averaging methods as well as some measures that describe whether policies and their consequences are model dependent. These general ideas are then applied to assess simple monetary policy rules for some standard New Keynesian specifications. We conclude that the original Taylor rule has good robustness properties, but may reasonably be challenged in overall quality with respect to stabilization by alternative simple rules, even when these rules employ parameters that are set without accounting for model uncertainty.

The number of separate variables which in any particular social phenomenon will determine the result of a given change will as a rule be far too large for any human mind to master and manipulate them effectively. In consequence, our knowledge of the principle by which these phenomena are produced will rarely if ever enable us to predict the precise result of any concrete situation. While we can explain the principle on which certain phenomena are produced and can from this knowledge exclude the possibility of certain results...our knowledge will in a sense only be negative,
i.e. it…will not enable us to narrow the range of possibilities sufficiently so that only one remains.

Friedrich von Hayek

1. Introduction

This paper explores issues related to the analysis of government policies in the presence of model uncertainty. Within macroeconomics, increasing attention is being given to the positive and normative implications of model uncertainty. One major direction of this work has been initiated by the seminal contributions of Hansen and Sargent (2001a, b, 2002, 2003) on robustness in policy analysis. Examples of contributions to this research program include Giannoni (2002), Marcellino and Salmon (2002), Onatski and Stock (2002) and Tetlow and von zur Muehlen (2001) and our own: Brock and Durlauf (2004, 2005) and Brock et al. (2003). In this approach, model uncertainty is defined relative to a given baseline model; specifically, a space of possible models is constructed by considering all models that lie within some distance ε of the baseline. In evaluating policies, the loss associated with a given policy is determined relative to the least favorable model in the model space, i.e. preferences are assumed to follow a minimax rule with respect to model uncertainty. As such, this program follows the approach to decision-making initiated by Wald (1950).

Our approach to model uncertainty analyzes model spaces that are non-local in the sense that we do not require that the different models are close to each other according to some metric. For many macroeconomic contexts, it seems clear that model uncertainty is sufficiently severe that very disparate models should be regarded as potential candidates for the true or best model. In the context of monetary policy, there has been no resolution of the role of expectations in determining the effects of policies on macroeconomic outcomes; some authors favor backward-looking models which eschew any role for expectations (e.g. Rudebusch and Svensson, 1999) while some prefer forward-looking models (e.g. Woodford, 2003) and some advocate hybrid models with both forward and backwards-looking features (e.g. Gali and Gertler, 1999). Model uncertainty also exists within these classes. For the classes of models that employ expectations, one finds differences with respect to how they are formulated, with disagreement about the use of rational expectations versus survey-based measures, for example. Yet another source of differences concerns the dynamic specification of a model in terms of lag length structure.

Formally, we treat uncertainty with respect to the true model in a fashion that is symmetric to other forms of uncertainty. From this perspective, the analysis of policies based upon a single model may be thought of as producing conditional probability statements in which one of the conditioning elements is the model. Model uncertainty can thus be interpreted as saying that such conditioning is unjustified. How can one proceed in this context? One solution derives from the use of model averaging methods, in which one first evaluates the conditional probability of some unknown object of interest given data and a choice of model and second eliminates this conditioning on a model by integrating out the model “variable.” Eliminating this dependence amounts to taking weighted

1von Hayek (1942, p. 290).

2A number of ideas in this literature originally appeared in an unpublished working paper by Peter von zur Muehlen, reprinted in von zur Muehlen (2001).
averages of the model-specific probabilities, where the weights correspond to the probabilities of each model being the correct one. Model averaging represents an important recent development in the statistics literature; major contributions include Draper (1995) and Raftery et al. (1997). Model averaging methods require the specification of probabilities across models in order to compute posterior probabilities concerning parameters or other unknowns (such as forecasts) of interest.

Within the economics literature, these model averaging methods are achieving increasing prominence. Areas of application include economic growth (Brock and Durlauf, 2001; Brock et al., 2003; Doppelhofer et al., 2004; Fernandez et al., 2001), finance (Avramov, 2002), and forecasting (Garratt et al., 2003; Wright, 2003a, b). Some initial work on applications to monetary policy evaluation appears in Brock et al. (2003).

While model averaging is a powerful tool in addressing model uncertainty, one can imagine contexts in which a policymaker will want more information than simply a summary statistic of the effects of a policy on outcomes where model dependence has been integrated out. For example, a policymaker may be interested in policies whose effects are relatively insensitive to which model best approximates the data. Alternatively, a policymaker may wish to engage in model selection, and would like to know how this selection affects the likely efficacy of the policy. One reason for this is that a policymaker may not wish to adjust policies in response to the updating of model probabilities. For this reason, we believe that proper reporting of the effects of model uncertainty should also include descriptions of how model choice affects the form of a policy rule and the payoffs associated with that rule. This dependence leads us to calculate statistics that measure the degree of outcome dispersion, which characterizes how the losses associated with a model-specific optimal policy rule depend on the model, and action dispersion, which measures how the optimal policy differs across alternative models in a model space. An innovation in this paper is thus moving beyond model averaging methods in the analysis of policies when model uncertainty is present.

Put differently, our major concern in the empirical work in this paper is with the appropriate way to present the results of policy evaluation exercises. One obvious way to think about this problem is simply to compute expected losses under different policies where the expectation calculations account for model uncertainty. This approach requires the specification of prior probabilities on the space of possible models. Alternatively, one can apply a minimax criterion even though the model space we study is non-local. As argued in Brock et al. (2003), one may interpret Leamer’s (1983) extreme bounds analysis as doing this. However, our purpose is not to defend a particular way in which decisions should respond to model uncertainty but rather to describe methods to report predictions concerning policy effects in a manner that communicates how model uncertainty affects these predictions. We will therefore explore some quantitative and visual tools to communicate how model uncertainty enters policy evaluation.

The two papers closest to ours are Levin and Williams (2003) and Brock et al. (2003). The Levin and Williams (2003) analysis compares policy rules under theoretically distinct models; models are averaged by assigning equal weights to each model; this approach differs from the model averaging approach of Brock et al. (2003) as their weights do not represent posterior model probabilities. Levin and Williams (2003) is important as it is the first extensive analysis of model averaging methods as applied to monetary policy. When we combine models with disparate treatment of expectations (backwards versus hybrid, as discussed below), we follow Levin and Williams in using simple arithmetic averages rather
than likelihood-based weights. When we combine models that share treatment of expectations, we follow Brock et al. (2003) in using posterior model probabilities. A significant virtue of Levin and Williams over our paper is that they are able to work with a much richer theory set than we do; in particular, they include a model-consistent forward-looking model in their model space. On the other hand, they do not address the implications of model uncertainty that arise because of dynamics.

Our work is complementary to Cogley and Sargent (2004) who consider US monetary policy but with a positive rather than a normative focus. Cogley and Sargent consider adjustments to US monetary policy generated by changes in the weights assigned by the Federal Reserve to different models of inflation, showing that such model uncertainty helps explain the dynamics of inflation after 1970.

We apply our theoretical ideas to some standard questions on monetary economics. In our empirical analysis, we consider two classes of standard New Keynesian models. Models in each class include three equations: a dynamic IS curve relating output to a real interest rate; a dynamic Phillips curve relating inflation to output and expected inflation; and a monetary policy (Taylor) rule relating the interest rate to output, inflation and a lagged interest rate. The two classes differ in their treatment of expectations. Our backwards class, which builds on Rudebusch and Svensson (1999), treats expected inflation as a distributed lag on past inflation. Our hybrid class, which builds on Rudebusch (2002), uses survey data on expected inflation in estimation but assumes model-consistent expectations in evaluation of alternative monetary policies. Within a given class, models vary only in terms of the number of lags included on the right-hand side (RHS) of the IS and Phillips curves. We consider the effects of alternative monetary policy rules using a loss function based on a weighted average of variances of output, inflation and interest rates. Our analysis of the model space reveals that the hybrid models possess a posterior probability that is two orders of magnitude higher than that of the backwards-looking models. So while we do average within classes, we do not average across the model classes, and rather report results for each class separately.3 We do so because our model classes are defined around models that themselves were data mined for distinct model spaces. We regard the question of how to construct model spaces around data-mined models to be an important unresolved research question.

We conduct three different empirical analyses. First, we consider the behavior of the losses associated with the classic Taylor (1993) rule when model uncertainty is present. Our findings suggest that expected loss estimates for the Taylor rule are quite robust in the sense that our expected loss estimates show relatively little variation across models. Second, we compare the performance of the Taylor rule with the performance of an interest rate rule that sets current rates as a function of the lagged rate, current inflation, and current output. We choose the parameters of the rule such that the parameters are optimal for the model with the maximum posterior probability in each of our classes. We find that for the backwards models, the optimized rule systematically dominates the Taylor rule, except for a small (in posterior probability sense) set of models where the optimized rule results in mild increases in expected loss. For the hybrid class, the optimized rule uniformly dominates the Taylor rule. Our final exercise considers how optimal three-variable interest rate rules vary across models. In this exercise, we compute optimal rules

3Our reaction to the different orders of magnitude of the posteriors is consistent with Sims’ (2003 p. 3) view that posterior odds ratios are sometimes “implausibly” sharp.
and associated expected losses for each model in the two model classes. Our analysis of outcome and action dispersion is largely visual as it consists of the presentation of dispersion figures. As such, it is somewhat hard to identify simple messages from the exercise. One conclusion we do draw is that there appears to be some systematic relationship between the coefficients in the model-specific optimal rules and model complexity.

The paper is organized as follows. Section 2 of this paper describes our basic framework; some similar material appears in our 2003 paper and is repeated for convenience. Section 3 contains our various empirical exercises. Section 4 provides some interpretation of the findings in the context of a general dynamic linear model. Section 5 provides conclusions.

2. Incorporating model uncertainty into statistical analyses

Our basic argument concerning the analysis of policy in the presence of model uncertainty is that such uncertainty should be explicitly incorporated in the calculation of the effects of a policy. In other words, we argue that from a decision-theoretic perspective, model uncertainty is not a property that should, via model selection exercises, be resolved prior to the evaluation of a policy rule, but rather is a component of that evaluation. To see why this is so, we follow the discussion in Brock et al. (2003); other analyses that advocate an explicit decision-theoretic approach to the analysis of data in economics include Chamberlain (2001) and Sims (2002). This analysis is a straightforward application of standard statistical decision theory arguments, cf. Berger (1987).

2.1. General framework

Suppose that a policymaker wishes to evaluate the effect of a policy rule \(p \) on an outcome \(\theta \). We assume that the policymaker’s assessment of the outcome depends only on the outcome so that one can separate the preferences of the policymaker from the probability measure characterizing \(\theta \) given the policy. In assessing policies, the question of model uncertainty arises in the context of specifying the information set on which the assessment is conditioned. Typically, one begins with a specification of the data-generating process, i.e.

\[
\theta = m(p, \beta_m, \eta),
\]

where \(m \) denotes a model, \(p \) is a policy, \(\beta_m \) is a vector of parameters that indexes the model and \(\eta \) is a set of unobservable shocks that affect \(\theta \). It may be assumed, without loss of generality, that when evaluating policies, the data-generating process and probability measure for the innovation, \(\mu_\eta \) are known even though the realizations of the shocks are not, so that policies are evaluated based on the conditional probability measure

\[
\mu(\theta|p, m, \beta_m).
\]

This formulation indicates the first level at which the effects of policies are uncertain. Even if the data-generating process and associated parameters are known, there is uncertainty due to the unobservability of \(\eta \).

Eq. (2) implies that a policymaker possesses a great deal of information about the data-generating process. Such information is typically not available to the researcher, and its absence must be accounted for to provide appropriate statements about the effects of a
policy. The relaxation of the information implicitly assumed in (2) may be done in two steps. First, assuming that the model is known, there is typically uncertainty about the values of the model parameters, β_m. Operationally, this means that one computes

$$\mu(\theta|p, m, d).$$

(3)

The difference between (2) and (3) is that in (3) one is implicitly using the available data d to construct estimates of the model parameters. For macroeconomic problems, this is often regarded as a second-order issue; exceptions to this view include Giannoni (2001) and Onatski and Williams (2003). While we do not address parameter uncertainty in our empirical examples, we note that the lack of importance of parameter uncertainty has by no means been established as an empirical matter and is in fact contradicted by Gianonni’s and Onatski and Williams’s findings; this is a topic that warrants further research.

For our purposes, the key issue of interest is how, when characterizing the effects of policies, to account for uncertainty in the specification of the data-generating process, which we will refer to as model uncertainty. This level of uncertainty captures the absence of complete information concerning economic theories, functional form specification (including threshold effects, switching regimes, etc.) and heterogeneity in the data-generating processes for individual observations. Brock et al. (2003) provide a typology of forms of model uncertainty along these lines.

2.2. Model averaging

One goal of a policy evaluation may be the calculation of

$$\mu(\theta|p, d).$$

(4)

In other words, one way a policymaker can deal with model uncertainty is to treat it as another type of unobservable similar to η and β_m and evaluate policies in a way that accounts for this.

As recognized originally in Leamer (1978) and developed in subsequent work such as Draper (1995), this idea may be operationalized using standard probability arguments to eliminate the conditioning on m that is present in (3). To do this, suppose that an analyst is working with a space M of possible data-generating processes. We will implicitly assume that the true model is an element of this space when discussing how we interpret empirical findings; none of the empirical findings we present are themselves dependent on that assumption. Without loss of generality, we take the space to be countable.

Standard application of conditional probability arguments implies that the $\mu(\theta|p, d)$ may be characterized as follows:

$$\mu(\theta|p, d) = \sum_m \mu(\theta|p, m, d)\mu(m|d).$$

(5)

In this expression, $\mu(m|d)$ is known as the posterior probability of model m given data d. From the perspective of (5), model uncertainty is treated in a fashion that is symmetric to any other source of uncertainty in θ.

Eq. (5) reveals how the incorporation of model uncertainty into policy analysis requires the calculation of a class of objects, posterior model probabilities, which simply do not

4Bernardo and Smith (1994) discuss the interpretation of model spaces under alternative assumptions as to whether the true model is in the space.
appear when one evaluates policies after engaging in model selection. To understand what these probabilities mean, by Bayes’ rule, these probabilities are the product of two terms, i.e.

\[\mu(m|d) \propto \mu(d|m)\mu(m), \]

where \(\mu(d|m) \) is the likelihood of the data given model \(m \) and \(\mu(m) \) is a prior probability assigned to model \(m \). This derivation illustrates three features concerning the role of model uncertainty in policy evaluation.

First, if one starts with a space of possible models which is constructed without knowledge of which models fit particularly well, then model averaging can ameliorate problems associated with data mining. Eq. (5) indicates how probability calculations can employ all models in the model space, incorporating the relatively greater likelihood of some models versus others via the \(\mu(d|m) \) terms. Hence, the standard problem of data mining, drawing inferences about a model without accounting for its selection, does not arise. This observation requires two caveats. First, it is important in constructing the \(\mu(d|m) \) terms to avoid overweighing more complex models simply because of their superior goodness of fit. As we shall see below, model complexity penalties (in our case, based on the Bayesian information criterion (BIC) are needed when calculating posterior model probabilities. Second, in some cases it may not be possible or practical to analyze the set of all possible models. Hence, data mining problems may occur because of limits in the analysis that exist in the model space in the way we have described.

Second, the issue of model selection does not arise when one takes the averaging perspective. Heuristically, one may understand model selection exercises as choosing a model based on its relative goodness of fit (adjusted for model complexity). In the context of our approach, model selection of this type is equivalent to placing a posterior probability of 1 on the model with the highest posterior probability. Through this way, it is easy to see why model selection can lead to very misleading assessments of policy efficacy. For example, model uncertainty calculations avoid situations where one model may far outstrip others by a selection criterion, yet the posterior model probability is small relative to the space as a whole.

Third, any analysis of model uncertainty will be dependent on a researcher’s prior beliefs about the relative plausibility of different models, as quantified through the prior probabilities \(\mu(m) \). Very little work has been done on the question of appropriately formulating priors over model spaces. Most papers assign a uniform prior across the model space. One alternative, suggested by Doppelhofer et al. (2004), penalizes complex models by assigning relatively lower prior weights to them. Brock et al. (2003) discuss ways to use economic information to structure priors that reflect theoretical, specification, and parameter heterogeneity differences between models. However, this is a question that needs much more research.

Calculations of this type make clear how model uncertainty affects policy evaluation. Suppose that a policymaker evaluates policies according to a loss function \(l(\theta) \) and that the policymaker evaluates a policy rule based on the expected loss it generates. Standard policy analyses calculate

\[E(l(\theta)|p, m, d) = \int_\Theta l(\theta)\mu(\theta|p, m, d) \, d\theta, \]
whereas an analysis that allows for model uncertainty should calculate

\[E(l(\theta)|p, d) = \int \theta l(\theta) \mu(\theta|p, d) \, d\theta. \]

(8)

In contexts such as stabilization policy, one usually is interested in the first two moments of \(\mu(\theta|p, d) \). These moments were originally computed by Leamer (1978) and are discussed in great detail in Draper (1995):

\[E(\theta|p, d) = \sum_m \mu(m|d) E(\theta|p, m, d) \]

(9)

and

\[\text{var}(\theta|p, d) = E(\theta^2|p, d) - (E(\theta|p, d))^2 = \sum_{m \in M} \mu(m|d) \text{var}(\theta|p, m, d) \]

\[+ \sum_{m \in M} \mu(m|d)(E(\theta|p, m, d) - E(\theta|p, d))^2. \]

(10)

The term \(\sum_{m \in M} \mu(m|d)(E(\theta|p, m, d) - E(\theta|p, d))^2 \), which captures the dispersion of the model-specific expected values, is of particular interest as it is a factor that simply does not arise when computing variances in absence of model uncertainty.

These formulas may be specialized for the analysis of stabilization policies. To do this, we consider the scalar case where the policymaker is interested in stabilizing the output gap \(y_t \); this discussion is slightly simpler than what we do in our empirical work, which considers stabilizing three separate variables with prespecified weights rather than stabilizing a scalar. We assume that a policymaker evaluates rules according to their limiting effect \(y_1 \) (the output gap), specifically the policymaker’s expected loss function is, when one only conditions on a policy and the available data:

\[\text{var}(y_1|p, d). \]

(11)

This loss function is timeless in the sense of Woodford (2003) and thus avoids problems of time inconsistency. We assume that the policy cannot affect the long-run mean of the series, so that

\[E(y_1|p, d, m) = 0 \quad \forall p, m. \]

(12)

which of course implies that \(E(y_1|p, d) = 0 \). This is a substantive economic assumption and one that is frequently built into macroeconomics models, for example, to reflect a long-run Phillips curve. Under this assumption,

\[\text{var}(y_\infty|p, d) = \sum_{m \in M} \mu(m|d) \text{var}(y_\infty|p, m, d). \]

(13)

Relative to (10), the second term on the RHS disappears when (12) holds.

In the context of analyzing stabilization policies, one can further observe that the overall variance associated with a given policy, \(\text{var}(y_\infty|p, d) \), may be contrasted with two other calculations which are suggested by our discussion:

\[\text{var}(y_\infty|p, m, \beta_m) = \text{overall within-model variance due to unobserved innovations; this level of variance is irreducible in the sense that it is present even if a model and associated parameters are known}; \]

\[\text{var}(y_\infty|p, m, d) = \text{overall within-model variance due to both unobserved innovations and parameter uncertainty given a model}. \]
As one moves from uncertainty due to innovations and parameters to uncertainty that also reflect lack of knowledge of the true model, one moves from conventional model exercises to the approach we advocate. Put differently, if one engages in model selection, one typically computes \(\text{var}(y_\infty|p,m,\beta_m^p) \) or \(\text{var}(y_\infty|p,m,d) \) whereas we would argue the correct object for study in policy analysis is \(\text{var}(y_\infty|p,d) \).

Finally, we consider how to evaluate uncertainty about the variance we have described; we focus specifically on the “variance of the variance” associated with a given policy. While a mean/variance loss function is not affected by this calculation, other preference measures will provide a metric for the economic significance of model uncertainty. Notice that the only reason why \(E(y_\infty^2|p,d,m) - E(y_\infty^2|p,d) \) is non-zero is variability across models.

These calculations lead to a hierarchical view of policy assessment. As we have claimed above, conventional policy evaluation exercises calculate either \(\text{var}(y_\infty|p,m,\beta_m^p) \) or \(\text{var}(y_\infty|p,m,d) \) where the model \(m \) is chosen by some criterion that trades goodness of fit against model complexity. Such calculations are of course important. What we argue is that in addition to such calculations, one should also compute \(\text{var}(y_\infty|p,d) \), which describes the consequences of the same policy without the assumption that the model selection exercise has identified the correct model.\(^5\) The discrepancy between these two measures will provide a metric for the economic significance of model uncertainty. Notice that there is no necessary ordering among \(\text{var}(y_\infty|p,m,\beta_m^p), \text{var}(y_\infty|p,d,m) \) and \(\text{var}(y_\infty|p,d) \). For example, in our application we compute \(\text{var}(y_\infty|p,d) \) as a weighted average over different values of \(\text{var}(y_\infty|p,d,m) \). This means that while \(\text{var}(y_\infty|p,d) \) will lie between the smallest and largest values of \(\text{var}(y_\infty|p,d,m) \) it may be larger or smaller than that of any given model, including the model picked in a model selection exercise.

2.3. Beyond model averaging: outcome dispersion and action dispersion

The model averaging approach allows for the assessment and comparison of policies without conditioning on a given element of the model space. However, in our view, it is important to consider other ways of communicating information on the effects of policies to policymakers. One reason for this is that model averaging exercises require specification of prior probabilities \(\mu(m) \) on a model space, since \(\mu(m|d) \propto \mu(d|m)\mu(m) \). A policymaker may wish to assign different priors than an analyst, and so may be interested in information about various aspects of the conditional density \(\mu(\theta|p,m,d) \) that cannot be

\(^5\)To prevent confusion, we repeat that this discussion is slightly simpler than what is in our empirical work. What we present in our empirical work is a weighted average of variances of three separate variables rather than the variance of a scalar.
identified after averaging. A second reason is that a policymaker may be affected by model uncertainty differently from uncertainty within a model. This distinction underlies recent work on ambiguity aversion. Such observations have led to a recent literature on ambiguity aversion, exemplified by Gilboa and Schmeidler (1989) and Epstein and Wang (1994). Following Epstein and Wang (1994), ambiguity aversion can be introduced by considering the modified expected loss function

\[
(1 - e) \int_\theta l(\theta) \mu(\theta|p, d) \, d\theta + e(\sup_{m \in M} \int_\theta l(\theta) \mu(\theta|p, m, d) \, d\theta).
\] (15)

This loss function places an additional weight on the least favorable model in the model space beyond that which is done in a standard expected loss calculation.6 This function nests the expected loss approach \((e = 0)\) and the minimax approach \((e = 1)\) that is employed in the macroeconomics robustness literature, cf. Hansen and Sargent (2001a, b, 2002, 2003). For our purposes, what matters is that formulations of preferences such as (15) imply that a policymaker may wish to know about the behavior of \(\mu(\theta|p, m, d)\) for particular models. Third, if one considers the question of optimal policy choice, then a policymaker may be interested in the importance of knowing the true model when making this decision. For example, a policymaker may find policies appealing in which the specification of the optimal model-specific policy does not depend on knowing the true model of the economy. Giannoni and Woodford (2002) argue in favor of policies whose specification does not vary across models.

More generally, the objective of a policy evaluation analysis is to communicate to a policymaker the effects of a policy under alternative assumptions rather than to perform expected loss calculations per se. As we have argued, assumptions about the theoretical basis and specification of the model of the phenomenon of interest are of primary importance in this respect. To the extent this is true, and recognizing the possibility that ambiguity aversion means that a policymaker may react to model uncertainty differently from parameter uncertainty, for example, then the averaging approach may not be sufficiently informative. A policymaker may want to know if there exist outlier models in the sense that a policy works particularly poorly when they are correct. Notice that this is not the same thing as asking whether certain models are outliers in terms of certain parameter values, overall goodness of fit, etc. For this reason, we argue that a significant part of a policy evaluation exercise is the presentation of different perspectives on how model uncertainty affects one’s conclusions. We are therefore concerned with identifying useful statistics and visual representations of policy effects as they vary across models.

These sorts of considerations lead us to introduce two concepts that describe the effects of policies as well as the policies themselves as they vary across the model space: outcome dispersion and action dispersion. Outcome dispersion captures the variation in loss that occurs when one considers different models. When working with a fixed policy, the variation of losses under the policy traces out the range of the loss function, where the latter is interpreted as a function of the policy. Averaging calculations can thus be treated as data reductions of the support of the loss function; a data reduction in which a (posterior probability) weighted sum of the range is computed. Another outcome dispersion calculation can allow policies to vary across models as occurs when one considers the optimal policy contingent on a given model. This sort of calculation is

6 A remarkable early formulation of this type appears in Hurwicz (1951).
relevant if one is assessing the value of knowing the true model of the economy when setting policy.

When the choice of a policy is allowed to depend on a model, one can define an analogous notion of action dispersion. Each model induces a distinct policy, so the model space traces out a range of policies. For example, one can compute how the parameters of a simple monetary policy rule, say one that maps last period’s Federal Funds rate, the current inflation level and the current output level into this period’s Federal Funds rate, vary across models. Why might such information be of use to a policymaker? One reason is that calculations of action dispersion can reveal how sensitive a policy rule is to model choice. To the extent that a policymaker decides to condition policies on a model, action dispersion can reveal the extent to which this matters. In turn, one can argue that a desideratum of a policy rule is that its formulation is relatively insensitive to certain details of the economic environment in which it is applied. Giannoni and Woodford (2002) make this idea precise in a theoretical context; our calculations of action dispersion provide an empirical representation of their ideas.

Our notions of output dispersion and action dispersion are designed to facilitate the communication of information on the interaction of model uncertainty and policy to a policymaker. As such, they address the underlying difficulties that exist in communicating the properties of outcomes and policies when either is allowed to depend on a model; the underlying model space has no natural ordering to permit simple descriptions of this dependence. For this reason, we will emphasize visual representations of our dispersion concepts.

2.4. Implementation issues

2.4.1. Priors and the reporting of results

The averaging calculations we have described require the specification of prior probabilities for the elements of the model space M. The construction of priors continues to be a knotty problem in Bayesian statistics. One difficulty in the construction of priors derives from the difficulties inherent in translating vague prior beliefs possessed by a researcher into probabilities. This difficulty has led to a large literature on Bayesian probability elicitation, an approach that has not been pursued in the model uncertainty context. Most studies of model uncertainty and model averaging assume that all elements in M possess equal prior probabilities, a standard assumption when one wants to employ a non-informative prior, i.e. one that expresses ignorance. Other authors have modified the equal probability assumption either by assuming the model probabilities are themselves random, which in essence makes the prior a mixture distribution (Brown et al., 1998) or by assigning higher prior probabilities to simpler models (Doppelhofer et al., 2004). None of these approaches use social science reasoning to construct priors. Brock et al. (2003) argue that priors should possess a hierarchical structure that reflects the differences between different courses of model uncertainty.

An alternative perspective is that the goal of a policy evaluation analysis is to communicate to a policymaker the effects of a policy under alternative assumptions rather than to perform expected loss calculations per se. As we have argued, assumptions about

7There are many conceptual problems in defining what it means for a prior to be uninformative; these issues are not germane to our discussion.
the theoretical basis and specification of the model of the phenomenon of interest are of primary importance in this respect. To the extent this is true, and recognizing the possibility that ambiguity aversion means that a policymaker may react to model uncertainty differently from parameter uncertainty, for example, then the averaging approach may not be sufficiently informative. For this reason, we argue that a significant part of a policy evaluation exercise is the presentation of different perspectives on how model uncertainty affects one’s conclusions. We are therefore concerned to identify useful statistics and visual representations of policy effects as they vary across models.

2.4.2. Bayesian versus frequentist

Our discussion has been explicitly Bayesian in that our analysis has focused on the construction of probability measures for within model objects $\mu(\theta|p, d, m)$. That being said, the logic of our model averaging arguments really only depends on the use of posterior model probabilities $\mu(m|d)$. If one can identify an interpretable way of constructing these model probabilities, then one can use these and average across frequentist objects in order to address model uncertainty without fully committing to Bayesian methods. For example, if one is interested in constructing an estimate $\hat{\theta}$ which is not model-dependent, this can be done via

$$\hat{\theta} = \sum_{m \in M} \hat{\theta}_m \mu(m|d).$$

Doppelhofer et al. (2004), who perform such calculations in the context of OLS regression parameters when there is uncertainty about the choice of controls, call this approach Bayesian averaging of classical estimates; Brock et al. (2003) refer to the general approach of averaging frequentist objects using model weights as a pseudo-frequentist procedure. What is important, of course, is not the terminology but the idea that incorporation of model uncertainty into a data exercise can provide interpretable results. This is extremely important since frequentist methods dominate policy evaluation analysis. We employ this pseudo-frequentist approach in the empirical section of this paper.

2.4.3. Specifying the model space

Perhaps the most difficult issues in exercises of the type we describe concern the specification of the model space. The reason for this is that the model space will ultimately reflect a researcher’s prior beliefs on which dimensions of model uncertainty are economically important. As indicated in our discussion of priors, one approach to conceptualizing a model space, which follows from Brock et al. (2003), argues that many cases of model uncertainty can be described as stemming from theory uncertainty, specification uncertainty given a theory, and uncertainty about heterogeneity concerning the data-generating process with respect to either a cross-section index or with respect to time. These dimensions of model uncertainty are not exhaustive, but seem relatively comprehensive in some contexts. The construction of a model space follows once one delineates the uncertainty that exists along these dimensions.

A second question concerning the model space is whether to conceive of it as a discrete space or a continuous space. For example, should one define a discrete model space based on AR(1) and AR(2) specifications of a time series x_t or define a continuous model space

8This discussion was stimulated by Christopher Sims.
composed of different AR(2) models with different parameters, with a prior that places relatively greater prior weight for the coefficient for \(x_{t-2} \). In macroeconometric exercises, one often thinks of the choice of lag length as a major aspect of model specification, yet one can also argue that one does not literally believe that the lagged coefficient is zero, but really only that it is small. The use of a discrete rather than a continuous model space seems particularly appropriate when there is no natural way to nest the models in a model space.

In our judgment, there is no general resolution of this question; the appropriateness of a continuous versus discrete model space specification will depend on the economic environment and substantive question of interest. In this paper, we employ the discrete model space approach even though the models we consider can, in principle be nested. We do this since we wish to provide a framework to interpret various claims that are made about model-specific policies, so that the elements of our space correspond to the sorts of specifications one sees in different macroeconomic policy exercises. In our view, the distinction between a model with 1 lag versus 4 is interesting, as this corresponds to different views about the degrees of persistence in the time series of interest. Similarly, we take seriously the idea that a theory in which expectations are purely backwards looking should be distinguished from one that is not.

3. Model uncertainty and assessment of simple monetary policy rules

In this section, we provide an illustration of the methodological discussion using a simple empirical example; the example extends work in Brock et al. (2003).

3.1. Framework

We suppose that a monetary policymaker is contemplating the choice of parameters in a simple monetary policy rule. These types of rules are studied in many papers, a thorough example is Levin et al. (1998). Denoting the output gap as \(y_t \), inflation as \(\pi_t \) and the nominal interest rate on 1-period government bonds as \(i_t \), we assume that the policymaker employs a nominal interest rate rule

\[
i_t = g_p \pi_t + g_y y_t + g_i i_{t-1}.
\]

(17)

Following standard assumptions and terminology in the monetary rules literature, losses are calculated via an expected loss function \(R \) (sometimes known as risk) defined as

\[
R = \text{var}(\pi_\infty) + \lambda_y \text{var}(y_\infty) + \lambda_i \text{var}(\Delta i_\infty).
\]

(18)

Here we suppress the dependence of \(R \) on which conditioning assumptions are made via the specification of data, a policy, model and model parameters; different values of (18) will be calculated based on alternative conditioning choices. In our loss calculations, we will always assume \(\lambda_y = 1.0 \) and \(\lambda_i = 0.1 \). This choice of weights is arbitrary but is in the range assumed by earlier literature using similar loss functions, e.g. Levin and Williams (2003).\(^9\)

Our alternative models represent examples of the New Keynesian model exposited in Woodford (2003). The particular representations we employ are taken from Rudebusch

\(^9\)Ideally, one would want to state losses in utility terms.
and Svensson (1999) and Rudebusch (2002). These models may be understood as two equation systems. The first component of the system is an IS curve that relates output to real interest rates and an unobservable disturbance, $u_{IS,t}$:

$$y_t = \alpha_y y_{t-1} + \alpha_r (\bar{t}_{t-1} - E_{t-1} \bar{\pi}_{t+3}) + \left[\sum_{j=2}^{4} \alpha_{y,j} y_{t-j} \right] + u_{IS,t},$$ \hspace{1cm} (19)

where $\bar{t}_t = \frac{1}{3} \sum_{j=0}^{3} t_{t-j}$, $\bar{\pi}_t = \frac{1}{3} \sum_{j=0}^{3} \pi_{t-j}$. The second component is a Phillips curve that relates inflation to expected inflation, lagged inflation, lagged output and an unobservable disturbance, $u_{PC,t}$. The weights on inflation are constrained to sum to unity in order to ensure that the curve is vertical in the long run.

$$\pi_t = \beta_0 E_{t-1} \bar{\pi}_{t+3} + (1 - \beta_0) \beta_{x1} \pi_{t-1} + \beta_{y1} y_{t-1} + \left[(1 - \beta_0) \sum_{j=2}^{4} \beta_{x,j} \pi_{t-j} + \sum_{j=2}^{4} \beta_{y,j} y_{t-j} \right] + u_{PC,t}$$

subject to $\beta_0 + (1 - \beta_0) \sum_{j=1}^{4} \beta_{x,j} = 1$. \hspace{1cm} (20)

In Eq. (20) and throughout, we suppress inessential constants for expositional simplicity; these were included in all our empirical work.

Model uncertainty exists at two levels in our framework. The first level corresponds to our notion of theory uncertainty as it relates to the way in which expectations are formed by agents. First, backwards-looking and hybrid models are differentiated by treatment of $E_{t-1} \bar{\pi}_{t+3}$. For backwards-looking models,

$$E_{t-1} \bar{\pi}_{t+3} = 0.25(\pi_{t-1} + \pi_{t-2} + \pi_{t-3} + \pi_{t-4}),$$ \hspace{1cm} (21)

whereas for hybrid models,

$$E_{t-1} \bar{\pi}_{t+3} = \text{survey expectation of 1-year ahead inflation.}$$ \hspace{1cm} (22)

The backwards-looking modeling follows Rudebusch and Svensson (1999) whereas the hybrid modeling follows Rudebusch (2002). As well, the backwards model sets the coefficient on expected inflation in the Phillips curve to 0 (i.e. $\beta_0 = 0$). We refer to the backwards and hybrid cases as our two classes of models.

At a second level, there is specification uncertainty that exists once one has conditioned a given theory. This uncertainty is modeled with respect to the terms in brackets in Eqs. (19) and (20). Different lag structures correspond to alternative ways of capturing output and inflation dynamics; these dynamics are not constrained by economic theory but rather are included in order to capture serial correlation in the model errors. In each class of models, we estimate four different IS curves, with one, two, three and four lags of output on the RHS. We estimate 16 different Phillips curves, with one to four lags of output and one to four lags of inflation in the RHS. Thus within each class of models there are $64 = 4 \times 16$ specifications; each specification corresponds to a specific set of lag structures for the IS/PC system.

Under the assumption that the policy rule is deterministic, we use estimated values for the parameters of the IS and Phillips curves to solve the model and compute values of the loss function under alternative policy parameters. Our analysis assumes that the IS and Phillips curves are structurally stable over the 1970–2002 sample. We are aware of evidence to the contrary, but leave this complication to future work. We also do not allow for one
class of models to represent a better approximation of the underlying data-generating process in some periods but not others.10 Our simplifications are made to facilitate the exposition of how one might incorporate model uncertainty in evaluating the losses associated with alternative policies. For each model and a given set of policy preference parameters λ_y and λ_i, we use a grid search procedure to solve for the values of g_π, g_y, and g_i that minimize the expected loss function (18).

We calculate expected losses as follows. For a given model m, let \hat{R}_m denote the expected loss, when uncertainty associated with estimated parameters is ignored; this is the expected loss that occurs conditional on a model and the estimated model parameters. Let \hat{L}_m denote the BIC-adjusted likelihood for the model. For a given set of models, the expected loss \hat{R}, i.e. the expected loss when model uncertainty is incorporated into the evaluation, is

$$\hat{R} = \sum_{m \in M} \hat{R}_m \mu(m|d).$$

(23)

We assume that all models within a model class have equal prior probability. While we would prefer to assign priors in ways that are suggested by economic reasoning, we have yet to develop a natural way to do so in this context. We also see no reason why more complicated models warrant smaller (or larger) priors than simpler ones. As well, while we do not employ informative priors about parameters, we note the possible usefulness of such priors. Our uniform prior assumption implies that $\mu(m|d)$ is proportional to \hat{L}_m so that

$$\hat{R} = \frac{\sum_{m \in M} \hat{R}_m \hat{L}_m}{\sum_{m \in M} \hat{L}_m}.$$

(24)

We consider a number of ways to communicate the importance of model uncertainty in policy choice. In addition to various averaging calculations, we quantify our notions of outcome and action dispersion. Dispersion is measured in several ways, including support width (absolute value of the difference between the maximum and minimum values of the object of interest as it varies across models), standard deviation and interquartile range of expected loss across models. In reporting outcome dispersion, we acknowledge that one would like to consider outcome dispersion with respect to a range of policy preference structures but do not do so here. Finally, note that action dispersion is measured by dispersion in $\tilde{g}_\pi = (g_\pi / 1 - g_i)$ and $\tilde{g}_y = (g_y / 1 - g_i)$ and g_i. We employ the normalizations \tilde{g}_π and \tilde{g}_y in order to evaluate variation in the long-run effects of income and inflation on interest rates, respectively.

As part of our goal is to report visual descriptions of the properties of the model space, we will associate each model with a number. This relationship is described in Appendix A.

3.2. Data

All estimation is done using quarterly data from 1970:2 to 2002:4, with data from 1969:2 to 1970:1 used to provide lags. Apart from survey data, this is the same data studied in

10See Brock and Hommes (1997) for a theoretical discussion of modeling epoch-dependent expectations formation in which individual agents make correlated investment decisions due to changes in available information that collectively vary at different points in time and Pesaran et al. (2004) for methods to identify different epochs.
Brock et al. (2003). Inflation π_t is measured as the annualized change in the GDP deflator. The output gap y_t is computed as the difference between real GDP and the Congressional Budget Office’s estimate of potential GDP. The interest rate i_t is the quarterly average Federal Funds rate. We constructed the survey expectations measure of $E_{t-1}\bar{\pi}_{t+3}$ from the median price expectations of the Survey of Professional Forecasters. Let $P^e_{t/t}$ denote the period t survey expectation of the GDP deflator (GNP deflator prior to 1992) in the current quarter and $P^e_{t+4/t}$ denote the expectation of the deflator four quarters (1 year) from t. We set $E_{t-1}\bar{\pi}_{t+3} = 100 \log(P^e_{t+3|t-1}/P^e_{t-1|t-1})$. For two quarters (1970:3 and 1974:3), $P^e_{t+4|t}$ was missing; we substituted an extrapolation of the three-quarter-ahead expectation $P^e_{t+3|t}$.

3.3. Basic properties of the model space

We first consider some properties of the model space. Table 1 presents regression results for the backwards and hybrid specifications with the highest posterior probability. These are the models that would be selected if one were using the BIC criterion to choose one model within each class. The results are consistent with those for the backwards specification of Rudebusch and Svensson (1999) and the hybrid specification of Rudebusch (2002). In the IS curve, the BIC-adjusted likelihood chooses three lags of output in the backwards specification, two lags in the hybrid specification. The sum of regression coefficients and the interest rate elasticity are similar in both specifications. In the Phillips curve, both specifications choose one lag of output. The backwards specification uses three

<table>
<thead>
<tr>
<th>(A) IS curve</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{y_1}</td>
<td>1.12 (0.09)</td>
<td>-0.04 (0.13)</td>
<td>-0.20 (0.08)</td>
<td>0.07 (0.03)</td>
<td>0.89</td>
</tr>
<tr>
<td>z_{y_2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.03</td>
</tr>
<tr>
<td>z_{y_3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>z_r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backwards</td>
<td>0.13 (0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.10 (0.09)</td>
<td>-0.21 (0.08)</td>
<td>n.a.</td>
<td>0.13 (0.03)</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B) Phillips curve</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{y_1}</td>
<td>0.16 (0.04)</td>
<td>0.69 (0.08)</td>
<td>0.01 (0.10)</td>
<td>0.30 (0.08)</td>
<td>n.a.</td>
</tr>
<tr>
<td>β_{y_2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{y_3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backwards</td>
<td>0.14 (0.04)</td>
<td>1.00</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.83</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
</tr>
</tbody>
</table>

Notes: 1. Panel A presents estimates of Eq. (19), panel B estimates of Eq. (20). Constant terms were included in all regressions. The backwards and hybrid models differ in their treatment of expected inflation, as explained in the text.

2. In panel A, the output gap is the dependent variable, z_{y_j} is the coefficient on output gap at lag j, and z_r is the coefficient on the annual real interest rate. In panel B, inflation is the dependent variable, β_{y_j} is the coefficient on y_{t-j}, β_{π_j} is the coefficient on inflation at lag j, and β_0 is the coefficient on a survey measure of expected annual inflation.

3. The data are quarterly. The sample of 131 observations is 1970:2-2002:4. Inflation is the annualized change in the GDP deflator; the output gap is computed using real GDP and the CBO estimate of potential GDP; the interest rate is the average Federal funds rate.
lags of inflation, while the hybrid combines the survey expectation with a single lag. (Recall that, by construction, the sum of the lags—and lead, for the hybrid specification—on inflation is 1.) The hybrid specification puts substantial weight on the survey expectation, with $\beta_0 = 0.32$.

The maximum posterior probability hybrid model involves two fewer parameters than does the backwards model. For this reason, as well as some other quantitatively less important ones, the BIC-adjusted bivariate likelihood for the hybrid model is two orders of magnitude higher than that of the backwards-looking model (not reported in the table). We do not interpret the relative BIC-adjusted likelihoods as arguing for great posterior weight on hybrid versus backwards models. We came to this specification only after experimenting with various model-consistent measures of expectations (not reported), and by choosing the very best fitting specification in Rudebusch (2002). For example, we do not include terms for forward-looking output in the IS equation, because Rudebusch (2002) found these to be not significant. We return to this point below when we combine backwards and hybrid models.

How do model probabilities differ across the model space? Table 2 presents summary statistics on the distribution of the posterior model probabilities across the 64 models in each of the two classes. To do this, we focus on the relative likelihoods of each model m within a class, defined as

$$P_m = \frac{\hat{L}_m}{\sum_{m\in C} L_m},$$

where the sum in the denominator runs over the 64 models in a given class (backwards or hybrid). By construction, $0 < P_m < 1$ and $\sum_{m\in C} P_m = 1$. In each class, the relative likelihood is clustered around a handful of models. Row (6) in Table 2 indicates that only eight (backwards) or 13 (hybrid) models have likelihood as much as 1/20 of the likelihood of the model with the highest posterior. We will designate this group of models as possessing “high” likelihoods or “high” posteriors in our subsequent discussion. The factor of 1/20 is made to

<table>
<thead>
<tr>
<th>Relative likelihood P</th>
<th>Backward</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Minimum P</td>
<td>1×10^{-7}</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>(2) Q1 P</td>
<td>2×10^{-5}</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>(3) Median P</td>
<td>3×10^{-4}</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>(4) Q3 P</td>
<td>2×10^{-3}</td>
<td>9×10^{-3}</td>
</tr>
<tr>
<td>(5) Maximum P</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>(6) No. models with $P > (\text{max } P)/20$</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>(7) Sum of P for models with $P > (\text{max } P)/20$</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td>(8) Sum of P for models in top quartile</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>(9) Sum of P</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes: 1. Let \hat{L}_m be the BIC-adjusted likelihood for model m. Then

$$P_m = \frac{\hat{L}_m}{\sum_{m\in C} L_m},$$

where the summation runs over the 64 models in a given class (backwards or hybrid). As indicated in line (9), by construction $\sum_{m\in C} P_m = 1$.

facilitate highlighting those models most consistent with the data and follows ideas that have appeared elsewhere in the model averaging literature, e.g. Gustafson and Clarke (2004); minor changes in the definition of what is meant by a posterior probability would not change any qualitative features of our discussion. Row (8) of Table 2 indicates that in each class of models the 16 models with highest posterior probability dominate the relative likelihood.

3.4. The original Taylor rule revisited

Our first analysis of the interaction of policy rules and model uncertainty explores the expected loss associated with the original Taylor (1993) rule:11

$$i_t = 1.5\pi_t + 0.5y_t.$$ (26)

This rule may be evaluated with respect to outcome and action dispersion. Relative to our earlier discussion, action dispersion is by definition 0 since the rule is constant across specifications. Outcome dispersion is described in Table 3, which characterizes the way in which the expected loss associated with the original Taylor rule varies across the model space. Overall, for the class of backwards-looking models, the expected loss values appear to be relatively stable. When one concentrates on relatively likely backwards models, the expected loss estimates are all in the range of 19.1–23.2; the same exercise for hybrid models yields the somewhat broader range of approximately 15.2–31.9. There do exist outlier models with very different expected loss values: the support for Taylor rule expected loss for the backwards models is approximately 17.5–51.6 and the support for the hybrid models is 12.5–44.7. Row (8) of the table provides the model averaging calculations, in which the model-specific expected loss of the Taylor rule is averaged using posterior model probabilities according to (24). It is interesting to compare our model averaged expected loss estimates, 22.0 for the backwards class and 23.6 for the hybrid class, with the respective expected losses that occur for the maximum posterior probability models in each class, 23.2 and 24.1, respectively. The averaged numbers are lower, indicating that the Taylor rule works better for at least some models that would be ignored if one simply focused on the maximum posterior models. This exercise suggests that the original Taylor rule generally has good outcome robustness properties.

3.5. Comparing simple rules

As a second exercise, we consider the relative performance of the original Taylor rule against an optimized three-variable rule of the form (17). We will call these “optimized” rules as shorthand for “rules that are optimal for the model with highest posterior model probability given one of our two classes of models.” To do this, we calculate values of \(g_{\pi}, \ g_y, \) and \(g_i\) which minimize the loss function (18) using the weights described below that equation for the backwards model with the highest posterior probability and for the hybrid model with the highest posterior probability. As described in the next section, we found these parameters by a grid search. The results of the grid search are:

- Backwards: \(\hat{g}_{\pi} = 3.2, \ \hat{g}_y = 2.1, \ g_i = 0.2; \)
- hybrid: \(\hat{g}_{\pi} = 3.2, \ \hat{g}_y = 4.7, \ g_i = 0.55.\)

\(\text{(27)}\)

Both policies are more aggressive than the original (1993) Taylor rule.

11We report the demeaned version of the rule but used constants in the empirical work.
Our objective is to compare the performance of these rules with the Taylor rule. The optimized rules will of course outperform the Taylor rule when the posterior model with the highest probability in a model space is the true one; what we wish to ascertain is how this comparison is affected when one accounts for the presence of model uncertainty. In order to do these comparisons, we perform two sets of exercises. First, we compare the Taylor rule to the model-specific three-variable rule where the rule is computed for the same class on which the comparison is done. These comparisons mean that the policymaker is confident that his given choice of model class is the correct one, and is concerned only with misspecification within that class. Second, we do the same comparisons when the policymaker has chosen the wrong class. This means we compare the Taylor and three-variable rule optimized for the higher posterior backwards model on the class of hybrid models and vice versa. This exercise will be of interest to a policymaker who has tentatively chosen a model class but wishes to understand the costs if the other class in fact better captures salient features of the economy.

Fig. 1 presents a graph of the relative expected losses of the optimized three-variable and Taylor rules across the model space for both exercises. Models are reported using the numbering described in Appendix A. All relative expected losses are the ratios of the expected loss using the optimized rule to the expected loss using the Taylor (1993) rule, Eq. (26). A ratio less than one means that the optimized rule outperforms the Taylor rule.

Fig. 1 yields several interesting findings. First, as depicted in panels (1) and (2) in the first row of the figure, when one uses the backwards rule in backwards models, or the hybrid rule in hybrid models, the optimized rule is always preferable. Expected loss falls by a
factor of about two in the backwards models (panel (1)) and by a factor of anywhere from two to six in the hybrid models (panel (2)). Second, we see in panels (3) and (4) in the second row of Fig. 1 that even when one uses the hybrid rule in the backwards models (panel (3)), or the backwards rule in hybrid models (panel (4)), expected loss is almost always lower using the optimized rules. The light bars in panel (3) identify eight exceptions. In these eight exceptions, expected loss increases by perhaps 10% when one uses the optimized rule rather than the Taylor rule. The posterior probability of these models is

![Fig. 1. Ratios of expected loss for optimal policy rules over original Taylor rule. (A) Backward models, (B) Hybrid models. Notes:](image)

1. This figure presents the ratio of the expected loss R when monetary policy follows certain optimized rules to the expected loss when monetary policy follows Taylor’s (1993) rule. These optimized rules set the interest rate i as in (17), $i_t = g_p \pi_t + g_y y_t + g_i i_{t-1}$. The parameters g_p, g_y and g_i are chosen to minimize expected loss R given the estimates of the IS and Phillips curves presented in Table 1 above.

2. The policy rules are:
 - Original Taylor Rule: $g_p = 1.5$, $g_y = 0.5$, $g_i = 0$
 - Optimized 3 Variable Backwards: $g_p = 3.2$, $g_y = 2.1$, $g_i = 0.2$
 - Optimized 3 Variable Hybrid: $g_p = 3.2$, $g_y = 4.7$, $g_i = 0.55$.

3. In panel A the denominator is the expected loss R obtained applying Taylor’s (1993) rule to backwards models: in (1) the numerator is the expected loss obtained using the optimized rule for the likeliest backward model; in (3) the numerator is the expected loss obtained using the optimized rule for the likeliest hybrid model.
 In panel B the denominator is the expected loss R obtained applying Taylor’s (1993) rule to hybrid models: in (2) the numerator is the expected loss obtained using the optimized rule for the likeliest backwards model; in (4) the numerator is the expected loss obtained using the optimized rule for the likeliest hybrid model. In either case, the ratios are computed using the IS and Phillips curve estimates of 64 models in each class. See Appendix A for a mapping of the model numbers to details of specification of IS and Phillips curves.

4. A ratio less than one means that the optimized rule delivers lower expected loss than did the original (1993) Taylor rule. The light bars in panel (3) identify ratios greater than one.
small, approximately 0.08.12 Thus, even when the policymaker has chosen the wrong theory, the model-specific optimized rule generally dominates the Taylor rule, and often by a large margin; in the handful of cases in which the model-specific rule does not outperform the Taylor rule, the increase in expected loss is small. Third, the results suggest that the failure to condition on lagged interest rates is a serious deficiency of the Taylor rule for the hybrid case. Fourth, and more generally, it is important to let the data help determine the coefficients in the monetary policy rule (inflation and output gap, as well as lagged interest rate).

We next illustrate how model averaging exercises can reduce information such as that contained in Fig. 1 down to a set of simple statistics. Table 4 reports ratios of expected losses under the two rules. The ratio is 0.55 when the optimized backwards rule is used in backwards models, 0.32 when the optimized hybrid rule is used in hybrid models, 0.38 when the optimized backwards rule is used in hybrid models and 0.76 when the optimized hybrid rule is used in backwards models.

These average values can mask a wide dispersion of results, although we know from Fig. 1 that the optimized rules do well across virtually all models. Table 5 reports some summary statistics for our two exercises in which the optimized backwards rule is used in backwards models and the optimized hybrid rule is used in hybrid models, i.e. these statistics correspond to panels (1) and (2) in Fig. 1. One important feature of Table 5 is its demonstration that the relative expected loss between the two rules is extremely stable across model specifications. This implies, given our analysis of outcome dispersion for the Taylor Rule, that the theory and model-specific optimized rule also have good properties in terms of producing stable (across model) outcome dispersion.

These findings lead to the conclusion that any virtues of the Taylor rule relative to an optimized three-variable rule are not manifested in robustness against misspecification of lag length, or even misspecification of hybrid versus backwards or backwards versus hybrid expectations formation.

3.6. Outcome dispersion and action dispersion for optimal three-variable rules

In our third exercise, we explore the sensitivity of optimal three-variable rules to model choice. The idea in this work is to understand how the specification and associated expected loss of an optimal rule vary about specifications. Unlike the previous exercises, we do not specify a single rule and look at its behavior across models; each model is associated with its specific optimal rule. Table 6 presents information on the distribution of policy parameters and expected loss across models. The parameters were found with a grid search, with step size of 0.1, except for g_i for hybrid models in which a secondary grid search with steps of 0.02 was used because initially there was almost no variation across models to the first decimal place. Note that each column presents statistics across all 64 models. To interpret the table, consider, for example, in the class of backwards-looking models, the minimum values presented in line (3). The minimum value of \tilde{g}_π of 2.9 need not have been found in the same specification that yielded the minimum value of \tilde{g}_γ of 1.5, and neither of these specifications need have yielded the minimum value of expected loss of 8.8.

12Letting (i,j,k) denote the model specification with i income lags in the IS equation, and j income lags and k inflation lags in the Phillips curve, the models where the Taylor rule outperforms the optimized rule are (4,1,3), (4,1,4), (4,2,3), (4,2,4), (4,3,3), (4,3,4), (4,4,3) and (4,4,4).
We first consider the median values presented in line (5) of panel A. Consistent with previous literature such as Levin and Williams (2003), the hybrid model, which was solved treating expectations as model-consistent and thus forward looking, yields a lagged interest rate weight g_i that is higher than that for the backwards model. In other respects, the parameters are also congruent with earlier research. For example, in results not reported in the table we found that increasing λ_i shifts the distribution (across models) of the associated optimal g_i upwards; increasing λ_y also shifts the distribution of the associated optimal g_y upwards.

We have argued that there is relatively little outcome dispersion within a given class of models, at least if we focus on models with high posteriors. Table 7 illustrates that the same conclusion applies when we combine models from the two classes. We combine using a simple arithmetic average, as in Levin and Williams (2003). We do not weight by likelihood as in much of the model averaging literature as well as our previous work (Brock et al., 2003), because, as noted above, the hybrid model was explicitly derived after a larger than usual amount of data mining. Panel A in Table 7 asks about outcome dispersion if we simply hold fixed the parameters at the values that are optimal for the likeliest backwards model (columns (1)–(3) in panel A) or the likeliest hybrid model (columns (4)–(6)). Outcome dispersion is very small in columns (1)–(3); that is, a policymaker who is committed to using the parameters that are optimal for the likeliest backwards model is unlikely to be perturbed if he suddenly contemplates the possibility that the hybrid model class has a large element of truth as well. Outcome dispersion is, however, perceptible in columns (4)–(6).

The asymmetrical outcome results from the way we treated the two model classes. One could instead solve for parameters that are optimal given weights for each model. Results for this approach are given in panel B. The weight on the backwards model is denoted θ;

<table>
<thead>
<tr>
<th>Class of models (optimal 3 variable rule used)</th>
<th>Expected loss ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Backwards (optimal backwards)</td>
<td>0.55</td>
</tr>
<tr>
<td>(2) Backwards (optimal hybrid)</td>
<td>0.76</td>
</tr>
<tr>
<td>(3) Hybrid (optimal hybrid)</td>
<td>0.32</td>
</tr>
<tr>
<td>(4) Hybrid (optimal backwards)</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Notes: 1. This table presents the posterior weighted average ratios of expected loss R when monetary policy follows an optimized version of the Taylor (1993) rule. These optimized rules set the interest rate i as in Eq. (17), $i_t = g_p \pi_t + g_y y_t + g_i i_{t-1}$. The parameters g_p, g_y, and g_i are chosen to minimize expected loss R given the estimates of the IS and Phillips curves presented in Table 1 above. Denote the expected loss from the original Taylor (1993) rule as \hat{R}_T and expected loss from an optimized rule as \hat{R}_O, then the posterior weighted average ratio is

$$\sum_{m \in C} P_m \left(\frac{\hat{R}_O}{\hat{R}_T} \right).$$

2. Lines (1) and (2) report the average ratio for the backwards models using the optimized rule for the likeliest backward model (in line (1)) and the optimized rule for the likeliest hybrid model (in line (2)). Similarly, lines (3) and (4) report the average ratio for the hybrid models using the optimized rule for the likeliest hybrid model (in line (3)) and the optimized rule for the likeliest backwards model (in line (4)).
Table 5
Expected loss distributions across models

(A) All models

<table>
<thead>
<tr>
<th></th>
<th>Backwards</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td>Optimized</td>
</tr>
<tr>
<td></td>
<td>Taylor</td>
<td>3 variable</td>
</tr>
<tr>
<td>(1) Mean</td>
<td>30.0</td>
<td>16.6</td>
</tr>
<tr>
<td>(2) Std. Dev.</td>
<td>10.9</td>
<td>6.0</td>
</tr>
<tr>
<td>(3) Minimum</td>
<td>17.5</td>
<td>9.2</td>
</tr>
<tr>
<td>(4) Q1</td>
<td>20.2</td>
<td>11.3</td>
</tr>
<tr>
<td>(5) Median</td>
<td>26.3</td>
<td>14.9</td>
</tr>
<tr>
<td>(6) Q3</td>
<td>36.5</td>
<td>20.6</td>
</tr>
<tr>
<td>(7) Maximum</td>
<td>51.6</td>
<td>28.1</td>
</tr>
<tr>
<td>(8) Post. wgt.</td>
<td>22.0</td>
<td>12.1</td>
</tr>
<tr>
<td>Average</td>
<td>2.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(B) Models with high posterior probability

<table>
<thead>
<tr>
<th></th>
<th>Backwards (8 models)</th>
<th>Hybrid (13 models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Minimum</td>
<td>19.1</td>
<td>15.2</td>
</tr>
<tr>
<td>(2) Maximum</td>
<td>23.2</td>
<td>31.8</td>
</tr>
</tbody>
</table>

(C) Model with highest posterior probability

<table>
<thead>
<tr>
<th></th>
<th>Backwards</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>23.2</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Notes: 1. The policy rules are: Original Taylor Rule: $\bar{g}_{p} = 1.5$, $\bar{g}_{y} = 0.5$, $g_t = 0$. Optimized 3 Variable Backward: $\bar{g}_{p} = 3.2$, $\bar{g}_{y} = 2.1$, $g_t = 0.2$. Optimized 3 Variable Hybrid: $\bar{g}_{p} = 3.2$, $\bar{g}_{y} = 4.7$, $g_t = 0.55$. The assumed monetary policy rule is given in Eq. (17), $i_t = \bar{g}_{p} \pi_t + \bar{g}_{y} y_{t-1} + g_t h_{t-1}$. The expected loss function is given in Eq. (18), $R = \text{var}(\pi_{t_0}) + \lambda_y \text{var}(y_{t_0}) + \lambda_i \text{var}(\Delta \pi_{t_0})$, for $\lambda_y = 1.0$ and $\lambda_i = 0.1$.

2. In panel B, “high” posterior probability is defined as having a BIC adjusted likelihood at least 1/20 of the model with the highest BIC adjusted likelihood.

3. The regression estimates for models with the highest probabilities are given in Table 1.
results for $\theta = 0$ and 1 repeat results in Table 5C and are given for reference. As one would expect, the policy parameters move smoothly as θ is varied. Unsurprisingly, action dispersion is small for \tilde{g}_p and moderate for \tilde{g}_y and \tilde{g}_i.

These tables may be complemented visually by graphs of the distributions of outcomes and actions across models. This is done in the set of pictures contained in Fig. 2. As occurs in the reporting of objects such as impulse response functions from vector autoregressions, the visual reporting of outcome and action dispersion can suffer from a surfeit of information. We now turn to some suggestions on how these figures can be used by policymakers to inform decisions.

We first discuss action variance. Fig. 2A reports the different values of \tilde{g}_p, \tilde{g}_y and \tilde{g}_i that appear across the model-specific optimal rules in the backwards class. The panels depict visually the information on dispersion summarized in Table 6: there is a reasonable degree

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Distribution of optimal policy parameters and expected losses across models</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) All models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backwards</td>
</tr>
<tr>
<td></td>
<td>$g_p/(1-g_p)$</td>
</tr>
<tr>
<td>(1) Mean</td>
<td>3.4</td>
</tr>
<tr>
<td>(2) Std. Dev.</td>
<td>0.3</td>
</tr>
<tr>
<td>(3) Minimum</td>
<td>2.9</td>
</tr>
<tr>
<td>(4) Q1</td>
<td>3.2</td>
</tr>
<tr>
<td>(5) Median</td>
<td>3.4</td>
</tr>
<tr>
<td>(6) Q3</td>
<td>3.6</td>
</tr>
<tr>
<td>(7) Maximum</td>
<td>3.9</td>
</tr>
<tr>
<td>(8) Post. wgt. average</td>
<td>3.3</td>
</tr>
<tr>
<td>(9) Post. wgt. Std. Dev.</td>
<td>0.2</td>
</tr>
<tr>
<td>(B) Models with high posterior probability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backwards (8 models)</td>
</tr>
<tr>
<td></td>
<td>$g_p/(1-g_p)$</td>
</tr>
<tr>
<td>(1) Minimum</td>
<td>3.0</td>
</tr>
<tr>
<td>(2) Maximum</td>
<td>3.5</td>
</tr>
<tr>
<td>(C) Model with highest posterior probability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backwards</td>
</tr>
<tr>
<td></td>
<td>$g_p/(1-g_p)$</td>
</tr>
<tr>
<td>(1)</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Notes: 1. This table presents information on the distribution across the 64 models in a given class (backwards looking or hybrid) of monetary policy parameters \tilde{g}_p, \tilde{g}_y and \tilde{g}_i that yielded minimum expected loss. The values were found by grid search over \tilde{g}_p, \tilde{g}_y and \tilde{g}_i.

2. The assumed monetary policy rule is given in Eq. (17), $i_t = g_p \pi_t + g_y y_t + g_i i_{t-1}$. The expected loss function is given in Eq. (18), $R = \text{var}(\pi) + \lambda_y \text{var}(y) + \lambda_i \text{var}(\Delta i)$, for $\lambda_y = 1.0$ and $\lambda_i = 0.1$.

3. In panel B, “high” posterior probability is defined as having a BIC adjusted likelihood at least 1/20 of the model with the highest BIC adjusted likelihood.

4. The regression estimates for models with the highest probabilities are given in Table 1.
of dispersion across models with respect to \tilde{g}_p (in the sense of a support width of 1.0),\(^{13}\) large dispersion with respect to \tilde{g}_y (support width of 1.8) and moderate dispersion for g_i (support width of 0.4). This implicitly means that the width of the support of the non-normalized parameter g_p is about half that of the non-normalized parameter g_y. Hence, policymakers can conclude that g_p is relatively insensitive to model specification. Within this variation, g_i is almost always greater than 0. This helps explain why the Taylor rule was generally inferior to three-variable rules even when the latter were optimized on the wrong model. When one turns to the posterior weighted results, Fig. 2B, the main modification of these conclusions is that in some cases the supports of the parameters shrink when one focuses on those models whose posterior likelihoods are within 1/20 of the maximum posterior model. When one concentrates on these relatively likely models, one finds much smaller variation in \tilde{g}_p and \tilde{g}_y (measured by support width) than appears in Panel A. Interestingly, there is relatively less diminution of the support width of g_i for the relatively likely models. However, for the relatively likely models, g_i is always at least 0.1.

Similar results obtain for the hybrid model. Fig. 2C indicates that for this class, there is a larger support for the \tilde{g}_p and \tilde{g}_y parameters than in the backwards case (with support

\(^13\)We focus on support width in our discussion of dispersion; information on standard deviations and interquartile ranges are available in Table 6 and yield qualitatively similar conclusions.

Table 7
Optimal policy when combining hybrid and backwards models

(A) Policy parameters are held fixed at levels optimal for likeliest model in a given class

<table>
<thead>
<tr>
<th>Held fixed at backwards level</th>
<th>Held fixed at hybrid level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) R_b^*</td>
<td>(2) R_h</td>
</tr>
<tr>
<td>12.9</td>
<td>9.0</td>
</tr>
</tbody>
</table>

(B) Optimization over a posterior weighted average of a single backwards and single hybrid model

<table>
<thead>
<tr>
<th>Backwards weight (θ)</th>
<th>(2) $g_b/(1-g_b)$</th>
<th>(3) $g_y/(1-g_y)$</th>
<th>(4) g_i</th>
<th>(5) R_b</th>
<th>(6) R_h</th>
<th>(7) $\theta R_b + (1-\theta)R_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3.2</td>
<td>4.7</td>
<td>0.55</td>
<td>18.3</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>0.25</td>
<td>3.1</td>
<td>3.2</td>
<td>0.41</td>
<td>13.9</td>
<td>7.9</td>
<td>9.4</td>
</tr>
<tr>
<td>0.50</td>
<td>3.2</td>
<td>2.7</td>
<td>0.31</td>
<td>13.2</td>
<td>8.3</td>
<td>10.7</td>
</tr>
<tr>
<td>0.75</td>
<td>3.2</td>
<td>2.3</td>
<td>0.25</td>
<td>12.9</td>
<td>8.7</td>
<td>11.8</td>
</tr>
<tr>
<td>1.00</td>
<td>3.2</td>
<td>2.1</td>
<td>0.2</td>
<td>12.9</td>
<td>9.0</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Notes: 1. Let R_b^* = 12.9 and R_h^* = 7.6 denote the expected losses that obtain when the model that is likeliest within a given class of models is used, see Table 6C. In column (2) of panel A, R_b denotes the expected loss that obtains for the likeliest hybrid model (parameter estimates in Table 1) when the policy parameters are held fixed at the values that lead to R_b^*. By construction, R_b is at least as large as R_b^*. In column (4) of panel A, R_b is similarly computed, using backwards model estimates presented in Table 1 and hybrid policy parameters presented in Table 6C.

2. Panel B present parameters that are optimal when the expected loss function is the indicated arithmetic average of backwards and hybrid models. Expected loss for $\theta = 0$ and 1.0 corresponds to what is called R_b^* and R_h^* in panel A.
widths of 1.0 and 2.2, respectively). Compared with the backwards case, the variation in g_i is quite small, with a support width of 0.1. When one turns to the posterior weighted results in Fig. 2D, one finds little reduction in support width when attention is restricted to the relatively likely models.

What conclusions might a policymaker draw? One conclusion is that conditioning on lagged interest rates is a robust feature of optimal policies. A second conclusion is that if one conditions policy on the hybrid class, the interest rate parameter in a three-variable interest rule of the form (17) is insensitive to lag length specification whereas in other contexts, the optimal rule parameters can vary substantially across specifications.

We next consider the dispersion of expected loss for the backwards models and the hybrids and compare. An examination of dispersion in expected loss across all the backwards models reveals clustering around 10, 15, and 25 whereas for hybrids expected loss is essentially clustered around 6 or 7 (lower right panels of Figs. 2A and C). A policymaker who believed strongly in a backwards-looking world will want to proceed cautiously and look closely at what is generating this dispersion in expected loss. Perhaps most of the models generating the wide dispersion have low posterior probability. If one then examines the posterior weighted dispersion plot in the lower right-hand panel of Fig. 2B, it is evident that the expected loss clumping around 15 and 25 is generated by

![Fig. 2. Outcome and action dispersion. Parameters results for backwards models: (A) Non-weighted results. Notes: The two top panels and the left bottom panel report the value of the optimal policy parameter for each model (indexed by model's number, see Appendix A). The right bottom panel reports the values of the minimum expected loss for each model corresponding to the optimal parameters found. Expected loss R is calculated using preference values: $\lambda_y = 1.0$ and $\lambda_i = 0.1$, where $R = \text{var}(\pi_{-}) + \lambda_y \text{var}(y_{-}) + \lambda_i \text{var}(\Delta l_{-})$. (B) Posterior weighted results. Notes: Panels B report the same results as Panels A concerning the parameter values and the minimum expected loss. This time they are plotted against the BIC adjusted relative likelihood of each model. The light shaded dots refer to models having a BIC adjusted likelihood at least 1/20 of the model with the highest BIC adjusted likelihood. Parameters results for hybrid models: (C) Non-weighted results, (D) Posterior weighted results.

models with very low posterior probability. The policymaker may now be quite relieved and simply concentrate on managing the cluster of models whose expected loss clumps around 10. Further information is provided by focusing on relatively likely models. This restriction would lead a policymaker to concentrate attention on managing expected loss in...
a world dominated by the four models that clearly stand out in the figures as having
the bulk of the posterior probability.

For the hybrid class, expected loss dispersion is very narrow in comparison to the
backwards-looking models. Whatever dispersion is observed is reduced further when
computed with posterior weights and clumps around about 7.4 when one focuses on the
relatively likely models. This indicates substantial robustness for the optimal rules for
hybrids.

This type of discussion, in which one compares the plots of unweighted and posterior
weighted results, with further attention to the relatively likely models, enables a
policymaker to get a good overview of the expected loss dispersion it must face and
whether it is caused by models that are supported by the data in the sense that their
posterior weights are relatively high. As such, this discussion suggests potential ways of
dealing with critiques of the minimax criterion as being too fragile in the sense that it is
influenced far too much by models that have extremely small probabilities either in a
posterior sense or in some judgmental sense. The performance of the minimax criterion
might be improved by applying it to a data-determined “trimmed” subset of the possible
models, e.g. the subset consisting of those models with posterior probability within 1/20 of
the likeliest that we have employed. This same argument might be applied with profit to
any criterion that can be unduly influenced by models with small “believability” whether
believability is measured by posterior probability or some other method.

We close by observing that models with high posterior model probability behave
sufficiently similarly that our discussion appears to apply if we search for rules that
minimize expected loss. That is, suppose instead of doing calculations using the rule that is
optimal for the model with highest posterior probability, we follow our earlier work
(Brock et al., 2003) and calculate a rule that minimizes Eq. (24). Table 8 indicates that to
one decimal place, the results hardly change. The parameters for the rules with $\theta = 0$ and 1 are virtually identical in Table 7 (rule that is optimal for the model with highest posterior model probability) and Table 8 (rule that minimizes expected loss, Eq. (24)). Of course a finer grid would produce observable variation in the parameters of the rules. But that a fine grid is required to produce such variation suggests that Tables 4–7 and Fig. 1 continue to be applicable when one considers minimizing expected loss. \footnote{In our search, we limited ourselves to portions of the parameter space in which a given rule led to stable models for all models in the model space. This may be rationalized by assigning infinite loss to unstable models. Some research assigns finite loss to such models (e.g., Del Negro and Schorfheide, 2004). We leave to future research the investigation of whether or not assigning a finite loss would lead to very different results.}

3.7. Patterns \footnote{Giacomo Rondina has greatly helped us in identifying these patterns.}

We finally note that there exists an interesting pattern that relates model complexity (in our context, length of lags) and the policy parameters. As indicated in Fig. 3, while there is weak association between the total complexity of a model and the associated parameters, relatively strong patterns emerge when one considers IS curve complexity (the number of lags in Eq. (19)) and with Phillips curve complexity (the number of lags in (20)). For backwards-looking models, the magnitude of g_y decreases in IS complexity but increases in PC complexity. The magnitude of g_y is decreasing with respect to both IS and PC complexity.

Different patterns emerge for the hybrid models. For this model class, one finds that g_i increases in IS complexity. The g_y parameter is increasing in both IS and PC complexity. These patterns are the opposite of what holds for the backwards-looking model.

These systematic pattern relationships for backwards-looking and hybrid models suggest some interesting avenues for future research. One question is whether these patterns are sensitive to the choices of λ_i and λ_y. A second broader question concerns the

<table>
<thead>
<tr>
<th>θ</th>
<th>$g_x/(1 - g_i)$</th>
<th>$g_y/(1 - g_i)$</th>
<th>g_i</th>
<th>$\theta \hat{R}_b + (1 - \theta)\hat{R}_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 0.0</td>
<td>3.2</td>
<td>4.7</td>
<td>0.55</td>
<td>7.3</td>
</tr>
<tr>
<td>(2) 0.25</td>
<td>3.1</td>
<td>3.2</td>
<td>0.4</td>
<td>8.9</td>
</tr>
<tr>
<td>(3) 0.50</td>
<td>3.2</td>
<td>2.7</td>
<td>0.3</td>
<td>10.2</td>
</tr>
<tr>
<td>(4) 0.75</td>
<td>3.2</td>
<td>2.5</td>
<td>0.3</td>
<td>11.2</td>
</tr>
<tr>
<td>(5) 1.0</td>
<td>3.2</td>
<td>2.2</td>
<td>0.2</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Notes: 1. The parameter θ is defined in Table 7. The expected losses \hat{R}_b and \hat{R}_h are defined in Eq. (24), where the averaging takes place over a given class of models, either backwards or forwards.

2. The monetary policy parameters g_x, g_y, and g_i are chosen to minimize the expected loss $\theta \hat{R}_b + (1 - \theta)\hat{R}_h$, for the indicated value of θ. That the resulting values of g_x, g_y, and g_i are nearly identical to those in Table 7B for $\theta = 0$ and 1 indicates that to one decimal point, the rules that are optimal for the model with highest posterior probability usually are also optimal from the point of view of expected loss.

\footnotetext[14]{In our search, we limited ourselves to portions of the parameter space in which a given rule led to stable models for all models in the model space. This may be rationalized by assigning infinite loss to unstable models. Some research assigns finite loss to such models (e.g., Del Negro and Schorfheide, 2004). We leave to future research the investigation of whether or not assigning a finite loss would lead to very different results.}

\footnotetext[15]{Giacomo Rondina has greatly helped us in identifying these patterns.}
existence of patterns for more complex versions of the policy rule, such as rules which allow for policy lags beyond a single period. Brock and Durlauf (2005) shows how, when control is costless, as the number of lags in the policy rule is allowed to become arbitrarily long, the variation in the state variables of a system is reduced to the variation of the i.i.d. drivers of the system. We conjecture that this also holds when the cost of control is small, i.e. λ_i is much smaller than λ_y in the current context. Hence a system in which the number of control parameters is highly restricted will not be able to achieve the Brock and Durlauf (2005) reduction to fundamental i.i.d. shocks. The more complex the state equation, the greater the implicit restrictions on a simple rule such as (17) and hence the greater the “strain” on the rule to achieve this limit. We conjecture that there is something analogous

![Graphs showing model complexity and parameter relationship.](image)

Fig. 3. Model complexity and parameter relationship.
to a Le Chatelier principle that produces a relationship between the Taylor parameters as the complexity of the state equation increases.

4. Interpretation

In this section we consider some interpretations of our results in the context of an abstract dynamic system. We consider a one-dimensional backwards-looking class of models and assume that the true data-generating process is contained within the system; we

![Diagram of Taylor parameters relationships](image_url)
employ a one-dimensional system as closed-form solutions are straightforward to develop for this case whereas for higher-dimensional cases they are far more complicated and lead to a loss of intuition. Let \(x_t \) denote the state of the system and \(u_t \) denote the scalar control available to the policymaker. The state evolves according to

\[
x_t = a(L)x_{t-1} + b(L)u_{t-1} + \xi_t, \tag{28}
\]

where the Wold representation of \(\xi_t \) is denoted as

\[
\xi_t = w(L)v_t. \tag{29}
\]

We assume that \(w(L) \) is invertible. A policymaker has access to linear feedback rules of the form

\[
u_{t-1} = -g(L)x_{t-1} \tag{30}
\]

and chooses a feedback rule in order to minimize

\[
Ex^2 + \lambda Eu^2. \tag{31}
\]

We now consider a special case of this model: \(\lambda = 0 \), and \(w(L) = 1 \). For this class of models, the optimal choice\(^\text{16} \) of \(g(L) = g^*(L) \) will fulfill

\[
g^*(L) = \frac{a(L)}{b(L)} = 1 + d(L). \tag{32}
\]

Eq. (32) is useful because it illustrates the basic Taylor principle for stabilization policy. To see this, consider the special case \(a(L) = a \in (0, 1) \) and \(b(L) = b \), so that \(g^*(L) = 1 + d = 1 + (a - b)/b \). Relative to the model in Section 3, one can equate \(x_t \) with inflation and \(u_t \) with the nominal interest rate. The Taylor principle is \(g_\pi > g_y \), so that inflation innovations get greater weight than output innovations. By analogy, we have the same tendency to react relatively strongly to inflation. For our special case, the magnitude of the feedback from last period’s inflation to today’s nominal interest rate is \((a - b)/b \). If \((a - b)/b > 0 \), the feedback is more than one to one. This seems an empirically plausible case given the high persistence in the inflation series. One could also argue that Friedman’s classic (1948) concern about long and variable lags is interpretable as suggesting that the feedback polynomial \(b(L) \) is not that persistent.

This model may be used to illustrate the concepts of outcome dispersion and action dispersion we have described in Section 3.6. In doing this, we will ignore parameter uncertainty. We first consider the case where the optimal policy is not constrained in terms of numbers of lags. Let the model space \(M \) be defined as

\[
M = \{a(L, m), b(L, m)\}, \tag{33}
\]

where \(a(L, m) \) and \(b(L, m) \) denote model-specific lag polynomials. In our analysis, we considered a set of 64 different models for the model space (33). Each model is associated with a distinct fundamental driver \(v_{m,t} \) with variance \(\sigma^2_{v_m} \).

If \(w(L) = 1 \), outcome dispersion is generated by cross-section variation in \(\sigma^2_{v_m} \), recalling our assumption that the lag length for the policy rule is not constrained. The model-specific optimal rule eliminates all dependence in the state. Action dispersion in this case refers to the variance of \(g^*_j \), the coefficient associated with \(L^j \) in \(g^*(L) \). For model \(m \), which is a joint

\[(\text{This finding is standard; we refer the reader to Brock and Durlauf (2005) for a rigorous development of necessity and sufficiency arguments for models of this type.)}\]
specification of $a(L, m)$ and $b(L, m)$, there is an associated $g^*(L)$, hence g_j^* may vary across models even if the outcome dispersion does not. The variance of g_j^* can be written as

$$\text{var}(g_j^*) = \text{var}(1 + d(L, m)_j).$$

In this expression $d(L, m)_j = d_j$, the jth coefficient in the polynomial $d(L)$ associated with model m.

These calculations assume that a policymaker may choose any lag length for the feedback rule. One may ask similar questions about outcome and action dispersion when policymakers are required to choose rules with restrictions on lag length; in fact many of the “simple” rules that have been considered in recent monetary research, of which the Taylor rule is a leading example, do this. From the perspective of model uncertainty in lag structure, these simple rules suffer from the possibility that even when their parameters are chosen optimally, they are unable to counter longer-run feedbacks.

To understand the costs of overly simple rules, we consider the case $w(L) = 1$ and $b = 1$. Suppose that the true model is one where the lag structure for $a(L)$ contains N lags. If one were to consider a sequence of optimal rules, in which the kth rule is constrained to only have k lags, then it is easy to see that the value of Ex^2 obtainable with a k-lag rule is decreasing (in k) and will, when $k = N$, equal σ^2_{ϵ}. This simple logic is suggestive of the factors that will determine the outcome dispersion for a model space of the form $M = \{a(L, m), b\}$. If the set of possible policy rules allows for lag lengths up to N, then the minimum outcome dispersion may be obtained for every model in M.

This basic argument has an important implication for outcome dispersion and model uncertainty: outcome dispersion as associated with model-specific optimal policies will decline to 0 as the number of lags in the policy rule space increases. This holds because, for each model, it is possible to construct a policy rule which reduces the system to white noise. Conversely, if one defines a complexity gap as the difference between the number of lags in the state equation and the number of lags in the policy rule, one would expect the estimated expected loss to be increasing in this gap. The dispersion plots for minimum expected loss in Fig. 2 appear to possess this property. This is so because we optimized over parameters for the single-lag structure where the total number of lags in the behavioral equations increases from 3 to 12 as we move across the model space. These findings suggest that a general analysis of complexity/efficacy tradeoffs for policy rules might prove interesting.

5. Conclusions

In this paper, we have attempted to outline some basic principles for incorporating model uncertainty into the reporting of policy evaluation exercises. We have argued that the policy analysis should not be done conditional on a specific model but rather should reflect model uncertainty. This leads to model averaging methods that treat model specification as unobservable in a way parallel to any other type of unknown in data analysis. We have applied these ideas to some monetary policy exercises. These exercises suggest that the Taylor rule has good robustness properties. These analyses also suggest some ways to visualize the role of model uncertainty which may facilitate communication with policymakers.

To be clear, our analysis really only scratches the surface of the many questions that arise when model uncertainty is incorporated into policy exercises. One important question
is how to operationalize our approach to richer model spaces, such as spaces which incorporate various types of learning and non-linearity. Another question concerns the appropriate specification of prior probabilities on model spaces for macroeconomic contexts such as monetary policy evaluation. Perhaps most important, our analysis describes uncertainty for a fixed model space. Since progress in economic research should have the effect of expanding the space over time, this expansion should be incorporated into any decision problem. It might well also be the case that the choice of rules should reflect the implications of a rule for how information about a model space is produced. All of these questions suggest that model uncertainty research should prove an active area of study.

Acknowledgements

We thank the John D. and Catherine T. MacArthur Foundation and National Science Foundation, Vilas Trust and University of Wisconsin Graduate School for financial support. We are especially grateful to Ethan Cohen-Cole, Giacomo Rondina and Chih Ming Tan for outstanding research assistance. Lars Hansen, Christopher Sims and two anonymous referees have provided valuable comments on a previous draft.

Appendix A

This appendix maps the model numbers used in Figs. 1 and 2 into details of specifications of the IS and Phillips curves. For each model number running from 1 to 64, three numbers are presented. These are: number of lags of y in IS curve; number of lags of y in Phillips curve; number of lags of π in Phillips curve. For example, model 25 has two lags of y in the IS curve, along with three lags of y and one lag of π in the Phillips curve.

Index for model space

<table>
<thead>
<tr>
<th>Model number</th>
<th>Specification y lags in IS, y lags and π lags in PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111 17 211 33 311 49 411</td>
</tr>
<tr>
<td>2</td>
<td>112 18 212 34 312 50 412</td>
</tr>
<tr>
<td>3</td>
<td>113 19 213 35 313 51 413</td>
</tr>
<tr>
<td>4</td>
<td>114 20 214 36 314 52 414</td>
</tr>
<tr>
<td>5</td>
<td>121 21 221 37 321 53 421</td>
</tr>
<tr>
<td>6</td>
<td>122 22 222 38 322 54 422</td>
</tr>
<tr>
<td>7</td>
<td>123 23 223 39 323 55 423</td>
</tr>
<tr>
<td>8</td>
<td>124 24 224 40 324 56 424</td>
</tr>
<tr>
<td>9</td>
<td>131 25 231 41 331 57 431</td>
</tr>
<tr>
<td>10</td>
<td>132 26 232 42 332 58 432</td>
</tr>
<tr>
<td>11</td>
<td>133 27 233 43 333 59 433</td>
</tr>
<tr>
<td>12</td>
<td>134 28 234 44 334 60 434</td>
</tr>
<tr>
<td>13</td>
<td>141 29 241 45 341 61 441</td>
</tr>
<tr>
<td>14</td>
<td>142 30 242 46 342 62 442</td>
</tr>
<tr>
<td>15</td>
<td>143 31 243 47 343 63 443</td>
</tr>
<tr>
<td>16</td>
<td>144 32 244 48 344 64 444</td>
</tr>
</tbody>
</table>
References