Constant Returns

The cost function is linear in output in the case of constant returns:

\[c(w, q) = qc(w, 1) \]

for all input price vectors \(w \).

To prove this, first note that \(c(w, 1) = w \cdot z^1 \) for some production plan \(z^1 \) such that \((1, -z^1) \in Y \). Then by constant returns the production plan \((q, -qz^1) \in Y \), and this plan produces \(q \) units of output at a cost of \(w \cdot (qz^1) = qc(w, 1) \). This proves that \(c(w, q) \leq qc(w, 1) \). Also, \(c(w, q) = w \cdot z^q \) for some production plan \(z^q \) such that \((q, -z^q) \in Y \). Then by constant returns the production plan \((1, -\frac{1}{q}z^q) \in Y \), and this plan produces 1 unit of output at a cost of \(\frac{1}{q}c(w, q) \). This proves that \(c(w, 1) \leq \frac{1}{q}c(w, q) \), so \(qc(w, 1) \leq c(w, q) \)

This implies that average and marginal costs are equal.

CES Cost Function

Average Cost

\[c = AC = \sum_{\ell=1}^{L} \frac{w_{\ell}z_{\ell}}{q} \]

Marginal Cost

\[c = MC = \frac{w_{\ell}}{MP_{\ell}} \]

Production Function

\[\frac{q^\rho - 1}{\rho} = \sum_{\ell=1}^{L} \theta_{\ell} (z_{\ell})^\rho - 1 \]

Marginal (and average) Products

\[q^{\rho-1}MP_{\ell} = \theta_{\ell} (z_{\ell})^{\rho-1} \]

\[MP_{\ell} = \theta_{\ell} (AP_{\ell})^{1-\rho} \]

\[\left(\frac{MP_{\ell}}{\theta_{\ell}} \right)^{\sigma} = AP_{\ell} \]

so from the marginal cost formula above

\[c^{-\sigma} = \left(\frac{MP_{\ell}}{\theta_{\ell}} \right)^{\sigma} \left(\frac{\theta_{\ell}}{w_{\ell}} \right)^{\sigma} = AP_{\ell} \]

and the average cost formula can be written as

\[c = \sum_{\ell=1}^{L} \frac{w_{\ell}}{AP_{\ell}} \]

so
\[c^{1-\sigma} = \sum_{\ell=1}^{L} \frac{w_{\ell}}{AP_{\ell}} AP_{\ell} \left(\frac{\theta_{\ell}}{w_{\ell}} \right)^{\sigma} \]

and

\[c^{1-\sigma} = \sum_{\ell=1}^{L} \theta_{\ell} \left(\frac{w_{\ell}}{\theta_{\ell}} \right)^{1-\sigma} \]

or

\[c^{1-\sigma} = \sum_{\ell=1}^{L} (\theta_{\ell})^{\sigma} (w_{\ell})^{1-\sigma} \]