Uniform confidence bands:

characterization and optimality
Supplemenatry appendix

Joachim Freyberger! Yoshiyasu Rait

January 26, 2018

S.1 Useful lemmas

In the lemmas below we use the following notation. For S C R¥, let conv(-) denote the
convex hull of S. For S; C R¥ and Sy C R¥ and A € (0,1) let AS; & (1 —\)S, = {s € RE:
s = Asyp + (1 — \)sy for some s € Sy and so € Sa}.

Lemma S1. Let CI; = {5 : 3 —Be S1} and CLy ={p: B —Be Sa}, where Sy is closed,

Sy is convex, and both sets are nonrandom. Suppose CI; C Cly and that
P(ﬂoECIl):P(ﬁOEC[g)zl—a
for some o € (0,1). Then CI, = C1,.

Proof. Suppose there is § € Sy, but § ¢ S;. Since S; is closed, it follows that there exits
d > 0 such that infsg, ||5 — s|| > . Let S3 = conv(S; Us) C Sy Since S; has positive
Lebesgue measure, also S3 has positive Lebesgue measure, and since it is convex, it contains a
compact ball B of positive measure (see for example Corollary 2.4.9 and Proposition 4.10.11
of Bogachev (1998)). Now for any v > 0 define S, = {s : (1 — a)5 + vsp for some sp €
B}. Notice that S, C Ss, but for v small enough (but positive), S, NSy = @ because

infgeg, [[5—s|| > d. It follows that S3\S; has positive Lebesgue measure as well and therefore
l—a=P(By—Be€S,)>P(By—Be€S;)>P(B—-BeS)=1—a,

which is a contradiction. O
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Lemma S2. Let Z ~ N(0, Ik, xxk,), X € REXEn pe positive definite, p(x) € RE» and
o(z) = /p(x)Ep(z) € (0,00) for all x € X. Let ¢,(x) and ¢;(x) be functions such that

p(w)/EI/ZZ
o(x)
where o € (0,1/2). Let e, — 0 such that K,e, — 0. Then

P <cl(x) < < cy(z)Vz € X) ~—1-a,

p(x)lzl/2Z
o(z)

< cy(x) +e,Vx € X) —1—-a.

2 (cl(ac) —en <

Proof. Note that ¢;(z) < —®7!(1—a) and ¢,(z) > ®~!(1—a), where ® denotes the standard

normal cdf. Let

(1 — ) + |en] (1 — ) — |en]
1 — n d 2 — n ]
Tn 11— a) e 11— a)

Since @1 (1—a) > 0, v} and ~? are well defined and positive for &, close enough to 0. Define

I51/2
S; = {z € RE : ¢(z) < p(a)E 7z < cu(x)Vr € X},
o(x)
/21/2
Son = {z eR ™ :q(z) —¢, < M <cu(z)+e, Vo € X}
’ o(x)
and /2
S = {z € RE : vye(z) < ORI < vyeu(x) Vo € X}
o(x)
for v > 0. By definition,
(S1) P(Z € Sj*) < P(Z € Sy,) < P(Z € S*)

holds. By a change of variables,
P(Zes]) — /1 (2 € S7) 6(=)dz
= o / 1(yz € 57) ¢(y2)dz
_ W/uz € 51) d(y2)d-.
Since ¢(yz) < ¢(z) for v > 1 and ¢(vz) > ¢(z) for v < 1,

ogp(Zesﬁ) —P(Ze8)<P(ZeS)((1)< —1)



and

ozP(Zesﬁ)—P@eSQszZesg«ﬁV%—n.

Note that

= ()< (0 ) e (L) s

Thus, if K,|e,| — 0, then

P(ZeS") > P(ZeS) and P(ZeS)— P(ZeS).

Together with (S1) we can conclude P(Z € Sy,,) — 1 — a. O

Lemma S3. Let A € (0,1). Let v denote the Lebesque measure on RE | let ® denote the
K-dimensional standard normal measure, and let ¢ denote the standard normal pdf. Let S,
and Sy be bounded sets on RE. Suppose there is a set S3 C A\S; @ (1 — \)Sy with v(Ss) > 0
such that for all s3 € S3 and some § > 0

inf |51 — 52H2 Y
(51,82)€51 X S2:As1+(1—\)s2=s3

Then

@Q&ex1—m&)2¢wgwmgﬁA+?£E&m@(ap<&lgﬁﬁ>—1>m&y

Proof. From simple algebra it follows that

A1 = \)

Inp(Asy + (1 — A)sg) — (Alno(sy) + (1 — AN Ing(sy)) = 5

|51 — 82||2
and thus

o051+ (1= N)se) = (50 0lse)'exp (27 sy = ).

Now define

A 1-X
z—y T—y y y
h(z) = —2) 1 S ——) 1< €S).
0= mmo(50) 1 (5 es)e(25) 1 (ites)

Notice that

:v:)\x_y




and therefore, log-concavity of ¢(-) implies that for all y € RE

OEY: (x;yﬂ) (%)H.

Moreover, 1(z € S1 ® (1 — \)Sz) > 1 (% € Sl) 1 (% € Sz) and thus for all z € RX

d(z)1(z € S1 & (1 — \)Sy) > h(z).

Similarly, if x € Ss, then for any y € R¥

qﬁ(m)Zqﬁ(x_;gJ))\qs(%)l_)\exp (A(12—>\)

If 5% € Sy and
all r € S;3

-y Y
A 1)

2)
55 € Sz, then H% — %HQ > ¢ and z € AS; @ (1 — X)Ss. Therefore, for

6(x) > h(z) exp <@)

Moreover, take any € AS; @ (1 — A)Sz. Then there exist s; € S; and s € Sy such that

r = As;+ (1 = A)sy. Let y = (1 — A)so. Then s, = ¥ € S;. Thus

hz) > ¢ (s) 1 (s; € 81) b (s2) (s €8,)> inf oé(s) > 0.

SES1US2

We now get

¢(@)1(z € X1 @ (1 -A)5) = ¢(@)1(z e ASi @ (1-X)%)1 (¢ 5) + o(2)1(z € S5)
> h(z)l(x ¢ Ss3) + h(z)exp ( ) 1(x € S;)

— h(z)+ h(z) (exp (A ) 1) 1(z € Sy)

> h(z)+ inf ¢()(exp<( 5) 1> 1(z € Sy).

sES1US2

By Theorem 1.8.2 in Bogachev (1998),

/h(x)dm > (51 P(Sy) 7,

Taking the integral of the inequality above yields

DS ® (1= V%) > (S 0(%) >+ int ¢<>(exp (M)—l) v(S5).

sES1US2 2



Lemma S4. Let A € (0,1). Let Sy and Sy be convexr and compact subsets of RE such that
for some C >0, S ={s:|[s]| < C} C S and S C Sy. Let c;(x) = sup, g, p(x)"y and
co(w) = sup,cg, P(2)"y, where sup,cy |[p(7)]] < oo. If sup,ey |e1(x) — ea(x)| > € for some
e > 0, then there exists a set S3 C AS1 @ (1 — X\)Sy and a 6 > 0 such that for all s3 € Ss

inf ||81 — 32H >0
(81,82)651 XSQI)\81+(1—>\)52:S3

and v(S3) > &, where § only depends on A, €, sup,cy [|[p(z)||, C, and sup. g s, 7]

Proof. Without loss of generality assume that for some Z € X" it holds that ¢;(z) — co(Z) >
e. Also notice that ¢;(z) = p(z)'y; for v € 51 and c(Z) = p(z)' 12 for 72 € Sy. Let
c3 = Ac1(Z) + (1 — N)eo(Z). Let ¢ be the midpoint of (co(Z), ¢3), which is

¢ = ex(&) + 5 Ner (@) — ea(8)),
and define
Hy = {y R : p(z)y > c} and Hy={y € R¥ : p(z)'y < c»(2)}.

Now define S5 = A\S; @ (1 — A)Sy N Hy. Notice that Ay; + (1 — A\)ye € H; and thus, S5 is not
empty. We will now prove that S5 satisfies the properties in the lemma.

Let A = conv(S UMy + (1 — AN)y2). Since S € AS; @ (1 — NSz, A+ (1 = Ny €
AST @ (1 — AX)Sz, and AS; @ (1 — A)S, is convex, it follows that A C AS; & (1 — \) 5.

Let ¢ = inf,csp(Z)'y. Then for A = =< and v € (A( Ay + (1 = A)y2) & (1 — A)S) we have

c3—¢C

p(z)'y > ¢ and thus,
A+ (1 =N7y) @ (1-N)S) C H.

Moreover,
A+ 1 =XNp)@ (1 -NS) CTACAS & (1—N)S,.

Together this means that

(A7 + (1= A1) & (1= A)S) C Ss.

The set (A(My1 + (1 — X)) @ (1 —X)S) is a ball with center at A(Ay; 4 (1 — A)72) and radius

- cs—c_ C A
>

(1-NC=C > 0.

c3—c 2c—¢c
Let ¢ = sup,cg,us, P(T)y. Then the radius of the ball, which is contained in S, is at least
€2~ ( and therefore, v(S3) > 0.

2 c—c



Next, define D = (S} N Hy) which is nonempty. Also notice that Sy C Hy. Therefore,

— O A
inf |51 —sof > inf |51 — sof| > ¢ 0_2(1’) > €
(s1,52)€ED X S2 (s1,82)€H1xH2 ”p(x)” qupze)( Hp(l’)”

Now take s3 € S3. Then p(z)'s3 > c¢. Write s3 = As; + (1 — A)sy for 57 € S; and sy € Ss.
Suppose that s; ¢ D. Then s; ¢ Hy, which implies that p(z)'s; < ¢. But since it also holds
that sy € Sy, we have p(Z)'s3 < ¢, which would yield the contradiction that p(z)'ss < c. It
follows that for all s3 € S;

. . e
inf lls1 —sof| > inf  |[[s; —saf| > > 0.
(s81,52)€851 % S2:A81+(1—X)s2=s3 (s1,82)€DxS2 2 Supmex Hp(l’) H
The now conclusion follows with 6 = min {#, v((1— X)ﬁ)}. O
2supgex [Ip(@)]
S.2 Proofs

S.2.1 Proofs of main results

Proof of Lemma 1. (1) Suppose 3 € CI(f). Then for all # € X it holds by definition that
01w, B) < p(a)' and p(z)B < gu(v, B). Therefore

P (gl(:c,ﬁ) < p(z)' By < gu(az,B) for all x € X) > P(By € C[(B)) =1-a.

(2) Let X, ={x € X : w,(z) >0} and X}, = {x € X : wy(z) > 0}. Then

L - P (Slelg ﬂo - 5) wy(z) < ¢ :;22 ]le(x) > —C)
= P (seu}c) ﬁ) wy(z) < ¢, ;?»{; WM@) - _C>
_ ( )Bo < gulz, B) Vo € X,, p(x )ﬁozgz(%@)we)@

_ (glxﬁ < p(2)'Bo < gulz, B)forallxeX)

Moreover, by construction the set {8 : g;(x,8) < g(z,8) < gu(z,3) for all z € X} can be
written as {8 : 3 — 8 € S} where S is nonrandom. ]

Proof of Theorem 1. (1): Let [g(z, ), gu(x,3)] € C be an arbitrary taut confidence band
and define

CI(B) ={B: ai(z,B) < p(x)'B < gul(x,B) for all z € X'}
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and

gi(z,8) = inf p(x)B and gi(z,5) = sup p(z)'5.

BeCI(B) BeCI(p)
By Lemma 1, P(gf(z,0) < go(z) < g*(z,8) Vo € X) > 1 — a. Moreover, g*(z,3) <
gu(a:,B), and gl*(x,ﬁ) > gl(x,B) for all z. Hence, if [gl(x,ﬁ), gu(x,B)] is taut, it holds that
[/, B), gu(z, B)] = [g;(x, B), g2(x,3)]. Finally, by definition of the class C, there exists a

nonrandom set S C R¥ such that

g(z.f)= inf p)B=pa)f+ _inf  p)(B—PB) =p)B + infp(z)y
BECI(B) B—BecI(B)-p veS
and similarly
gulx, B) = p(x)'B + supp(x)'y.
~yES

It now immediately follows that the taut band [g(x, B), gu(z, B)] € C can be obtained by a

projection on

{8 eRX :inf p(x)~y < plz) (8 — B) < supp(x) for all z € X}

YES yES

Now suppose that [g;(z, B), gu(z, B)] is a confidence band obtained by a projection on
CI(B) = {B € RX . ¢(x) < p(x) (B — B) < cu(z) for all x € X}.

Let S = {z € RE : ¢(x) < p(x)'z < cu(x) for all x € X'}. Then by the arguments above

~

l9(z, B), gu(z, B)] = [p(x)B+ inf p(z)'7, p(z)' B+ ilelgp(x)”y]

C [p(z)B+alz), pla) B+ cu(z)]

Since [g/(z, ), gu(x, 8)] is obtained by a projection on CI(3) it also has to hold that

CI(B) C{B e RN : g(x,8) < p(x)B < gulz, B) for all z € X}

and thus

CI(B) = {B € RX : gi(x,B) < p(x)'B < gu(x, B) for all x € X},
It follows that [g(, 5), gu(z, B)] € C. If [gi(, B), gu(z, B)] was not taut, then there exists
[Gi(z, B), Gulz, B)] such that CI(B8) C CI(B), where

CI(B) ={B € R : gu(x,8) < p(x)'B < gu(w,B) for all z € X}



and P(B, € CI(8)) =1—a. By Lemma S1, CI(8) = CI(3). But since [g(z,
obtained by a projection on C’I(B) it holds that [gl(:v,B), gu(z, B)] [Gi1(x B

all x € X', which is a contradiction.

5), gul, B)] is
), Gu(z, B)] for

(2): By the proof of the first part, we can write

A

o, 30, 9o 3] = [ (o) 3+ i o). a5+ supplo]

yES
Let wi(x) = ﬁ if infiegp(x)y > —oo and wi(xz) = 0 if inf,cgp(z)'y = —o0.
Similarly, let w,(z) = Sw:é% if sup, s p(x)'y < oo and wy(x) = 0 if sup, c5 p(z)'y = oo.
Then R
o, f) = APEP = ne ifw@) >0
7 —00 if w(z) =0
and

. p(z)' B+ 1;(8) if w,(z) >0
00 if w,(z) =0
Moreover, let X, = {x € X : w,(z) > 0} and &} = {z € X : w,(z) > 0}. Then

l-a = P (p(x)'@ + iggp(x)’v < p(a)'Bo < p(x)'B 4 sup p(a)' for all z € X)
Y

YES

= P (P(fﬂ)’ﬁo < p(x)'B+ ilelgp(x)’v Vo € X,,p(x) By > pla)' 3+ Slégp(x)’v Vr € Xl)
= P (p(x)'ﬁo < p(z)' B + ijx)) Vo € X, p(x) By > p(x) B — 1(;((9;)) Vx € Xl>

p—(w)'(ﬁo _ B)wu(x) inf p—( z)'(Bo — B)wz(l’) > —1)

<M 7(a) ek o

— () < 1, inf wwl(x) > —1> :

TEX o(x) xeX o(x)

Proof of Corollary 1. First notice that since o(x) = /p(z)'Ep(x) > 0 for all z € X and since
¥ is positive definite, it follows that p(x) is not the zero vector and v(z) = /p(z)'Qp(z) > 0.
Next, for any ¢; > 0 define CI1 (8, ¢1) = {8 : (8 — B)Q (8 — B) < ¢2}. Then

sup  p(z)'B=p(x)f+ max p(zx)y.
BeCT1(B,c1) vy Q7 1y<cf



The Lagrangian of the maximization problem is p(z)y + A(c? —7'Q271v) with (necessary and
sufficient) first order conditions p(z) = 2AQ~ 1y and A(¢? —7'Q71y) = 0. Since p(z) # 0 it
follows that v # 0 and A # 0 and therefore it is easy to solve for

1 1 Qp(x)

A= ()" Qp(x) and y=

2, V(@) Qp(x)
Therefore,
sup  p(z)'8 = p(x)'B + e1/p(x) ().
BECT(B,c1)
Analogously,
inf  p(x)' = p(x)'f — erv/p(x) ().
BECT1(B,c1)
Next define

CI(B,c1) ={B: —c1/p@)Q(x) < p(z)' (8 — B) < er/p(x)Qp(z) for all z € X}

Since CI(B, ¢1) is obtained by a projection it has to hold that C[l(B, c) C C’I(B, c1). Next
notice that there is a unique ¢ such that P(, € CI(3,¢)) = 1—a, because P(8, € CI(f,c1))
is strictly increasing in ¢;. It follows that

< c) =1-aq,

P | sup
rzeX

where w(z) = 2% Finally, since C1;(3,¢) C CI(f, ¢), we have

v(z)

p(x) (5o = B)

()

w(zx)

p(x)B+ce/pa)Qp(z) = sup p(x)B< sup p(x)p

BECI(B,c) BECT(B,c)

~

and by definition of C'I(f, ¢) it holds that

sup  p(z)f8 < p(@)' B+ en/p(x)Qp(x).
BECI(B,c)
Thereifore, SUPgecr(pe P(T)' B = p(z)' B + cer/p(x)Qp(z) and similarly infyecp50p(@)B =
p(z)' B —cy/p(x)Qp(x). Tt follows that the confidence band obtained from the sup t-statistic,
[p(z)' B — cv(x), p(x) 4 cv(x)], coincides with the taut projection confidence band obtained
from a projection on C'1 (B, ¢), and by Theorem 1, the confidence band obtained from pro-

~

jecting on CI(3,c) is taut. O



Proof of Corollary 2. Suppose p;(z) = 1 and let
C](B) ={B:—c<pa)(B- B) < cforall z € X}.

Then P(B, € CI(f3)) =1 — o. By Theorem 1 it suffices to show that

A

sup p(z)B=p()B+c  and inf p(z)B=pla)s—ec

BeCI(B) BeCI(B)

By the definition of the supremum,

A~

sup p(z)'B < p(x)p+ec.
BeCI(B)

Now define 3 = 8 + (c0... 0)/ and notice that 5 € CI(f) because p;(z) = 1. Therefore,

sup p(e)'8 > p(w)'B = p(x)'B +c.
BeCI(B)

Analogously, one can show that inf s p(z)' B =px) s —c. ]

Proof of Theorem 2. First notice that since (¢(z), ¢,(z)) is optimal (and (¢/(z), ¢(x)) is

r Ty

feasible in the original problem)

h(ci (z), & (x)) > h(@(z), eu(z)).

Next define CI() = {8 € RX : ¢,(z) < p(z)' (8 — B) < &,(z) for all = € X;}. Moreover, let
Cu(T) = supgegyp P(x)' B and G(x) = infy 5 p(x)'B for all 2 € X\X; and ¢u(z) = ¢u(x)
and ¢ (z) = ¢(z) for all x € X;. It follows that
l—a = P(g(z) <px)SV?Z < é,(z) for all z € X)
< P(a(z) < plx)SV?Z < e,(x) for all z € X))
= P((x) < p(x)SV?Z < &,(z) for all x € Xy).

(z),c/(x)) is optimal, it follows that

Since (¢
ha(@ (2), &()) < hy(a(z), u(x)) = hy(@(@), cu()).

Therefore

h(e (), eu(@))

IA

= =
)l 9]
T

!
=
o
&
VQ\
el
S
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Proof of Lemma 2. Define

!/

¢z, X)) = inf p(x)y and ¢, (z,%) = sup p(z)'y
~YERK: ¥-1/2yc5(%) ~ERK: $-1/24¢5(%)

and let £, — 0 such that

veX o(z) zeX o(x)
Then
CR = P (gl(x,ﬁ, i) < g(z, fy) < gu(x,B,i) Vr € X)
_ pfa®) Ve (h-B) _ae),,
= F o(x) = o(x) . o(x) v EX)
< P a(,%) _ < Vip()' (5 = ) < Cul@, %) +e,Vr € X | 4+0(1)
- o(x) " o(x) - o(x) "
_ pfaey)  _p@ySVRE G -8) _a@D) X) +o(l)
o(x) " o(x) — o(x) "
_ (e @Sz _as) ,
_ P( ) ST S e T eX)+ (1)
(A a2z s,
= P( - (2) < () < s v €X>+ (1)
= 1—a+o(1).

The fifth line follows from the normal approximation assumption, the sixth line follows from
Lemma S2, and the last line follows from the definition of the confidence band.

Analogous arguments yield CR > 1 — a + o(1) and hence

P (a2 3.5) < gl o) < gule, B, 5) Ve € X) > 1 -

Proof of Theorem 3. The result follows from the assumption and the definition of .S *(f]) n

Proof of Theorem 4. Let ¢, — 0 such that




reX O'(l')

P (Sup u(. 8. 5) — aule. o 5| €n> o

and

P (sup sup [ Vag(, B) — Vag(z, Bo)lllIVn(Bo — B)lllo(x) | < en> — 1.
TEX B:|B—Boll|I<[1B—Boll

Then
CR = P (Qz(x,f»’,i) < g(x,B0) < gul, B, ) Va € X)
= P (9(@.8) +alz, B, 5)/Vn < glw, Bo) < 9(z,B) + eu(w, B,5) /v € X)
_ p(aBE) _ Vagle BYVals - B) _ elw.5.8),, X)
o(x) o(x) o(r)
o p(a@BS) Vel VA -B) el B E) X) +o(1)
o(x) o(z) o(x)
< p(atoD) . Veole SVl =) _ elwfoD) L, X) +oll)
o(x) o(z) o(x)
_ b (M e < Visg(z, Bo) XV Z < Cu(z, Bo, 2) 49V € X) +o(1)
o(x) o(z) o(z)
_ p (Cl(xaﬁ(hz) S vﬁg(x>ﬁ0)/21/22 S EU(J:?BOaZ) Vi € X) +0<1)
o(x) o(x) o(x)
= 1l—a+o(l).

The second line follows from the mean value theorem, where /3 is an intermediate value
and |3 — Boll < ||3 — Bol|. For the third line notice that

A

Vsg(@, B) = Vag(x, o) ) Va(Bo — B) ) A
(7 Bf(x) ) < IV 590z, B) = Vgl Bo) /(o — Do) ™!
(Vag(@. BY = Vagla, o)) /(5o — B)

P | sup <e, | — 1
zeX O'(.T)

The remaining lines follow similar steps to the ones in the proof of Lemma 2.

and hence

Analogous arguments yield CR > 1 — a + o(1) and hence

P (@@ 5,9) < g(x. o) < gl 3.5) Ve € X) > 1-a.
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Proof of Theorem 5. Let ¢, — 0 such that K,e, — 0 and for n large enough
p(x)' E(B) — go())|

sup <e
rEX o(x)

n

for n large enough and

2EX o(z) zeX o(z)

G(r,%) — &z, % Cy(2,3) — Ey(2, %
P<Sup @@, 5) - a(x, 2) Sgn%l - P(gup eu(. 5) — e @ )] _

We now get, similar as in the proof of Theorem 4,

CR = P(gl(%’ B, ) < go(@) < gul, Bi.., )VxEX)

= P &z, %) < p(x)Vn(E(Bx,) — Br.) 1 Vi(go(x) — p(z) E(Br.,))
o(x) — o(x) o(z)

< p &z, ) o< p(z)vn(E(Bx,) = Bk.) < (2, %) +e,Vre X

= o(x) "= o(x — o(2) !

< p El(l', E) _9 < p(x)/\/ﬁ(E(BKn) B BKn) < EU(ZL‘, E) + 2. Ve e X

- o(x " o(z) — olx) '

)
— 151/2 =
_ p Cl(xa Z) o 28” < p(l’) Xz < Cu(:Ev 2)
o(z) o(x) o(x)
= l—a+o(1).
Analogous arguments yield CR > 1 — a + o(1) and hence

P(gl(%ﬁAKn,A) 9(x, Bo) < gulx BKH, )V:L'GX)—>1—a.

S.2.2 Proofs of lemmas from Section A
Proof of Lemma Al. Let Cy be a constant and define
Sy={7eRX || <Ciforall k=1,... K},
= {7y e R¥ : &/ (2) < pla)SY?y <&l (z) for all x € X}

and
S ={yeRE:g(z) < p(x)'SV?y < &,(z) for all z € X}.

We first show that if S C S, and S; C S, for some C, < oo, then
‘ / (Gu(x) — ) wx (2)dz — / (& (2) — & (2))wx (z)dz| — 0.

13
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To do so, let € > 0. Also notice that, by definition, ¢,(z) = sup,cgp(x)"y

all z,2’ € X it holds that

() = Cu(2)]

. Therefore, for

| sup p(x)'y — sup p(z’)"|

yES yeS
< sup |p(z)'y — p(a’) 5|
~ES
< sup!Vp(x) v(z — )|
< sup H’YHsupHVp( Mz — '},

’”/eu

where the last line follows from the assumption that S C S,. Hence,

|cu() —

Cu(@'))|

sup
z,x' €X, vH#x!

Moreover,

Cu(z

It follows that for all z,2" € X

lcu(@)w(z) = cu(zw ()]

|z — |

IN

Next write

IA

'Yeu

It follows that

|z —

Z /

v < sup ||7||SUp||Vp( )I-

’Yeu

) < [lp(2)]| sup |-
YESy

|(u() = c(a))w(@)| + |(w(z) = w(z'))eu(@’)]

|z — |
C sup [iedl Sup IVp(@)|| + Cllp()|| sup [|7]]
YES YESu
2C? sup H’YH
’YE u
J—1
cu(j)wx (@;)(j41 — 25)
j=1
(Cu(z)wx () — Cu(rj)wx (z5)) dz
2 sup |||z — zylda
YESy
J—1
= 2C% sup |19|| Z Ti — ;)%
7j=1
J—1
> ez wx (@) (@i — ;)| = 0
j=1

‘ / &y () wy (z)dz —

14



Identical arguments imply that

-1

‘/ r)wx (x ZCZ %)wx(xj)(%ﬂ ;)

7j=1

—0

and we get analogous results for ¢(x) and ¢/ (x). Theorem 2 now implies that

— 0.

\ @ - awyux@i - [l - @ex

Next notice that
p(x)SV2Z = p(a)B'SV?Z = p(x) Z,

where Z = B'SY2Z ~ N(0, B'YB). It follows that we can write the constraint
Ple(z) < pla)SY?Z < cy(z) forallz € X) =1 —a

as
P(ci(z) < pla)SY2W < ¢y (x) forallz € X) =1 — a,

where W ~ N(0, ;) and £1/2 = (B'SB)"/2. Moreover, the confidence band is a projection
of p(z)'s on
{BeRX :¢(x) <p(x)(B—B) < écuz) for all z € X},

or equivalently a projection of p(x)'5 on

{BeRl:g(x) < p(x) (8 —PB) < éu(x) for all z € X},

where 3 = B'S ~ N (0, B'’XB). Since we can always rewrite the problem using the L
dimensional vector p(z), it is sufficient to prove that there exists Cy < oo such that S C S,
and S; C S, when B = [ k.

Now notice that from arguments in the proof of Corollary 1, the band resulting from the
projection on {f : (B — B)E_l(ﬁ —B) < ¢ki1-a}, Where cx 1, is the 1 — a quantile of the
X% distribution, leads to a conservative band of the form p(z)'f =+ ¢x1_ao(z). The weighted

area of this band is

20K71a/\/p(x)Ep(m)wX(x)d:c < ZCKJa)\max(Zl/z)/Hp(m)“wx(x)dx < 0,

where Aq.(31/2) denotes the largest eigenvalue of ¥!/2. Define

U= 26K71_a)\max(21/2)/||p(l’)||’wx(517)d[17.

15



Let v € S. Then for each x € X either ¢,(z) > |p(x) 7| or ¢(zx) < —|p(x)'v|. Also notice
that ¢,(z) > 0 and ¢(x) < 0. It follows from Assumption 8 that for some € > 0

@@ - ate)uxs = [ e sfux@ds = <.

Since we also established [(¢,(z) — &(z))wx(z)d(z) < U, it follows that |y <
therefore there exists C, such that

o |

and

SC{yeRF: - C;<y<Ciforallk=1,...,K}.

Similarly, projecting on the set {5 : (8 — B)S (3 — B) < cx1_a} for all p(z;) yields a

conservative band and the objective function h; for this band is
2eK1- az p(z;)Ep(zj)wx () (241 — ;).
Arguments as in the first part imply that

— 0.

2cK - O‘Z p(x;)EZp(z)wx(x;)(xjm — zj) — ZCKJ_Q/ p(z)Ep(z)wx (x)dx

Therefore, for J large enough

<

-1 J-1

(@ () =& (z))wx () (2501 —2;) < 2¢K1-0 Z p(x;)Sp(r;)wx () (20 —2;) < U+1

<.
Il

Now let v € S; and write ¥ = ay. Then, similar as before there exists ¢ > 0 such that
7]l < % for all ¥ € S;. Thus, there exists a Cs such that

S;C{yveRF: —Cy, <y <Cforallk=1,...,K}.

The conclusion now follows from the first part. O

Proof of Lemma A2. As in the proof of Lemma Al, we can assume without loss of gener-
ality that B = [x«x because otherwise we can simply work with a transformed problem.
Analogously, we can assume without loss of generality that ¥ = Ixyx (but )y # Igwi in
general).

The proof proceeds in several steps. First, we show that the bands are based on projec-

tions on bounded sets and that the weighted areas corresponding to the optimal solutions

16



are bounded from above and below (in probability). We then show that the optimal bands

are symmetric. Next we show that

0.

’ / e, Syw (2)dz — / e, S)w () dz

Finally, we show a contradiction if for some € > 0 and 6 > 0 and n large enough

P (sup |Eu(2,%) — &y(z, )| > 5) > 0.

rzeX

For the first step, arguments as in the proof of Lemma Al imply that there exists a
constant Cy such that S(X) C S, where

Sy={veRX |y <Ciforall k=1,... K},

and
S(E)={yeRX :g(z,%) < p(x)’El/Zv < ¢z, X) for all z € X'}

Analogous arguments imply that there is a constant Cy such that S(3) C S, with probability
approaching 1. From the proof Lemma A1 it also follows that [ (¢,(x,¥) — ¢(z, X)) wx (x)dx
is bounded and that [(¢,(z, 3) =&z, ¥))wx (2)dz is bounded by a constant with probability
approaching 1.

Now notice that ¢,(x,>) > o(x)c1_o and ¢(z,Y) < —o(z)c;_q, where ¢;_, denotes the

1 — a quantile of the standard normal distribution. Therefore,

/ (G, %) — G, %)) wy (2)dz > 261 / o (2)wy (2)dx > 0
and
/ <5u(x, 3 — &z, f))) wy (z)dr > cla/a(x)wx(x)dx + 0,(1).

We now prove that ¢(x,¥) = —¢,(z,X). Suppose ¢,(z,X) # —¢(x,X) for some x € X.
Let
Gz, X) =z, %) — 1/2(¢(2, 2) + ¢y(z, X)) = 1/2¢(2,X) — 1/2¢,(z, %)

and
Cu(z,X) =¢y(2,X) — 1/2(¢(2,2) + ¢u(2, X)) = 1/2¢,(z,X) — 1/2¢,(z, X).
Let
Si={zeRE:G(z,%) < p(x)'SV?2 < &, (z, %) for all z € X}
and

Sy ={zeRE: —G,(2,8) < p(z)B?2 < —g(x,%) for all z € X}.

17



By the symmetry of the normal measure, P(Z € S1) = P(Z € S3) = 1 — a. It follows from
Lemmas S3 and 54 that

P(&(z, %) < p(2)'SV?Z < éy(x, %) forall z € X) > 1 — a.

/(éu(x, Y) — ¢z, X)) wx(x)dr = /(cu(x, Y) —¢(z, X)) wx(x)de,
which contradicts that (¢(z,X), ¢,(x, X)) is optimal. Therefore, ¢,(z, ) = —¢/(z, X).

Next we prove that

2.

’/@@jmﬂ@@—/gmjmﬂ@m

Let ¢; be a constant such that
P(—c16y(x, %) < p(2) 827 < ¢y (@, 8) forall z € X | 8) =1 — o

Since

Ip(x) (52 = V%) Z] < [lp() [ |I£H2 = B2 Z]) = 0,(1),

it holds that |¢; — 1| = o0,(1). Since &,(x,%) is optimal and ¢,¢,(x, %) is feasible, it holds
that

/cu(x,f])wx(x)dx < /cu(x,E)wX(x)dx+(cl — 1)/cu(a:, Ywx (z)dx
< /cu(x,E)wX(a:)dm + 0,(1).
Similarly, |co — 1| = 0,(1), where ¢, is such that
P(—cyéy(x,2) < p(2) 8?7 < ey (@, 8) forall z € X | 8) =1 — o
Thus,

/%@jmﬁ@mfg/%@ﬁmﬁ@m+@—n/%uﬁmﬂ@m

< /@J%EMW@mx+%ay

Together

0.

’/Q@ﬁﬂﬂ@@—/@@jmﬂ@m

Since we assume that inf,cy o(x) > 0, it is sufficient to prove that

sup |G, (x, %) — (2, 2)| = 0,(1).

rzeX
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Let € > 0 and 6 > 0 and suppose that

P (sup |Eu(2, %) — Eu(z,2)] > 8) > 0.

TeX

Define
CE)={yeRF: —¢,(z,%) < p(x)y < é,(z,%) for all z € X}.

Also let A € (0,1) and define

A ~

er(r, %) = Ay (7, 2) + (1 — N)eu(r, %)

u

and
CMNE) = {y e RE : —&)\(z,%) < p(x)y < &\, %) for all z € X}

Let Z ~ N(0, Ixxx). Since P(sup,cy |Gu(z, %) — éu(z, )| > €) > 4, by Lemmas S3 and S4
there exists a constant 7 > 0 such that with probability at least §/2 and for n large enough

PEV2Z e CrNE) |8 > PEV2ZeC®) | D) PEYVZeC(D) | 2) 41
Notice that P(£'2Z € C(£) | &) = 1 — a. Moreover, since P(£Y2Z € C(X)) = 1 — o and
Ip(z) (£ = £V Z] < lp(@)|[Z? = S 2] = 0p(1),

P(X12Z € O(R) | ) =1 —a+ oy(1). It follows that with probability at least /2 and for
n large enough
PEV2Z e CME)>1—a+n+o,(1).

Next let ¢ = ll_f‘Tt:]?/]Q € (0,1) and let
M, ) = ez, 2) + (1 = N)au(z,%)).
Then with probability at least §/2 and for n large enough
P(—Mz, %) < p(x)SV?Z < MNa,X) for all z € X | 30)
> cP(—&Mx,2) < pla)SV?2Z < &(x,%) forall z € X | %)
>c(l—a+n+oy(1))
=1—a+n/2+0,(1).
Moreover,
/5(x,2)wx(x)dx
= c/éu(:v, S)wy (x)dz + (1 — ) (/ Cu(z, D)wx (x)dx — /Eu(:c, i])wx(x)dx)
= c/cu(:zr, Swx (x)dz + 0p(1).
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It follows that with probability at least 6/4 and for n large enough

A

P(—Mz,2) < p(x)SY2Z < Ma,S) forallz e X [ 8) >1—a

and

A

/ &, Dwx (z)dr < / oz, D) wx (z)d,

which would contradict that &,(x, %) is optimal.
It therefore has to hold that

P (sup |Eu(2,%) — &y(z, )| > 8) —0

rzeX

which means that

sup |, (x,3) — (2, 2)| = 0,(1).
zeX
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