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S.1 Useful lemmas

In the lemmas below we use the following notation. For S ⊂ RK , let conv(·) denote the

convex hull of S. For S1 ⊂ RK and S2 ⊂ RK and λ ∈ (0, 1) let λS1 ⊕ (1− λ)S2 = {s ∈ RK :

s = λs1 + (1− λ)s2 for some s1 ∈ S1 and s2 ∈ S2}.

Lemma S1. Let CI1 = {β : β − β̂ ∈ S1} and CI2 = {β : β − β̂ ∈ S2}, where S1 is closed,

S2 is convex, and both sets are nonrandom. Suppose CI1 ⊆ CI2 and that

P (β0 ∈ CI1) = P (β0 ∈ CI2) = 1− α

for some α ∈ (0, 1). Then CI1 = CI2.

Proof. Suppose there is s̄ ∈ S2, but s̄ /∈ S1. Since S1 is closed, it follows that there exits

δ > 0 such that infs∈S1 ‖s̄ − s‖ ≥ δ. Let S3 = conv(S1 ∪ s̄) ⊆ S2. Since S1 has positive

Lebesgue measure, also S3 has positive Lebesgue measure, and since it is convex, it contains a

compact ball B of positive measure (see for example Corollary 2.4.9 and Proposition 4.10.11

of Bogachev (1998)). Now for any γ > 0 define Sγ = {s : (1 − α)s̄ + γsB for some sB ∈
B}. Notice that Sγ ⊂ S3, but for γ small enough (but positive), Sγ ∩ S1 = ∅ because

infs∈S1 ‖s̄−s‖ ≥ δ. It follows that S3\S1 has positive Lebesgue measure as well and therefore

1− α = P (β0 − β̂ ∈ S2) ≥ P (β0 − β̂ ∈ S3) > P (β − β̂ ∈ S1) = 1− α,

which is a contradiction.
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Lemma S2. Let Z ∼ N(0, IKn×Kn), Σ ∈ RKn×Kn be positive definite, p(x) ∈ RKn, and

σ(x) =
√
p(x)′Σp(x) ∈ (0,∞) for all x ∈ X . Let cu(x) and cl(x) be functions such that

P

(
cl(x) ≤ p(x)′Σ1/2Z

σ(x)
≤ cu(x)∀x ∈ X

)
= 1− α,

where α ∈ (0, 1/2). Let εn → 0 such that Knεn → 0. Then

P

(
cl(x)− εn ≤

p(x)′Σ1/2Z

σ(x)
≤ cu(x) + εn ∀x ∈ X

)
→ 1− α.

Proof. Note that cl(x) < −Φ−1(1−α) and cu(x) > Φ−1(1−α), where Φ denotes the standard

normal cdf. Let

γ1
n =

Φ−1(1− α) + |εn|
Φ−1(1− α)

and γ2
n =

Φ−1(1− α)− |εn|
Φ−1(1− α)

.

Since Φ−1(1−α) > 0, γ1
n and γ2

n are well defined and positive for εn close enough to 0. Define

S1 =

{
z ∈ RKn : cl(x) ≤ p(x)′Σ1/2z

σ(x)
≤ cu(x)∀x ∈ X

}
,

S2,n =

{
z ∈ RKn : cl(x)− εn ≤

p(x)′Σ1/2z

σ(x)
≤ cu(x) + εn ∀x ∈ X

}
and

Sγ1 =

{
z ∈ RKn : γcl(x) ≤ p(x)′Σ1/2z

σ(x)
≤ γcu(x)∀x ∈ X

}
for γ > 0. By definition,

(S1) P (Z ∈ Sγ
2
n

1 ) ≤ P (Z ∈ S2,n) ≤ P (Z ∈ Sγ
1
n

1 )

holds. By a change of variables,

P (Z ∈ Sγ1 ) =

∫
1 (z ∈ Sγ1 )φ(z)dz

= γKn
∫

1 (γz ∈ Sγ1 )φ(γz)dz

= γKn
∫

1 (z ∈ S1)φ(γz)dz.

Since φ(γz) < φ(z) for γ > 1 and φ(γz) > φ(z) for γ < 1,

0 ≤ P
(
Z ∈ Sγ

1
n

1

)
− P (Z ∈ S1) ≤ P (Z ∈ S1)

(
(γ1
n)Kn − 1

)
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and

0 ≥ P
(
Z ∈ Sγ

2
n

1

)
− P (Z ∈ S1) ≥ P (Z ∈ S1)

(
(γ2
n)Kn − 1

)
.

Note that

(γ1
n)Kn =

(
1 +

|εn|
Φ−1(1− α)

)Kn
=

(
1 +

Kn|εn|
KnΦ−1(1− α)

)Kn
= exp

(
Kn|εn|

Φ−1(1− α)

)
+ o(1).

Thus, if Kn|εn| → 0, then

P (Z ∈ Sγ
1
n

1 )→ P (Z ∈ S1) and P (Z ∈ Sγ
2
n

1 )→ P (Z ∈ S1).

Together with (S1) we can conclude P (Z ∈ S2,n)→ 1− α.

Lemma S3. Let λ ∈ (0, 1). Let ν denote the Lebesgue measure on RK, let Φ denote the

K-dimensional standard normal measure, and let φ denote the standard normal pdf. Let S1

and S2 be bounded sets on RK. Suppose there is a set S3 ⊆ λS1 ⊕ (1− λ)S2 with ν(S3) > 0

such that for all s3 ∈ S3 and some δ > 0

inf
(s1,s2)∈S1×S2:λs1+(1−λ)s2=s3

‖s1 − s2‖2 > δ.

Then

Φ(λS1 ⊕ (1− λ)S2) ≥ Φ(S1)λΦ(S2)1−λ + inf
s∈S1∪S2

φ(s)

(
exp

(
λ(1− λ)δ

2

)
− 1

)
ν(S3).

Proof. From simple algebra it follows that

lnφ(λs1 + (1− λ)s2)− (λ lnφ(s1) + (1− λ) lnφ(s2)) =
λ(1− λ)

2
‖s1 − s2‖2

and thus

φ(λs1 + (1− λ)s2) = φ(s1)λφ(s2)1−λ exp

(
λ(1− λ)

2
‖s1 − s2‖2

)
.

Now define

h(x) = sup
y∈RK

φ

(
x− y
λ

)λ
1

(
x− y
λ
∈ S1

)
φ

(
y

1− λ

)1−λ

1

(
y

1− λ
∈ S2

)
.

Notice that

x = λ
x− y
λ

+ (1− λ)
y

1− λ
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and therefore, log-concavity of φ(·) implies that for all y ∈ RK

φ(x) ≥ φ

(
x− y
λ

)λ
φ

(
y

1− λ

)1−λ

.

Moreover, 1(x ∈ S1 ⊕ (1− λ)S2) ≥ 1
(
x−y
λ
∈ S1

)
1
(

y
1−λ ∈ S2

)
and thus for all x ∈ RK

φ(x)1(x ∈ S1 ⊕ (1− λ)S2) ≥ h(x).

Similarly, if x ∈ S3, then for any y ∈ RK

φ(x) ≥ φ

(
x− y
λ

)λ
φ

(
y

1− λ

)1−λ

exp

(
λ(1− λ)

2

∥∥∥∥x− yλ − y

1− λ

∥∥∥∥2
)
.

If x−y
λ
∈ S1 and y

1−λ ∈ S2, then
∥∥x−y

λ
− y

1−λ

∥∥2 ≥ δ and x ∈ λS1 ⊕ (1− λ)S2. Therefore, for

all x ∈ S3

φ(x) ≥ h(x) exp

(
λ(1− λ)δ

2

)
Moreover, take any x ∈ λS1⊕ (1− λ)S2. Then there exist s1 ∈ S1 and s2 ∈ S2 such that

x = λs1 + (1− λ)s2. Let y = (1− λ)s2. Then s1 = x−y
λ
∈ S1. Thus

h(x) ≥ φ (s1)λ 1 (s1 ∈ S1)φ (s2)1−λ 1 (s2 ∈ S2) ≥ inf
s∈S1∪S2

φ(s) > 0.

We now get

φ(x)1 (x ∈ λS1 ⊕ (1− λ)S2) = φ(x)1 (x ∈ λS1 ⊕ (1− λ)S2) 1(x /∈ S3) + φ(x)1(x ∈ S3)

≥ h(x)1(x /∈ S3) + h(x) exp

(
λ(1− λ)δ

2

)
1(x ∈ S3)

= h(x) + h(x)

(
exp

(
λ(1− λ)δ

2

)
− 1

)
1(x ∈ S3)

≥ h(x) + inf
s∈S1∪S2

φ(s)

(
exp

(
λ(1− λ)δ

2

)
− 1

)
1(x ∈ S3).

By Theorem 1.8.2 in Bogachev (1998),∫
h(x)dx ≥ Φ(S1)λΦ(S2)1−λ,

Taking the integral of the inequality above yields

Φ (λS1 ⊕ (1− λ)S2) ≥ Φ(S1)λΦ(S2)1−λ + inf
s∈S1∪S2

φ(s)

(
exp

(
λ(1− λ)δ

2

)
− 1

)
ν(S3).
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Lemma S4. Let λ ∈ (0, 1). Let S1 and S2 be convex and compact subsets of RK such that

for some C > 0, S ≡ {s : ‖s‖ ≤ C} ⊂ S1 and S ⊂ S2. Let c1(x) = supγ∈S1
p(x)′γ and

c2(x) = supγ∈S2
p(x)′γ, where supx∈X ‖p(x)‖ < ∞. If supx∈X |c1(x) − c2(x)| > ε for some

ε > 0, then there exists a set S3 ⊆ λS1 ⊕ (1− λ)S2 and a δ > 0 such that for all s3 ∈ S3

inf
(s1,s2)∈S1×S2:λs1+(1−λ)s2=s3

‖s1 − s2‖ > δ

and ν(S3) > δ, where δ only depends on λ, ε, supx∈X ‖p(x)‖, C, and supγ∈S1∪S2
‖γ‖.

Proof. Without loss of generality assume that for some x̄ ∈ X it holds that c1(x̄)− c2(x̄) >

ε. Also notice that c1(x̄) = p(x̄)′γ1 for γ1 ∈ S1 and c2(x̄) = p(x̄)′γ2 for γ2 ∈ S2. Let

c3 = λc1(x̄) + (1− λ)c2(x̄). Let c be the midpoint of (c2(x̄), c3), which is

c = c2(x̄) +
1

2
λ(c1(x̄)− c2(x̄)),

and define

H1 = {γ ∈ RK : p(x̄)′γ ≥ c} and H2 = {γ ∈ RK : p(x̄)′γ ≤ c2(x̄)}.

Now define S3 = λS1⊕ (1− λ)S2 ∩H1. Notice that λγ1 + (1− λ)γ2 ∈ H1 and thus, S3 is not

empty. We will now prove that S3 satisfies the properties in the lemma.

Let A = conv(S ∪ λγ1 + (1 − λ)γ2). Since S ⊆ λS1 ⊕ (1 − λ)S2, λγ1 + (1 − λ)γ2 ∈
λS1 ⊕ (1− λ)S2, and λS1 ⊕ (1− λ)S2 is convex, it follows that A ⊆ λS1 ⊕ (1− λ)S2.

Let c = infγ∈S p(x̄)′γ. Then for λ̄ = c−c
c3−c and γ ∈ (λ̄(λγ1 + (1−λ)γ2)⊕ (1− λ̄)S) we have

p(x̄)′γ ≥ c and thus,

(λ̄(λγ1 + (1− λ)γ2)⊕ (1− λ̄)S) ⊆ H1.

Moreover,

(λ̄(λγ1 + (1− λ)γ2)⊕ (1− λ̄)S) ⊆ A ⊆ λS1 ⊕ (1− λ)S2.

Together this means that

(λ̄(λγ1 + (1− λ)γ2)⊕ (1− λ̄)S) ⊆ S3.

The set (λ̄(λγ1 + (1−λ)γ2)⊕ (1− λ̄)S) is a ball with center at λ̄(λγ1 + (1−λ)γ2) and radius

(1− λ̄)C = C
c3 − c
c3 − c

≥ C

2

λε

c3 − c
> 0.

Let c̄ = supγ∈S1∪S2
p(x̄)′γ. Then the radius of the ball, which is contained in S3, is at least

C
2
λε
c̄−c > 0 and therefore, ν(S3) > 0.
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Next, define D = (S1 ∩H1) which is nonempty. Also notice that S2 ⊆ H2. Therefore,

inf
(s1,s2)∈D×S2

‖s1 − s2‖ ≥ inf
(s1,s2)∈H1×H2

‖s1 − s2‖ ≥
c− c2(x̄)

‖p(x̄)‖
≥ λε

2 supx∈X ‖p(x)‖

Now take s3 ∈ S3. Then p(x)′s3 ≥ c. Write s3 = λs1 + (1 − λ)s2 for s1 ∈ S1 and s2 ∈ S2.

Suppose that s1 /∈ D. Then s1 /∈ H1, which implies that p(x̄)′s1 < c. But since it also holds

that s2 ∈ S2, we have p(x̄)′s3 < c, which would yield the contradiction that p(x)′s2 < c. It

follows that for all s3 ∈ S3

inf
(s1,s2)∈S1×S2:λs1+(1−λ)s2=s3

‖s1 − s2‖ ≥ inf
(s1,s2)∈D×S2

‖s1 − s2‖ ≥
λε

2 supx∈X ‖p(x)‖
> 0.

The now conclusion follows with δ = min
{

λε
2 supx∈X ‖p(x)‖ , ν((1− λ̄)S)

}
.

S.2 Proofs

S.2.1 Proofs of main results

Proof of Lemma 1. (1) Suppose β ∈ CI(β̂). Then for all x ∈ X it holds by definition that

gl(x, β̂) ≤ p(x)′β and p(x)′β ≤ gu(x, β̂). Therefore

P
(
gl(x, β̂) ≤ p(x)′β0 ≤ gu(x, β̂) for all x ∈ X

)
≥ P (β0 ∈ CI(β̂)) = 1− α.

(2) Let Xu = {x ∈ X : wu(x) > 0} and Xl = {x ∈ X : wl(x) > 0}. Then

1− α = P

(
sup
x∈X

p(x)′(β0 − β̂)

σ(x)
wu(x) ≤ c, inf

x∈X

p(x)′(β0 − β̂)

σ(x)
wl(x) ≥ −c

)

= P

(
sup
x∈Xu

p(x)′(β0 − β̂)

σ(x)
wu(x) ≤ c, inf

x∈Xl

p(x)′(β0 − β̂)

σ(x)
wl(x) ≥ −c

)
= P

(
p(x)′β0 ≤ gu(x, β̂) ∀x ∈ Xu, p(x)′β0 ≥ gl(x, β̂) ∀x ∈ Xl

)
= P

(
gl(x, β̂) ≤ p(x)′β0 ≤ gu(x, β̂) for all x ∈ X

)
Moreover, by construction the set {β : gl(x, β̂) ≤ g(x, β) ≤ gu(x, β̂) for all x ∈ X} can be

written as {β : β̂ − β ∈ S} where S is nonrandom.

Proof of Theorem 1. (1): Let [gl(x, β̂), gu(x, β̂)] ∈ C be an arbitrary taut confidence band

and define

CI(β̂) = {β : gl(x, β̂) ≤ p(x)′β ≤ gu(x, β̂) for all x ∈ X}
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and

g∗l (x, β̂) = inf
β∈CI(β̂)

p(x)′β and g∗u(x, β̂) = sup
β∈CI(β̂)

p(x)′β.

By Lemma 1, P (g∗l (x, β̂) ≤ g0(x) ≤ g∗u(x, β̂) ∀x ∈ X ) ≥ 1 − α. Moreover, g∗u(x, β̂) ≤
gu(x, β̂), and g∗l (x, β̂) ≥ gl(x, β̂) for all x. Hence, if [gl(x, β̂), gu(x, β̂)] is taut, it holds that

[gl(x, β̂), gu(x, β̂)] = [g∗l (x, β̂), g∗u(x, β̂)]. Finally, by definition of the class C, there exists a

nonrandom set S ⊂ RK such that

gl(x, β̂) = inf
β∈CI(β̂)

p(x)′β = p(x)′β̂ + inf
β−β̂∈CI(β̂)−β̂

p(x)′(β − β̂) = p(x)′β̂ + inf
γ∈S

p(x)′γ

and similarly

gu(x, β̂) = p(x)′β̂ + sup
γ∈S

p(x)′γ.

It now immediately follows that the taut band [gl(x, β̂), gu(x, β̂)] ∈ C can be obtained by a

projection on

{β ∈ RK : inf
γ∈S

p(x)′γ ≤ p(x)′(β − β̂) ≤ sup
γ∈S

p(x)′γ for all x ∈ X}.

Now suppose that [gl(x, β̂), gu(x, β̂)] is a confidence band obtained by a projection on

CI(β̂) = {β ∈ RK : cl(x) ≤ p(x)′(β − β̂) ≤ cu(x) for all x ∈ X}.

Let S = {z ∈ RK : cl(x) ≤ p(x)′z ≤ cu(x) for all x ∈ X}. Then by the arguments above

[gl(x, β̂), gu(x, β̂)] = [p(x)′β̂ + inf
γ∈S

p(x)′γ, p(x)′β̂ + sup
γ∈S

p(x)′γ]

⊆ [p(x)′β̂ + cl(x), p(x)′β̂ + cu(x)]

Since [gl(x, β̂), gu(x, β̂)] is obtained by a projection on CI(β̂) it also has to hold that

CI(β̂) ⊆ {β ∈ RK : gl(x, β̂) ≤ p(x)′β ≤ gu(x, β̂) for all x ∈ X}

and thus

CI(β̂) = {β ∈ RK : gl(x, β̂) ≤ p(x)′β ≤ gu(x, β̂) for all x ∈ X}.

It follows that [gl(x, β̂), gu(x, β̂)] ∈ C. If [gl(x, β̂), gu(x, β̂)] was not taut, then there exists

[g̃l(x, β̂), g̃u(x, β̂)] such that C̃I(β̂) ⊆ CI(β̂), where

C̃I(β̂) = {β ∈ RK : g̃u(x, β̂) ≤ p(x)′β ≤ g̃u(x, β̂) for all x ∈ X}
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and P (β0 ∈ C̃I(β̂)) = 1−α. By Lemma S1, C̃I(β̂) = CI(β̂). But since [gl(x, β̂), gu(x, β̂)] is

obtained by a projection on CI(β̂) it holds that [gl(x, β̂), gu(x, β̂)] ⊆ [g̃l(x, β̂), g̃u(x, β̂)] for

all x ∈ X , which is a contradiction.

(2): By the proof of the first part, we can write

[gl(x, β̂), gu(x, β̂)] =

[
p(x)′β̂ + inf

γ∈S
p(x)′γ, p(x)′β̂ + sup

γ∈S
p(x)′γ

]
.

Let wl(x) = − σ(x)
infγ∈S p(x)′γ

if infγ∈S p(x)′γ > −∞ and wl(x) = 0 if infγ∈S p(x)′γ = −∞.

Similarly, let wu(x) = σ(x)
supγ∈S p(x)′γ

if supγ∈S p(x)′γ <∞ and wu(x) = 0 if supγ∈S p(x)′γ =∞.

Then

gl(x, β̂) =

{
p(x)′β̂ − σ(x)

wl(x)
if wl(x) > 0

−∞ if wl(x) = 0

and

gu(x, β̂) =

{
p(x)′β̂ + σ(x)

wu(x)
if wu(x) > 0

∞ if wu(x) = 0

Moreover, let Xu = {x ∈ X : wu(x) > 0} and Xl = {x ∈ X : wu(x) > 0}. Then

1− α = P

(
p(x)′β̂ + inf

γ∈S
p(x)′γ ≤ p(x)′β0 ≤ p(x)′β̂ + sup

γ∈S
p(x)′γ for all x ∈ X

)
= P

(
p(x)′β0 ≤ p(x)′β̂ + inf

γ∈S
p(x)′γ ∀x ∈ Xu, p(x)′β0 ≥ p(x)′β̂ + sup

γ∈S
p(x)′γ ∀x ∈ Xl

)
= P

(
p(x)′β0 ≤ p(x)′β̂ +

σ(x)

wu(x)
∀x ∈ Xu, p(x)′β0 ≥ p(x)′β̂ − σ(x)

wl(x)
∀x ∈ Xl

)
= P

(
sup
x∈Xu

p(x)′(β0 − β̂)

σ(x)
wu(x) ≤ 1, inf

x∈Xl

p(x)′(β0 − β̂)

σ(x)
wl(x) ≥ −1

)

= P

(
sup
x∈X

p(x)′(β0 − β̂)

σ(x)
wu(x) ≤ 1, inf

x∈X

p(x)′(β0 − β̂)

σ(x)
wl(x) ≥ −1

)
.

Proof of Corollary 1. First notice that since σ(x) =
√
p(x)′Σp(x) > 0 for all x ∈ X and since

Σ is positive definite, it follows that p(x) is not the zero vector and ν(x) =
√
p(x)′Ωp(x) > 0.

Next, for any c1 > 0 define CI1(β̂, c1) = {β : (β − β̂)Ω−1(β − β̂) ≤ c2
1}. Then

sup
β∈CI1(β̂,c1)

p(x)′β = p(x)′β̂ + max
γ:γ′Ω−1γ≤c21

p(x)′γ.
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The Lagrangian of the maximization problem is p(x)′γ+λ(c2
1−γ′Ω−1γ) with (necessary and

sufficient) first order conditions p(x) = 2λΩ−1γ and λ(c2
1 − γ′Ω−1γ) = 0. Since p(x) 6= 0 it

follows that γ 6= 0 and λ 6= 0 and therefore it is easy to solve for

λ =
1

2c1

√
p(x)′Ωp(x) and γ =

c1Ωp(x)√
p(x)′Ωp(x)

.

Therefore,

sup
β∈CI1(β̂,c1)

p(x)′β = p(x)′β̂ + c1

√
p(x)′Ωp(x).

Analogously,

inf
β∈CI1(β̂,c1)

p(x)′β = p(x)′β̂ − c1

√
p(x)′Ωp(x).

Next define

CI(β̂, c1) = {β : −c1

√
p(x)′Ωp(x) ≤ p(x)′(β − β̂) ≤ c1

√
p(x)′Ωp(x) for all x ∈ X}.

Since CI(β̂, c1) is obtained by a projection it has to hold that CI1(β̂, c1) ⊆ CI(β̂, c1). Next

notice that there is a unique c such that P (β0 ∈ CI(β̂, c)) = 1−α, because P (β0 ∈ CI(β̂, c1))

is strictly increasing in c1. It follows that

P

(
sup
x∈X

∣∣∣∣∣p(x)′(β0 − β̂)

σ(x)
w(x)

∣∣∣∣∣ ≤ c

)
= 1− α,

where w(x) = σ(x)
ν(x)

. Finally, since CI1(β̂, c) ⊆ CI(β̂, c), we have

p(x)′β̂ + c
√
p(x)′Ωp(x) = sup

β∈CI1(β̂,c)

p(x)′β ≤ sup
β∈CI(β̂,c)

p(x)′β

and by definition of CI(β̂, c) it holds that

sup
β∈CI(β̂,c)

p(x)′β ≤ p(x)′β̂ + c
√
p(x)′Ωp(x).

Therefore, supβ∈CI(β̂,c) p(x)′β = p(x)′β̂ + c
√
p(x)′Ωp(x) and similarly infβ∈CI(β̂,c) p(x)′β =

p(x)′β̂−c
√
p(x)′Ωp(x). It follows that the confidence band obtained from the sup t-statistic,

[p(x)′β̂− cν(x), p(x)′β̂+ cν(x)], coincides with the taut projection confidence band obtained

from a projection on CI(β̂, c), and by Theorem 1, the confidence band obtained from pro-

jecting on CI(β̂, c) is taut.
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Proof of Corollary 2. Suppose p1(x) = 1 and let

CI(β̂) = {β : −c ≤ p(x)′(β − β̂) ≤ c for all x ∈ X}.

Then P (β0 ∈ CI(β̂)) = 1− α. By Theorem 1 it suffices to show that

sup
β∈CI(β̂)

p(x)′β = p(x)′β̂ + c and inf
β∈CI(β̂)

p(x)′β = p(x)′β̂ − c.

By the definition of the supremum,

sup
β∈CI(β̂)

p(x)′β ≤ p(x)′β̂ + c.

Now define β̃ = β̂ +
(
c 0 . . . 0

)′
and notice that β̃ ∈ CI(β̂) because p1(x) = 1. Therefore,

sup
β∈CI(β̂)

p(x)′β ≥ p(x)′β̃ = p(x)′β̂ + c.

Analogously, one can show that infβ∈CI(β̂) p(x)′β = p(x)′β̂ − c.

Proof of Theorem 2. First notice that since (c̄l(x), c̄u(x)) is optimal (and (c̄Jl (x), c̄Ju(x)) is

feasible in the original problem)

h(c̄Jl (x), c̄Ju(x)) ≥ h(c̄l(x), c̄u(x)).

Next define C̄I(β̂) = {β ∈ RK : c̄u(x) ≤ p(x)′(β − β̂) ≤ c̄u(x) for all x ∈ XJ}. Moreover, let

c̃u(x) = supβ∈C̄I(β̂) p(x)′β and c̃l(x) = infβ∈C̄I(β̂) p(x)′β for all x ∈ X\XJ and c̃u(x) = c̄u(x)

and c̃l(x) = c̄l(x) for all x ∈ XJ . It follows that

1− α = P (c̄l(x) ≤ p(x)′Σ1/2Z ≤ c̄u(x) for all x ∈ X )

≤ P (c̄l(x) ≤ p(x)′Σ1/2Z ≤ c̄u(x) for all x ∈ XJ)

= P (c̃l(x) ≤ p(x)′Σ1/2Z ≤ c̃u(x) for all x ∈ XJ).

Since (c̄Jl (x), c̄Ju(x)) is optimal, it follows that

hJ(c̄Jl (x), c̄Ju(x)) ≤ hJ(c̃l(x), c̃u(x)) = hJ(c̄l(x), c̄u(x)).

Therefore

h(c̄Jl (x), c̄Ju(x)) = h(c̄Jl (x), c̄Ju(x)) + hJ(c̄Jl (x), c̄Ju(x))− hJ(c̄Jl (x), c̄Ju(x))

≤ h(c̄Jl (x), c̄Ju(x))− hJ(c̄Jl (x), c̄Ju(x)) + hJ(c̄l(x), c̄u(x))

→ h(c̄l(x), c̄u(x)).

10



Proof of Lemma 2. Define

c̄l(x,Σ) = inf
γ∈RK : Σ−1/2γ∈S(Σ)

p(x)′γ and c̄u(x,Σ) = sup
γ∈RK : Σ−1/2γ∈S(Σ)

p(x)′γ

and let εn → 0 such that

P

(
sup
x∈X

|c̄l(x, Σ̂)− c̄l(x,Σ)|
σ(x)

≤ εn

)
→ 1 and P

(
sup
x∈X

|c̄u(x, Σ̂)− c̄u(x,Σ)|
σ(x)

≤ εn

)
→ 1.

Then

CR ≡ P
(
gl(x, β̂, Σ̂) ≤ g(x, β0) ≤ gu(x, β̂, Σ̂) ∀x ∈ X

)
= P

(
c̄l(x, Σ̂)

σ(x)
≤
√
np(x)′(β0 − β̂)

σ(x)
≤ c̄u(x, Σ̂)

σ(x)
∀x ∈ X

)

≤ P

(
c̄l(x,Σ)

σ(x)
− εn ≤

√
np(x)′(β0 − β̂)

σ(x)
≤ c̄u(x,Σ)

σ(x)
+ εn ∀x ∈ X

)
+ o(1)

= P

(
c̄l(x,Σ)

σ(x)
− εn ≤

p(x)′Σ1/2
√
nΣ−1/2(β0 − β̂)

σ(x)
≤ c̄u(x,Σ)

σ(x)
+ εn ∀x ∈ X

)
+ o(1)

= P

(
c̄l(x,Σ)

σ(x)
− εn ≤

p(x)′Σ1/2Z

σ(x)
≤ c̄u(x,Σ)

σ(x)
+ εn ∀x ∈ X

)
+ o(1)

= P

(
c̄l(x,Σ)

σ(x)
≤ p(x)′Σ1/2Z

σ(x)
≤ c̄u(x,Σ)

σ(x)
∀x ∈ X

)
+ o(1)

= 1− α + o(1).

The fifth line follows from the normal approximation assumption, the sixth line follows from

Lemma S2, and the last line follows from the definition of the confidence band.

Analogous arguments yield CR ≥ 1− α + o(1) and hence

P
(
gl(x, β̂, Σ̂) ≤ g(x, β0) ≤ gu(x, β̂, Σ̂)∀x ∈ X

)
→ 1− α.

Proof of Theorem 3. The result follows from the assumption and the definition of S∗(Σ̂).

Proof of Theorem 4. Let εn → 0 such that

P

(
sup
x∈X

|c̄l(x, β̂, Σ̂)− c̄l(x, β0,Σ)|
σ(x)

≤ εn

)
→ 1,
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P

(
sup
x∈X

|c̄u(x, β̂, Σ̂)− c̄u(x, β0,Σ)|
σ(x)

≤ εn

)
→ 1,

and

P

(
sup
x∈X

sup
β:‖β−β0‖‖≤‖β̂−β0‖

‖∇βg(x, β̃)−∇βg(x, β0)‖‖
√
n(β0 − β̂)‖|σ(x)−1| ≤ εn

)
→ 1.

Then

CR ≡ P
(
ḡl(x, β̂, Σ̂) ≤ g(x, β0) ≤ ḡu(x, β̂, Σ̂)∀x ∈ X

)
= P

(
g(x, β̂) + c̄l(x, β̂, Σ̂)/

√
n ≤ g(x, β0) ≤ g(x, β̂) + c̄u(x, β̂, Σ̂)/

√
n∀x ∈ X

)
= P

(
c̄l(x, β̂, Σ̂)

σ(x)
≤ ∇βg(x, β̃)′

√
n(β0 − β̂)

σ(x)
≤ c̄u(x, β̂, Σ̂)

σ(x)
∀x ∈ X

)

≤ P

(
c̄l(x, β̂, Σ̂)

σ(x)
− εn ≤

∇βg(x, β0)′
√
n(β0 − β̂)

σ(x)
≤ c̄u(x, β̂, Σ̂)

σ(x)
+ εn ∀x ∈ X

)
+ o(1)

≤ P

(
c̄l(x, β0,Σ)

σ(x)
− 2εn ≤

∇βg(x, β0)′
√
n(β0 − β̂)

σ(x)
≤ c̄u(x, β0,Σ)

σ(x)
+ 2εn ∀x ∈ X

)
+ o(1)

= P

(
c̄l(x, β0,Σ)

σ(x)
− 2εn ≤

∇βg(x, β0)′Σ1/2Z

σ(x)
≤ c̄u(x, β0,Σ)

σ(x)
+ 2εn ∀x ∈ X

)
+ o(1)

= P

(
c̄l(x, β0,Σ)

σ(x)
≤ ∇βg(x, β0)′Σ1/2Z

σ(x)
≤ c̄u(x, β0,Σ)

σ(x)
∀x ∈ X

)
+ o(1)

= 1− α + o(1).

The second line follows from the mean value theorem, where β̃ is an intermediate value

and ‖β̃ − β0‖ ≤ ‖β̂ − β0‖. For the third line notice that∣∣∣∣∣∣
(
∇βg(x, β̃)′ −∇βg(x, β0)′

)√
n(β0 − β̂)

σ(x)

∣∣∣∣∣∣ ≤ ‖∇βg(x, β̃)−∇βg(x, β0)‖‖
√
n(β0 − β̂)‖|σ(x)−1|

and hence

P

sup
x∈X

∣∣∣∣∣∣
(
∇βg(x, β̃)′ −∇βg(x, β0)′

)√
n(β0 − β̂)

σ(x)

∣∣∣∣∣∣ ≤ εn

→ 1.

The remaining lines follow similar steps to the ones in the proof of Lemma 2.

Analogous arguments yield CR ≥ 1− α + o(1) and hence

P
(
ḡl(x, β̂, Σ̂) ≤ g(x, β0) ≤ ḡu(x, β̂, Σ̂)∀x ∈ X

)
→ 1− α.
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Proof of Theorem 5. Let εn → 0 such that Knεn → 0 and for n large enough

sup
x∈X

|p(x)′E(β̂)− g0(x)|
σ(x)

≤ εn

for n large enough and

P

(
sup
x∈X

|c̄l(x, Σ̂)− c̄l(x,Σ)|
σ(x)

≤ εn

)
→ 1 and P

(
sup
x∈X

|c̄u(x, Σ̂)− c̄u(x,Σ)|
σ(x)

≤ εn

)
→ 1.

We now get, similar as in the proof of Theorem 4,

CR ≡ P
(
gl(x, β̂Kn , Σ̂) ≤ g0(x) ≤ gl(x, β̂Kn , Σ̂)∀x ∈ X

)
= P

(
c̄l(x, Σ̂)

σ(x)
≤ p(x)′

√
n(E(β̂Kn)− β̂Kn)

σ(x)
+

√
n(g0(x)− p(x)′E(β̂Kn))

σ(x)
≤ c̄u(x, Σ̂)

σ(x)
∀x ∈ X

)

≤ P

(
c̄l(x, Σ̂)

σ(x)
− εn ≤

p(x)′
√
n(E(β̂Kn)− β̂Kn)

σ(x)
≤ c̄u(x, Σ̂)

σ(x)
+ εn ∀x ∈ X

)
+ o(1)

≤ P

(
c̄l(x,Σ)

σ(x)
− 2εn ≤

p(x)′
√
n(E(β̂Kn)− β̂Kn)

σ(x)
≤ c̄u(x,Σ)

σ(x)
+ 2εn ∀x ∈ X

)
+ o(1)

= P

(
c̄l(x,Σ)

σ(x)
− 2εn ≤

p(x)′Σ1/2Z

σ(x)
≤ c̄u(x,Σ)

σ(x)
+ 2εn ∀x ∈ X

)
+ o(1)

= 1− α + o(1).

Analogous arguments yield CR ≥ 1− α + o(1) and hence

P
(
ḡl(x, β̂Kn , Σ̂) ≤ g(x, β0) ≤ ḡu(x, β̂Kn , Σ̂)∀x ∈ X

)
→ 1− α.

S.2.2 Proofs of lemmas from Section A

Proof of Lemma A1. Let Cs be a constant and define

Su = {γ ∈ RK : |γk| ≤ Cs for all k = 1, . . . , K},

SJ = {γ ∈ RK : c̄Jl (x) ≤ p(x)′Σ1/2γ ≤ c̄Ju(x) for all x ∈ XJ}

and

S = {γ ∈ RK : c̄l(x) ≤ p(x)′Σ1/2γ ≤ c̄u(x) for all x ∈ X}.

We first show that if S ⊆ Su and SJ ⊆ Su for some Cs <∞, then∣∣∣∣∫ (c̄u(x)− c̄l(x))wX(x)dx−
∫

(c̄Ju(x)− c̄Jl (x))wX(x)dx

∣∣∣∣→ 0.
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To do so, let ε > 0. Also notice that, by definition, c̄u(x) = supγ∈S p(x)′γ. Therefore, for

all x, x′ ∈ X it holds that

|c̄u(x)− c̄u(x′)| = | sup
γ∈S

p(x)′γ − sup
γ∈S

p(x′)′γ|

≤ sup
γ∈S
|p(x)′γ − p(x′)′γ|

≤ sup
γ∈S
|∇p(x̃)′γ(x− x′)|

≤ sup
γ∈Su
‖γ‖ sup

x̃∈X
‖∇p(x̃)‖|x− x′|,

where the last line follows from the assumption that S ⊆ Su. Hence,

sup
x,x′∈X , x 6=x′

|c̄u(x)− c̄u(x′)|
|x− x′|

≤ sup
γ∈Su
‖γ‖ sup

x∈X
‖∇p(x)‖.

Moreover,

c̄u(x) ≤ ‖p(x)‖ sup
γ∈Su
‖γ‖.

It follows that for all x, x′ ∈ X

|c̄u(x)w(x)− c̄u(x′)w(x′)|
|x− x′|

≤ |(c̄u(x)− c(x′))w(x)|+ |(w(x)− w(x′))c̄u(x
′)|

|x− x′|
≤ C sup

γ∈Su
‖γ‖ sup

x∈X
‖∇p(x)‖+ C‖p(x′)‖ sup

γ∈Su
‖γ‖

≤ 2C2 sup
γ∈Su
‖γ‖.

Next write ∣∣∣∣∣
∫
c̄u(x)wX(x)dx−

J−1∑
j=1

c̄u(xj)wX(xj)(xj+1 − xj)

∣∣∣∣∣
=

∣∣∣∣∣
J−1∑
j=1

∫ xj+1

xj

(c̄u(x)wX(x)− c̄u(xj)wX(xj)) dx

∣∣∣∣∣
≤

∣∣∣∣∣
J−1∑
j=1

∫ xj+1

xj

2C2 sup
γ∈Su
‖γ‖|xj+1 − xj|dx

∣∣∣∣∣
= 2C2 sup

γ∈Su
‖γ‖

J−1∑
j=1

(xj+1 − xj)2.

It follows that ∣∣∣∣∣
∫
c̄u(x)wX(x)dx−

J−1∑
j=1

c̄u(xj)wX(xj)(xj+1 − xj)

∣∣∣∣∣→ 0

14



Identical arguments imply that∣∣∣∣∣
∫
c̄Ju(x)wX(x)dx−

J−1∑
j=1

c̄Ju(xj)wX(xj)(xj+1 − xj)

∣∣∣∣∣→ 0

and we get analogous results for c̄l(x) and c̄Jl (x). Theorem 2 now implies that∣∣∣∣∫ (c̄u(x)− c̄l(x))wX(x)dx−
∫

(c̄Ju(x)− c̄Jl (x))wX(x)dx

∣∣∣∣→ 0.

Next notice that

p(x)′Σ1/2Z = p̃(x)′B′Σ1/2Z = p̃(x)′Z̃,

where Z̃ = B′Σ1/2Z ∼ N(0, B′ΣB). It follows that we can write the constraint

P (cl(x) ≤ p(x)′Σ1/2Z ≤ cu(x) for all x ∈ X ) = 1− α

as

P (cl(x) ≤ p̃(x)′Σ̃1/2W ≤ cu(x) for all x ∈ X ) = 1− α,

where W ∼ N(0, IL×L) and Σ̃1/2 = (B′ΣB)1/2. Moreover, the confidence band is a projection

of p(x)′β on

{β ∈ RK : c̄l(x) ≤ p(x)′(β − β̂) ≤ c̄u(x) for all x ∈ X},

or equivalently a projection of p̃(x)′β on

{β ∈ RL : c̄l(x) ≤ p̃(x)′(β − β̃) ≤ c̄u(x) for all x ∈ X},

where β̃ = B′β̂ ∼ N(0, B′ΣB). Since we can always rewrite the problem using the L

dimensional vector p̃(x), it is sufficient to prove that there exists Cs <∞ such that S ⊆ Su

and SJ ⊆ Su when B = IK×K .

Now notice that from arguments in the proof of Corollary 1, the band resulting from the

projection on {β : (β̂ − β)Σ−1(β̂ − β) ≤ cK,1−α}, where cK,1−α is the 1 − α quantile of the

χ2
K distribution, leads to a conservative band of the form p(x)′β̂± cK,1−ασ(x). The weighted

area of this band is

2cK,1−α

∫ √
p(x)Σp(x)wX(x)dx ≤ 2cK,1−αλmax(Σ

1/2)

∫
‖p(x)‖wX(x)dx <∞,

where λmax(Σ
1/2) denotes the largest eigenvalue of Σ1/2. Define

Ū = 2cK,1−αλmax(Σ
1/2)

∫
‖p(x)‖wX(x)dx.
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Let γ ∈ S. Then for each x ∈ X either c̄u(x) ≥ |p(x)′γ| or c̄l(x) ≤ −|p(x)′γ|. Also notice

that c̄u(x) ≥ 0 and c̄l(x) ≤ 0. It follows from Assumption 8 that for some ε > 0∫
(c̄u(x)− c̄l(x))wX(x)dx ≥

∫
|p(x)′γ|wX(x)dx ≥ ε‖γ‖.

Since we also established
∫

(c̄u(x) − c̄l(x))wX(x)d(x) ≤ Ū , it follows that ‖γ‖ ≤ Ū
ε

and

therefore there exists Cs such that

S ⊆ {γ ∈ RK : −Cs ≤ γk ≤ Cs for all k = 1, . . . , K}.

Similarly, projecting on the set {β : (β̂ − β)Σ−1(β̂ − β) ≤ cK,1−α} for all p(xj) yields a

conservative band and the objective function hJ for this band is

2cK,1−α

J−1∑
j=1

√
p(xj)Σp(xj)wX(xj)(xj+1 − xj).

Arguments as in the first part imply that∣∣∣∣∣2cK,1−α
J−1∑
j=1

√
p(xj)Σp(xj)wX(xj)(xj+1 − xj)− 2cK,1−α

∫ √
p(x)Σp(x)wX(x)dx

∣∣∣∣∣→ 0.

Therefore, for J large enough

J−1∑
j=1

(c̄Ju(xj)−c̄Jl (xj))wX(xj)(xj+1−xj) ≤ 2cK,1−α

J−1∑
j=1

√
p(xj)Σp(xj)wX(xj)(xj+1−xj) ≤ Ū+1.

Now let γ ∈ SJ and write γ̄ = αγ. Then, similar as before there exists ε > 0 such that

‖γ‖ ≤ Ū+1
ε

for all γ̄ ∈ SJ . Thus, there exists a Cs such that

SJ ⊆ {γ ∈ RK : −Cs ≤ γk ≤ Cs for all k = 1, . . . , K}.

The conclusion now follows from the first part.

Proof of Lemma A2. As in the proof of Lemma A1, we can assume without loss of gener-

ality that B = IK×K because otherwise we can simply work with a transformed problem.

Analogously, we can assume without loss of generality that Σ = IK×K (but Σ̂ 6= IK×K in

general).

The proof proceeds in several steps. First, we show that the bands are based on projec-

tions on bounded sets and that the weighted areas corresponding to the optimal solutions
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are bounded from above and below (in probability). We then show that the optimal bands

are symmetric. Next we show that∣∣∣∣∫ c̄u(x, Σ̂)wX(x)dx−
∫
c̄u(x,Σ)wX(x)dx

∣∣∣∣ p→ 0.

Finally, we show a contradiction if for some ε > 0 and δ > 0 and n large enough

P

(
sup
x∈X
|c̄u(x, Σ̂)− c̄u(x,Σ)| > ε

)
> δ.

For the first step, arguments as in the proof of Lemma A1 imply that there exists a

constant Cs such that S(Σ) ⊆ Su, where

Su = {γ ∈ RK : |γk| ≤ Cs for all k = 1, . . . , K},

and

S(Σ) = {γ ∈ RK : c̄l(x,Σ) ≤ p(x)′Σ1/2γ ≤ c̄u(x,Σ) for all x ∈ X}.

Analogous arguments imply that there is a constant Cs such that S(Σ̂) ⊆ Su with probability

approaching 1. From the proof Lemma A1 it also follows that
∫

(c̄u(x,Σ)− c̄l(x,Σ))wX(x)dx

is bounded and that
∫

(c̄u(x, Σ̂)− c̄l(x, Σ̂))wX(x)dx is bounded by a constant with probability

approaching 1.

Now notice that c̄u(x,Σ) ≥ σ(x)c1−α and c̄l(x,Σ) ≤ −σ(x)c1−α, where c1−α denotes the

1− α quantile of the standard normal distribution. Therefore,∫
(c̄u(x,Σ)− c̄l(x,Σ))wX(x)dx ≥ 2c1−α

∫
σ(x)wX(x)dx > 0

and ∫ (
c̄u(x, Σ̂)− c̄l(x, Σ̂)

)
wX(x)dx ≥ c1−α

∫
σ(x)wX(x)dx+ op(1).

We now prove that c̄l(x,Σ) = −c̄u(x,Σ). Suppose c̄u(x,Σ) 6= −c̄l(x,Σ) for some x ∈ X .

Let

c̃l(x,Σ) = c̄l(x,Σ)− 1/2(c̄l(x,Σ) + c̄u(x,Σ)) = 1/2c̄l(x,Σ)− 1/2c̄u(x,Σ)

and

c̃u(x,Σ) = c̄u(x,Σ)− 1/2(c̄l(x,Σ) + c̄u(x,Σ)) = 1/2c̄u(x,Σ)− 1/2c̄l(x,Σ).

Let

S1 = {z ∈ RK : c̄l(x,Σ) ≤ p(x)′Σ1/2z ≤ c̄u(x,Σ) for all x ∈ X}

and

S2 = {z ∈ RK : −c̄u(x,Σ) ≤ p(x)′Σ1/2z ≤ −c̄l(x,Σ) for all x ∈ X}.
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By the symmetry of the normal measure, P (Z ∈ S1) = P (Z ∈ S2) = 1− α. It follows from

Lemmas S3 and S4 that

P (c̃l(x,Σ) ≤ p(x)′Σ1/2Z ≤ c̃u(x,Σ) for all x ∈ X ) > 1− α.

But ∫
(c̃u(x,Σ)− c̃l(x,Σ))wX(x)dx =

∫
(c̄u(x,Σ)− c̄l(x,Σ))wX(x)dx,

which contradicts that (c̄l(x,Σ), c̄u(x,Σ)) is optimal. Therefore, c̄u(x,Σ) = −c̄l(x,Σ).

Next we prove that∣∣∣∣∫ c̄u(x, Σ̂)wX(x)dx−
∫
c̄u(x,Σ)wX(x)dx

∣∣∣∣ p→ 0.

Let c1 be a constant such that

P (−c1c̄u(x,Σ) ≤ p(x)′Σ̂1/2Z ≤ c1c̄u(x,Σ) for all x ∈ X | Σ̂) = 1− α.

Since

|p(x)′(Σ̂1/2 − Σ1/2)Z| ≤ ‖p(x)‖‖Σ̂1/2 − Σ1/2‖‖Z‖ = op(1),

it holds that |c1 − 1| = op(1). Since c̄u(x, Σ̂) is optimal and c1c̄u(x,Σ) is feasible, it holds

that ∫
c̄u(x, Σ̂)wX(x)dx ≤

∫
c̄u(x,Σ)wX(x)dx+ (c1 − 1)

∫
c̄u(x,Σ)wX(x)dx

≤
∫
c̄u(x,Σ)wX(x)dx+ op(1).

Similarly, |c2 − 1| = op(1), where c2 is such that

P (−c2c̄u(x, Σ̂) ≤ p(x)′Σ1/2Z ≤ c2c̄u(x, Σ̂) for all x ∈ X | Σ̂) = 1− α.

Thus, ∫
c̄u(x,Σ)wX(x)dx ≤

∫
c̄u(x, Σ̂)wX(x)dx+ (c2 − 1)

∫
c̄u(x, Σ̂)wX(x)dx

≤
∫
c̄u(x, Σ̂)wX(x)dx+ op(1).

Together ∣∣∣∣∫ c̄u(x, Σ̂)wX(x)dx−
∫
c̄u(x,Σ)wX(x)dx

∣∣∣∣ p→ 0.

Since we assume that infx∈X σ(x) > 0, it is sufficient to prove that

sup
x∈X
|c̄u(x, Σ̂)− c̄u(x,Σ)| = op(1).
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Let ε > 0 and δ > 0 and suppose that

P

(
sup
x∈X
|c̄u(x, Σ̂)− c̄u(x,Σ)| > ε

)
> δ.

Define

C(Σ) = {γ ∈ RK : −c̄u(x,Σ) ≤ p(x)′γ ≤ c̄u(x,Σ) for all x ∈ X}.

Also let λ ∈ (0, 1) and define

c̄λu(x, Σ̂) = λc̄u(x, Σ̂) + (1− λ)c̄u(x,Σ)

and

Ĉλ(Σ̂) = {γ ∈ RK : −c̄λu(x, Σ̂) ≤ p(x)′γ ≤ c̄λu(x, Σ̂) for all x ∈ X}.

Let Z ∼ N(0, IK×K). Since P (supx∈X |c̄u(x, Σ̂)− c̄u(x,Σ)| > ε) > δ, by Lemmas S3 and S4

there exists a constant η > 0 such that with probability at least δ/2 and for n large enough

P (Σ̂1/2Z ∈ Ĉλ(Σ̂) | Σ̂) ≥ P (Σ̂1/2Z ∈ C(Σ̂) | Σ̂)λP (Σ̂1/2Z ∈ C(Σ) | Σ̂)1−λ + η

Notice that P (Σ̂1/2Z ∈ C(Σ̂) | Σ̂) = 1− α. Moreover, since P (Σ1/2Z ∈ C(Σ)) = 1− α and

|p(x)′(Σ̂1/2 − Σ1/2)Z| ≤ ‖p(x)‖‖Σ̂1/2 − Σ1/2‖‖Z‖ = op(1),

P (Σ̂1/2Z ∈ C(Σ) | Σ̂) = 1− α + op(1). It follows that with probability at least δ/2 and for

n large enough

P (Σ̂1/2Z ∈ Ĉλ | Σ̂) ≥ 1− α + η + op(1).

Next let c = 1−α+η/2
1−α+η

∈ (0, 1) and let

c̃λ(x, Σ̂) = c(λc̄u(x, Σ̂) + (1− λ)c̄u(x,Σ)).

Then with probability at least δ/2 and for n large enough

P (−c̃λ(x, Σ̂) ≤ p(x)′Σ̂1/2Z ≤ c̃λ(x, Σ̂) for all x ∈ X | Σ̂)

≥ cP (−c̄λu(x, Σ̂) ≤ p(x)′Σ̂1/2Z ≤ c̄λu(x, Σ̂) for all x ∈ X | Σ)

≥ c(1− α + η + op(1))

= 1− α + η/2 + op(1).

Moreover,∫
c̃(x, Σ̂)wX(x)dx

= c

∫
c̄u(x, Σ̂)wX(x)dx+ c(1− λ)

(∫
c̄u(x,Σ)wX(x)dx−

∫
c̄u(x, Σ̂)wX(x)dx

)
= c

∫
c̄u(x, Σ̂)wX(x)dx+ op(1).
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It follows that with probability at least δ/4 and for n large enough

P (−c̃λ(x, Σ̂) ≤ p(x)′Σ̂1/2Z ≤ c̃λ(x, Σ̂) for all x ∈ X | Σ̂) > 1− α

and ∫
c̃(x, Σ̂)wX(x)dx <

∫
c̄u(x, Σ̂)wX(x)dx,

which would contradict that c̄u(x, Σ̂) is optimal.

It therefore has to hold that

P

(
sup
x∈X
|c̄u(x, Σ̂)− c̄u(x,Σ)| > ε

)
→ 0

which means that

sup
x∈X
|c̄u(x, Σ̂)− c̄u(x,Σ)| = op(1).
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