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Abstract

We propose a uniformly valid inference method for an unknown function or parameter vector

satisfying certain shape restrictions. The method applies very generally, namely to a wide

range of finite dimensional and nonparametric problems, such as regressions or instrumental

variable estimation, to both kernel or series estimators, and to many different shape restric-

tions. One application of our inference method is to construct uniform confidence bands for

an unknown function of interest. These bands are build around a shape restricted estimator

and the upper and lower bound functions are consistent with the shape restrictions. More-

over, the bands are asymptotically equivalent to standard unrestricted confidence bands if

the true function strictly satisfies all shape restrictions, but they can be much smaller if some

of the shape restrictions are binding or close to binding. We illustrate these sizable width

gains as well as the wide applicability of our method in Monte Carlo simulations and in an

empirical application.
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1 Introduction

Researchers can often use either parametric or nonparametric methods to estimate the pa-

rameters of a model. Parametric estimators have favorable properties, such as good finite

sample precision and fast rates of convergence, and it is usually straightforward to use them

for inference. However, parametric models are often misspecified. Specifically, economic the-

ory rarely implies a particular functional form, such as a linear or quadratic demand function,

and conclusions drawn from an incorrect parametric model can be misleading. Nonparamet-

ric methods, on the other hand, do not impose strong functional form assumptions, but as

a consequence, confidence intervals obtained from them are often much wider.

In this paper we explore shape restrictions to restrict the class of functions but without

imposing arbitrary parametric assumptions. Shape restrictions are often reasonable assump-

tions, such as assuming that the return to eduction is positive, and they can be implied by

economic theory. For example, demand functions are generally monotonically decreasing in

prices, cost functions are monotonically increasing, homogeneous of degree 1, and concave

in input prices, Engel curves of normal goods are monotonically increasing, economies of

scale yield subadditive average cost functions, and utility functions of risk averse agents are

concave. Additionally, statistical theory can imply shape restrictions, such as noncrossing

conditional quantile curves. There is a long history of estimation under shape restrictions in

econometrics and statistics and obtaining shape restricted estimators is simple in many set-

tings. Moreover, shape restricted estimators can have much better finite sample properties,

such as lower mean squared errors, compared to unrestricted estimators.

Using shape restrictions for inference is much more complicated than simply obtaining

a restricted estimator. The main reason is that the distribution of the restricted estimator

depends on where the shape restrictions bind, which is unknown a priori. In this paper we

propose a uniformly valid inference method for an unknown function or parameter vector

satisfying certain shape restrictions, which can be used to test hypotheses and to obtain

confidence sets. The method applies very generally, namely to a wide range of finite dimen-

sional and nonparametric problems, such as regressions or instrumental variable estimation,

to both kernel or series estimators, and to many different shape restrictions. Our confidence

sets are well suited to be reported along with shape restricted estimates, because they are

build around restricted estimators and eliminate regions of the parameter space that are

inconsistent with the shape restrictions.

One major application of our inference method is to construct uniform confidence bands

for a function. Such a band consists of a lower bound function and an upper bound function
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such that the true function is between them with at least a pre-specified probability. These

bands are useful to summarize statistical uncertainty and they allow the reader to easily

assess statistical accuracy and perform various hypothesis tests about the function without

access to the data. Our confidence bands have desirable properties. In particular, they

always include the shape restricted estimator of the function and are therefore never empty.

Moreover, they are asymptotically equivalent to standard unrestricted confidence bands if

the true function strictly satisfies all shape restrictions (e.g. if the true function is strictly

increasing but the shape restriction is that it is weakly increasing). However, if for the true

function some of the shape restrictions are binding or close to binding, our confidence bands

are generally much smaller. The decrease in the width reflects the increased precision of the

constrained estimator. Finally, the proposed method provides uniformly valid inference over

a large class of distributions, which in particular implies that the confidence bands do not

suffer from under-coverage if some of the shape restrictions are close to binding. These cases

are empirically relevant. For example, demand functions are likely to be strictly decreasing,

but nonparametric estimates are often not monotone, suggesting that the demand function

is close to constant for some prices.1 Our method applies very generally. For example,

our paper is the first to provide such inference results for the nonparametric instrumental

variables (NPIV) model under general shape constraints.

Similar to many other nonstandard inference problems, instead of trying to obtain confi-

dence sets directly from the asymptotic distribution of the estimator, our inference procedure

is based on test inversion.2 This means that we start by testing the null hypothesis that the

true parameter vector θ0 is equal to some fixed value θ̄. In series estimation θ0 represents the

coefficients in the series approximation of a function and θ0 can therefore grow in dimension

as the sample size increases. The major advantage of the test inversion approach is that un-

der the null hypothesis we know exactly which of the shape restrictions are binding or close

to binding. Therefore, under the null hypothesis, we can approximate the distribution of the

estimator in large samples and we can decide whether or not we reject the null hypothesis.

The confidence set for θ0 consists of all values for which the null hypothesis is not rejected.

To obtain uniform confidence bands or confidence sets for other functions of θ0, such as

average derivatives, we project onto the confidence set for θ0 (see Section 2 for a simple il-

lustration). We choose the test statistic in a way that our confidence sets are asymptotically

equivalent to standard unrestricted confidence sets if θ0 is sufficiently in the interior of the pa-

1Analogously to many other papers, closeness to the boundary is relative to the sample size.
2Other nonstandard inference settings include autoregressive models (e.g. Mikusheva 2007), weak iden-

tification (e.g. Andrews and Cheng 2012), and partial identification (e.g. Andrews and Soares 2010).
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rameter space. Thus, in this case, the confidence sets have the right coverage asymptotically.

If some of the shape restrictions are binding or close to binding, our inference procedure will

generally be conservative due to the projection. However, in these cases we also obtain very

sizable width gains compared to a standard unrestricted confidence set. Furthermore, due to

test inversion and projections, our inference method can be computationally demanding. We

provide details on the computational costs and compare them with alternative approaches

in Section 6.1. We also briefly describe a method recently suggested by Kaido, Molinari,

and Stoye (2016) in a computationally similar problem in the moment inequality literature,

which also applies to our framework, and can reduce these costs considerably.

In Monte Carlo simulations we construct uniform confidence bands in a series regression

framework and in the NPIV model under a monotonicity constraint. In the NPIV model the

gains of using shape restrictions are generally much higher. For example, we show that with

a fourth order polynomial approximation of the true function, the average width gains can

be up to 73%, depending on the slope of the true function. We also obtain large widths gains

for confidence intervals for the average derivative of the function. Finally, in an empirical

application, we estimate demand functions for gasoline, subject to the functions being weakly

decreasing, and we provide uniform confidence bands build around restricted estimates with

monotone upper and lower bound functions. In this setting, the width gains from using these

shape restrictions are between 25% and 45%.

We now explain how our paper fits into the related literature. There is a vast literature

on estimation under shape restrictions going back to Hildreth (1954) and Brunk (1955)

who suggest estimators under concavity and monotonicity restrictions, respectively. Other

related work includes, among many others, Mukerjee (1988), Dierckx (1980), Ramsay (1988),

Mammen (1991a), Mammen (1991b), Mammen and Thomas-Agnan (1999), Hall and Huang

(2001), Haag, Hoderlein, and Pendakur (2009), Du, Parmeter, and Racine (2013), and Wang

and Shen (2013). See also Delecroix and Thomas-Agnan (2000) and Henderson and Parmeter

(2009) for additional references. Many of the early papers focus on implementation issues and

subsequent papers discuss rates of convergence of shape restricted estimators. Many inference

results, such as those by Mammen (1991b), Groeneboom, Jongbloed, and Wellner (2001),

Dette, Neumeyer, and Pilz (2006), Birke and Dette (2007), and Pal and Woodroofe (2007) are

for points of the function where the shape restrictions do not bind. It is also well known that

a shape restricted estimator has a nonstandard distribution if the shape restrictions bind;

see for example Wright (1981) and Geyer (1994). Freyberger and Horowitz (2015) provide

inference methods in a partially identified NPIV model under shape restrictions with discrete
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regressors and instruments. Empirical applications include Matzkin (1994), Lewbel (1995),

Ait-Sahalia and Duarte (2003), Beresteanu (2005), and Blundell, Horowitz, and Parey (2012,

2017). There is also an interesting literature on risk bounds (e.g. Zhang (2002), Chatterjee,

Guntuboyina, and Sen (2015), Chetverikov and Wilhelm (2017)) showing, among others, that

a restricted estimator can have a faster rate of convergence than an unrestricted estimator

when the true function is close to the boundary. In addition, there is a large, less related

literature on testing shape restrictions. See also Chetverikov, Santos, and Shaikh (2018) for

a recent review of the econometrics of shape restrictions.

There are several existing methods which can be used to obtain uniform confidence bands

under shape restrictions. First, there are a variety of existing confidence bands, some of which

are tailored to specific shape restrictions, such as the ones in Dümbgen (1998, 2003), which

have the feature that they can be empty with positive probability. As a very simple example,

one could take a standard unrestricted band and intersect it with all functions satisfying the

shape restrictions. While one could interpret an empty band as evidence against the shape

restrictions, these bands can also be arbitrarily small, and the width might therefore not

adequately reflect the finite sample uncertainty. More formally, these bands do not satisfy

the “reasonableness” property of Müller and Norets (2016). The method of Dümbgen (2003)

only applies to a regression model with fixed regressors and normally distributed errors, but

he shows that his bands adapt to the smoothness of the unknown function.3 Our method

applies much more generally and covers, among other, the NPIV model under general shape

constraints, but investigating analogous adaptivity results is out of scope of the current

paper. However, we briefly compare the two approaches in simulations. We then also

show that our bands are on average much narrower than simple monotonized bands. The

second possibility is to use the rearrangement approach of Chernozhukov, Fernandez-Val, and

Galichon (2009), which works with monotonicity restrictions and is very easy to implement.

However, the average width does not change by rearranging a band. Finally, in a kernel

regression framework with very general constraints, one could use a two step procedure

by Horowitz and Lee (2017). In the first step, they estimate the points where the shape

3Cai, Low, and Xia (2013) focus on confidence intervals for the function evaluated at a point in the normal

regression model and they show that the intervals adapt to each individual function under monotonicity and

convexity constraints. Bellec (2016) constructs polyhedron type confidence regions for the entire conditional

mean vector in the normal regression model with shape restrictions, but without using any smoothness

assumptions, and he shows that they adapt the dimension of the smallest face of the polyhedron. These

confidence sets are not directly useful for constructing uniform confidence bands or confidence intervals for

functionals, because projecting onto them would yield very conservative confidence sets.
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restrictions bind. In the second step, they estimate the function under equality constraints

and hence, they obtain an asymptotically normally distributed estimator, which they can use

to obtain uniform confidence bands. While their approach is computationally much simpler

than ours, their main result leads to bands which can suffer from under-coverage if some of

the shape restrictions are close to binding. They also suggest using a bias correction term

to improve the finite sample coverage probability, but they do not provide any theoretical

results for this method. To the best of our knowledge, our method is the first that yields

uniform confidence bands, which are uniformly valid, yield width reductions when the shape

restrictions are binding or close to binding, and are never empty.

An additional closely related paper, which does not consider uniform confidence bands

and therefore does not fit into any of the categories above, is Chernozhukov, Newey, and

Santos (2015). They develop a general testing procedure in a conditional moments setting,

which can be used to test shape restrictions and to obtain confidence regions for function-

als under shape restrictions. They allow for partial identification, while we assume point

identification, but we study a general setup, which includes for example maximum likeli-

hood estimation and conditional moments models. Even though there is some overlap in the

settings where both methods apply, their approach is conceptually very different to ours.

Similar to many other papers in the partial identification literature, to obtain confidence re-

gions for functionals, they use a test inversion procedure, which jointly tests certain features

of the model. In particular, they invert a joint test of the null hypothesis that the shape

restrictions hold and that a functional takes a particular value. Consequently, the result-

ing confidence regions represent both uncertainty about the value of the functional and the

shape restrictions, these sets can be empty (which could be interpreted as evidence against

the shape restrictions), and they can be arbitrarily small. Contrarily, we impose the shape

restrictions and test a null hypothesis about the parameter vector only. Thus, we treat these

restrictions and other assumptions of the model, such as moment conditions, symmetrically.

Our resulting confidence sets therefore represent uncertainty about the parameter vector

only. We illustrate these conceptual differences as well as the computational costs in Section

6, where we consider confidence intervals for an average derivative.

Finally, our paper builds on previous work on inference in nonstandard problems, most

importantly the papers of Andrews (1999, 2001) on estimation and testing when a parameter

is on the boundary of the parameter space. The main difference of our paper to Andrews’

work is that we allow testing for a growing parameter vector while Andrews considers a

vector of a fixed dimension. Moreover, we show that our inference method is uniformly valid
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when the parameters can be either at the boundary, close to the boundary, or away from the

boundary. We also use different test statistics because we invert them to obtain confidence

bands. Thus, while the general approach is similar, the details of the arguments are very

different. Ketz (2017) has a similar setup as Andrews but allows for certain parameter

sequences that are close to the boundary under non-negativity constraints.

Outline: The remainder of the paper is organized as follows. We start by illustrating

the most important features of our inference approach in a very simple example. Section 3

discusses a general setting, including high level assumptions for uniformly valid inference.

Sections 4 and 5 provide low level conditions in a regression framework (for both series

and kernel estimation) and the NPIV model, respectively. The remaining sections contain

Monte Carlo simulations, the empirical application, and a conclusion. Proofs of the results

from Sections 4 and 5, computational details, and additional simulation results are in a

supplementary appendix with section numbers S.1, S.2, etc..

Notation: For any matrix A, ‖A‖ denotes the Frobenius norm. For any square matrix A,

‖A‖S = sup‖x‖=1 ‖Ax‖ denotes the spectral norm. For a positive semi-definite matrix Ω and

a vector a let ‖a‖Ω =
√
a′Ωa. Let λmin(A) and λmax(A) denote the smallest and the largest

eigenvalue of a symmetric square matrix A. For a sequence of random variablesXn and a class

of distributions P we say Xn = op(εn) uniformly over P ∈ P if supP∈P P (|Xn| ≥ δεn) → 0

for any δ > 0. We say Xn = Op(εn) uniformly over P ∈ P if for any δ > 0 there are Mδ and

Nδ such that supP∈P P (|Xn| ≥Mδεn) ≤ δ for all n ≥ Nδ.

2 Illustrative example

We now illustrate the main features of our method in a very simple example. We then explain

how these ideas can easily be generalized before introducing the general setup with formal

assumptions in Section 3. Suppose that X ∼ N(θ0, I2×2) and that we observe a random

sample {Xi}ni=1 of X. Denote the sample average by X̄. We are interested in estimating θ0

under the assumption that θ0,1 ≤ θ0,2. An unrestricted estimator of θ0, denoted by θ̂ur, is

θ̂ur = arg min
θ∈R2

(θ1 − X̄1)2 + (θ2 − X̄2)2.

Hence θ̂ur = X̄. Analogously, a restricted estimator is

θ̂r = arg min
θ∈R2: θ1≤θ2

(θ1 − X̄1)2 + (θ2 − X̄2)2

= arg min
θ∈R2: θ1≤θ2

‖θ − θ̂ur‖2,
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which implies that θ̂r is simply the projecting of θ̂ur onto {θ ∈ R2 : θ1 ≤ θ2}. Adding and

subtracting θ0 and multiplying by
√
n then yields

θ̂r = arg min
θ∈R2: θ1−θ2≤0

‖
√
n(θ − θ0)−

√
n(θ̂ur − θ0)‖2.

Let λ =
√
n(θ − θ0). From a change of variables it then follows that

√
n(θ̂r − θ0) = arg min

λ∈R2: λ1−λ2≤
√
n(θ0,2−θ0,1)

‖λ−
√
n(θ̂ur − θ0)‖2.

Let Z ∼ N(0, I2×2). Since
√
n(θ̂ur − θ0) ∼ N(0, I2×2) we get

√
n(θ̂r − θ0)

d
= arg min

λ∈R2: λ1−λ2≤
√
n(θ0,2−θ0,1)

‖λ− Z‖2,

where
d
= means that the random variables on the left and right side have the same distribu-

tion. Notice that while the distribution of
√
n(θ̂ur − θ0) does not depend on θ0 and n, the

distribution of
√
n(θ̂r− θ0) depends on

√
n(θ0,2− θ0,1), which measures how close θ0 is to the

boundary of the parameter space relative to n. We denote a random variable which has the

same distribution as
√
n(θ̂r − θ0) by Zn(θ0). As an example, suppose that θ0,1 = θ0,2. Then

Zn(θ0) is the projection of Z onto the set {z ∈ R2 : z1 ≤ z2}.
A 95% confidence region for θ0 using the unrestricted estimator can be constructed by

finding the constant cur such that

P (max{|Z1|, |Z2|} ≤ cur) = 0.95.

It then follows immediately that

P

(
θ̂ur,1 −

cur√
n
≤ θ0,1 ≤ θ̂ur,1 +

cur√
n

and θ̂ur,2 −
cur√
n
≤ θ0,2 ≤ θ̂ur,2 +

cur√
n

)
= 0.95.

Thus

CIur =

{
θ ∈ R2 : θ̂ur,1 −

cur√
n
≤ θ1 ≤ θ̂ur,1 +

cur√
n

and θ̂ur,2 −
cur√
n
≤ θ2 ≤ θ̂ur,2 +

cur√
n

}
is a 95% confidence set for θ0. While there are many different 95% confidence regions for θ0,

rectangular regions are particularly easy to report (especially in larger dimensions), because

one only has to report the extreme points of each coordinate.

Similarly, now looking at the restricted estimator, for each θ ∈ R2 let cr,n(θ) be such that

P (max{|Zn,1(θ)|, |Zn,2(θ)|} ≤ cr,n(θ)) = 0.95
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and define CIr as{
θ ∈ R2 : θ1 ≤ θ2, θ̂r,1 −

cr,n(θ)√
n
≤ θ1 ≤ θ̂r,1 +

cr,n(θ)√
n

, θ̂r,2 −
cr,n(θ)√

n
≤ θ2 ≤ θ̂r,2 +

cr,n(θ)√
n

}
.

Again, by construction P (θ0 ∈ CIr) = 0.95.

Figure 1 illustrates the relation between cur and cr,n(θ). The first panel shows a random

sample of Z. The dashed square contains all z ∈ R2 such that max{|z1|, |z2|} ≤ cur. The

second panel displays the corresponding random sample of Zn(θ0) when
√
n(θ0,2 − θ0,1) = 0,

which is simply the projection of Z onto the set {z ∈ R2 : z1 ≤ z2}. In particular, for

each realization z we have zn(θ0) = z if z1 ≤ z2 and zn(θ0) = 0.5(z1 + z2, z1 + z2)′ if

z1 > z2. Therefore, if max{|z1|, |z2|} ≤ cur, then also max{|zn,1(θ0)|, |zn,2(θ0)|} ≤ cur, which

immediately implies that cr,n(θ0) ≤ cur. The solid square contains all z ∈ R2 such that

Figure 1: Scatter plots of samples illustrating relation between critical values
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max{|z1|, |z2|} ≤ cr,n(θ0), which is strictly inside the dashed square. The third and fourth

panel show a similar situations with
√
n(θ0,2− θ0,1) = 1 and

√
n(θ0,2− θ0,1) = 5, respectively.

As
√
n(θ0,2 − θ0,1) increases, the percentage projected onto the solid line decreases and thus

cr,n(θ0) gets closer to cur. Moreover, once
√
n(θ0,2 − θ0,1) is large enough, cr,n(θ0) = cur.

Figure 2 shows the resulting confidence regions for θ0 when n = 100 for specific realiza-

tions of θ̂ur and θ̂r. The confidence sets depend on these realizations, but given θ̂ur and θ̂r,

they do not depend on θ0. The dashed red square is CIur and the solid blue lines are the

boundary of CIr. In the first panel θ̂ur = θ̂r = (0, 0)′. Since θ̂ur = θ̂r and cr,n(θ) ≤ cur for

all θ ∈ R2, it holds that CIr ⊂ CIur. Also notice that since cr,n(θ) depends on θ, CIr is not

a triangle as opposed to the set CIur ∩ {θ ∈ R : θ1 ≤ θ2}. The second and the third panel

display similar situations with θ̂ur = θ̂r = (0, 0.1)′ and θ̂ur = θ̂r = (0, 0.3)′, respectively. In

Figure 2: Confidence regions
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both cases, CIr ⊂ CIur. It also follows from the previous discussion that if θ̂ur = θ̂r and

if
√
n(θ̂ur,2 − θ̂ur,1) is large enough then CIur = CIr. Consequently, for any fixed θ0 with

θ0,1 < θ0,2, it holds that P (CIr = CIur) → 1. However, this equivalence does not hold if

θ0 is at the boundary or close to the boundary. Furthermore, it then holds with positive

probability that CIur ∩ {θ ∈ R : θ1 ≤ θ2} = ∅, while CIr always contains θ̂r. The fourth

panel illustrates that if θ̂ur 6= θ̂r, then CIr is not a subset of CIur.

The set CIr is an exact 95% confidence set for θ0, but it cannot simply be characterized by

its extreme points and it can be hard to report with more than two dimensions. Nevertheless,

we can use it to construct a rectangular confidence set. To do so, for j = 1, 2 define

θ̂Lr,j = min
θ∈CIr

θj and θ̂Ur,j = max
θ∈CIr

θj

and

CIr =
{
θ ∈ R2 : θ1 ≤ θ2 and θ̂Lr,1 ≤ θ1 ≤ θ̂Ur,1 and θ̂Lr,2 ≤ θ2 ≤ θ̂Ur,2

}
.

Then, by construction, CIr ⊆ CIr and thus P (θ0 ∈ CIr) ≥ 0.95. Moreover, just as before,

if θ̂ur = θ̂r, then CIr ⊆ CIur. If for example θ̂ur = θ̂r = (0, 0)′, then θ̂Ur,2 = −θ̂Lr,1 = cur/
√
n

but θ̂Ur,1 = −θ̂Lr,2 < cur/
√
n, which can be seen from the first panel of Figure 2. Hence,

relative to the confidence set from the unrestricted estimator, we obtain width gains for the

upper end of the first dimension and the lower end of the second dimension. The width

gains decrease as θ̂ur moves away from the boundary into the interior of ΘR. Moreover, for

any θ̂ur and θ̂r and j = 1, 2 we get θ̂Ur,j − θ̂Lr,j ≤ 2cur/
√
n. Thus, the sides of the square

{θ ∈ R2 : θ̂Lr,1 ≤ θ1 ≤ θ̂Ur,1 and θ̂Lr,2 ≤ θ2 ≤ θ̂Ur,2} are never longer than the sides of the

square CIur. Finally, if θ̂ur is sufficiently in the interior of ΘR, then CIr = CIur, which is

an important feature of our inference method. We get this equivalence in the interior of ΘR

because we invert a test based on a particular type of test statistic, namely max{|Z1|, |Z2|}.
If we started out with a different test statistic, such as Z2

1 + Z2
2 , we would not obtain

CIr = CIur in the interior of ΘR. We return to this result more generally in Section 3.2 and

discuss possible alternative ways of constructing confidence regions in Section 8.

This method of constructing confidence sets is easy to generalize. As a first step, let ΘR

be a restricted parameter space and let Qn(θ) be a population objective function. Suppose

that the unrestricted estimator θ̂ur minimizes Qn(θ). Also suppose that Qn(θ) is a quadratic

function of θ, which holds for example in the NPIV model, and which implies that ∇2Qn(θ)

does not depend on θ. Then with Ω̂ = ∇2Qn(θ) we get

Qn(θ) = Qn(θ̂ur) +∇Qn(θ̂ur)
′(θ − θ̂ur) +

1

2
(θ − θ̂ur)′Ω̂(θ − θ̂ur)
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and since ∇Qn(θ̂ur) = 0 it holds that

θ̂r = arg min
θ∈ΘR

‖θ − θ̂ur‖2
Ω̂
.

Hence, θ̂r is again simply a projection of θ̂ur onto ΘR. As before, we can now use a change

of variables and characterize the distribution of
√
n(θ̂r − θ0) as a projection of

√
n(θ̂ur − θ0)

onto a local parameter space that depends on θ0 and n. Thus, when testing H0 : θ0 = θ̄

based on a test statistic that depends on
√
n(θ̂r − θ0), we can use the projection of the large

sample distribution of
√
n(θ̂ur − θ0) to calculate the critical values.

3 General setup

In this section we discuss a general framework and provide conditions for uniformly valid

inference. We start with an informal overview of the inference method and provide the formal

assumptions and results in Section 3.1. In Section 3.2 we discuss rectangular confidence

regions for general functions of the parameter vector.

Let Θ ⊆ RKn be the parameter space and let ΘR ⊆ Θ be a restricted parameter space.

Inferences focuses on θ0 ∈ ΘR. In an example discussed in Section 4.2 we have

θ0 =
(
E(Y | X = x1) . . . E(Y | X = xKn)

)′
,

and Kn increases with the sample size. In this case, the confidence regions we obtain are

analogous to the ones in the simple example above. For series estimation we take θ0 ∈ RKn

such that g0(x) ≈ pKn(x)′θ0, where g0 is an unknown function of interest and pKn(x) is a

vector of basis functions. A rectangular confidence region for certain functions of θ0 can then

be interpreted as a uniform confidence band for g0; see Section 4.3 for details. Even though

θ0 and Θ may depend on the sample size, we omit the subscripts for brevity.

As explained in Section 2, in many applications we can obtain a restricted estimator as a

projection of an unrestricted estimator onto the restricted parameter space. More generally,

we assume that there exist θ̂ur and θ̂r such that θ̂r is approximately the projection of θ̂ur

onto ΘR under some norm ‖·‖Ω̂ (see Assumption 1 below for a formal statement). Moreover,

since the rate of convergence may be slower than 1/
√
n, let κn be a sequence of numbers

such that κn →∞ as n→∞. Then

θ̂r ≈ arg min
θ∈ΘR

‖θ − θ̂ur‖2
Ω̂

= arg min
θ∈ΘR

‖κn(θ − θ0)− κn(θ̂ur − θ0)‖2
Ω̂
.
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Next define

Λn(θ0) = {λ ∈ RKn : λ = κn(θ − θ0) for some θ ∈ ΘR}.

Then

κn(θ̂r − θ0) ≈ arg min
λ∈Λn(θ0)

‖λ− κn(θ̂ur − θ0)‖2
Ω̂
.

We will also assume that κn(θ̂ur− θ0) is approximately N(0,Σ) distributed (see Assumption

2 for a formal statement) and that we have a consistent estimator of Σ, denoted by Σ̂.

Now let Z ∼ N(0, IKn×Kn) be independent of Σ̂ and Ω̂ and define

Zn(θ, Σ̂, Ω̂) = arg min
λ∈Λn(θ)

‖λ− Σ̂1/2Z‖2
Ω̂
.

We will use the distribution of Zn(θ0, Σ̂, Ω̂) to approximate the distribution of κn(θ̂r − θ0).

This idea is analogous to Andrews (1999, 2001); see for example Theorem 2(e) in Andrews

(1999). The main differences are that θ0 can grow in dimensions as n → ∞ and that our

local parameter space Λn(θ0) depends on n because we allow θ0 to be close to the boundary.

Now for θ̄ ∈ ΘR consider testing

H0 : θ0 = θ̄

based on a test statistic T , which depends on κn(θ̂r − θ̄) and Σ̂. For example

T (κn(θ̂r − θ̄), Σ̂) = max
k=1,...,Kn

∣∣∣∣∣κn(θ̂r,k − θ̄k)√
Σ̂kk

∣∣∣∣∣ .
We reject H0 if and only if

T (κn(θ̂r − θ̄), Σ̂) > c1−α,n(θ̄, Σ̂, Ω̂),

where

c1−α,n(θ̄, Σ̂, Ω̂) = inf{c ∈ R : P (T (Zn(θ̄, Σ̂, Ω̂), Σ̂) ≤ c | Σ̂, Ω̂) ≥ 1− α}.

Our 1− α confidence set for θ0 is then

CI = {θ ∈ ΘR : T (κn(θ̂r − θ), Σ̂) ≤ c1−α,n(θ, Σ̂, Ω̂)}.

To guarantee that P (θ0 ∈ CI)→ 1− α uniformly over a class of distributions P we require

sup
P∈P

∣∣∣P (T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)
)
− (1− α)

∣∣∣→ 0.

Notice that if θ̂r was exactly the projection of θ̂ur onto ΘR, if κn(θ̂ur−θ0) was exactly N(0,Σ)

distributed, if Σ and Ω were known, and if T (Zn(θ0,Σ,Ω),Σ) was continuously distributed,

then by construction

P
(
T (κn(θ̂r − θ0),Σ) ≤ c1−α,n(θ0,Σ,Ω)

)
= 1− α,
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just as in the simple example in Section 2. Therefore, the assumptions below simply guar-

antee that the various approximation errors are small and that small approximation errors

only have a small impact on the distribution of the test statistic.

3.1 Assumptions and main result

Let εn be a sequence of positive numbers with εn → 0. We discuss the role of εn after stating

the assumptions. Let P be a set of distributions satisfying the following assumptions.4

Assumption 1. There exists a symmetric, positive semi-definite matrix Ω̂ such that

κn(θ̂r − θ0) = arg min
λ∈Λn(θ0)

‖λ− κn(θ̂ur − θ0)‖2
Ω̂

+Rn

and ‖Rn‖ = op(εn) uniformly over P ∈ P .

Assumption 2. There exist symmetric, positive definite matrices Ω and Σ and a sequence of

random variables Zn ∼ N(0,Σ) such that λmin(Ω)−1/2‖κn(θ̂ur−θ0)−Zn‖ = op(εn) uniformly

over P ∈ P .

Assumption 3. There exists a constant Cλ > 0 such that 1/Cλ ≤ λmin(Σ) ≤ Cλ, 1/Cλ ≤
λmax(Ω) ≤ Cλ and

λmax(Σ)

λmin(Ω)
‖Σ̂− Σ‖2

S = op(ε
2
n/Kn) and

λmax(Σ)

λmin(Ω)2
‖Ω̂− Ω‖S = op(ε

2
n/Kn)

uniformly over P ∈ P .

Assumption 4. ΘR is closed and convex and θ0 ∈ ΘR.

Assumption 5. Let Σ1 and Σ2 be any symmetric and positive definite matrices such that

1/B ≤ λmin(Σ1) ≤ B and 1/B ≤ λmin(Σ2) ≤ B for some constant B > 0. There exists a

constant C, possibly depending on B, such that for any z1 ∈ RKn and z2 ∈ RKn

|T (z1,Σ1)− T (z2,Σ1)| ≤ C‖z1 − z2‖ and |T (z1,Σ1)− T (z1,Σ2)| ≤ C‖z1‖‖Σ1 − Σ2‖S.

Assumption 6. There exists δ ∈ (0, α) such that for all β ∈ [α− δ, α + δ]

sup
P∈P
|P (T (Zn(θ0,Σ,Ω),Σ) ≤ c1−β,n(θ0,Σ,Ω)− εn)− (1− β)| → 0

and

sup
P∈P
|P (T (Zn(θ0,Σ,Ω),Σ) ≤ c1−β,n(θ0,Σ,Ω) + εn)− (1− β)| → 0.

4Even though θ0 depends on P ∈ P, we do not make the dependence explicit in the notation.
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As demonstrated above, if θ̂ur maximizes Qn(θ) and if ∇2Qn(θ) does not depend on θ,

then Assumption 1 holds with Rn = 0 and Ω̂ = ∇2Qn(θ). Andrews (1999) provides general

sufficient conditions for a small remainder in a quadratic expansion. The assumption also

holds by construction if we simply project θ̂ur onto ΘR to obtain θ̂r. More generally, the

assumption does not necessarily require θ̂ur to be an unrestricted estimator of a criterion

function, which may not even exist in some settings if the criterion function is not defined

outside of ΘR. Even in these cases, θ̂r is usually an approximate projection of an asymptoti-

cally normally distributed estimator onto ΘR.5 Assumption 2 can be verified using a coupling

argument and the rate of convergence of θ̂ur can be slower than 1/
√
n. Assumption 3 ensures

that the estimation errors of Σ̂ and Ω̂ are negligible. If λmin(Ω) is bounded away from 0 and

if λmax(Σ) is bounded, then the assumption simply states that ‖Σ̂−Σ‖S = op(εn/
√
Kn) and

‖Ω̂−Ω‖S = op(ε
2
n/Kn), which is easy to verify in specific examples. Allowing λmin(Ω)→ 0 is

important for ill-posed inverse problems such as NPIV. We explain in Sections 4 and 5 that

both 1/Cλ ≤ λmin(Σ) ≤ Cλ and 1/Cλ ≤ λmax(Ω) ≤ Cλ hold under common assumptions

in a variety of settings. We could adapt the assumptions to allow for λmin(Σ) → 0 and

λmax(Ω)→∞, but this would require much more notation. Assumption 4 holds for example

with linear inequality constraints of the form ΘR = {θ ∈ RKn : Aθ ≤ b}. Other examples

of convex shape restrictions for series estimators are monotonicity, convexity/concavity, in-

creasing returns to scale, subadditivity, or homogeneity of a certain degree, but we rule out

Slutzki restrictions, which Horowitz and Lee (2017) allow for. The assumption implies that

Λn(θ0) is closed and convex as well. The main purpose of this assumption is to ensure that

the projection onto Λn(θ0) is nonexpansive, and thus, we could replace it with a higher level

assumption, which might then also allow for the Slutzki restrictions.6 Assumption 5 imposes

continuity conditions on the test statistic. We provide several examples of test statistics

satisfying this assumption in Sections 4 and 5. Assumption 6 is a continuity condition on

the distribution of T (Zn(θ0,Σ,Ω),Σ), which requires that its distribution function does not

become too steep too quickly as n increases. It is usually referred to as an anti-concentration

condition and it is not uncommon in these type of testing problems; see e.g. Assumption

6.7 of Chernozhukov, Newey, and Santos (2015). If the distribution function is continu-

ous for any fixed Kn, then the assumption is an abstract rate condition on how fast Kn

can diverge relative to εn. As explained below, to get around this assumption we could

5See Ketz (2017) for the construction of such an estimator. θ̂ur does not even have to be a feasible

estimator and we could simply replace κn(θ̂ur − θ0) by a random variable Ẑ, which is allowed for by our

general formulation; specifically see ZT in Andrews (1999).
6I.e. we use ‖ arg minλ∈Λn(θ0) ‖λ− z1‖Ω̂ − arg minλ∈Λn(θ0) ‖λ− z2‖Ω̂‖Ω̂ ≤ C‖z1 − z2‖Ω̂ for some C > 0.
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take c1−α,n(θ, Σ̂, Ω̂) + εn instead of c1−α,n(θ, Σ̂, Ω̂) as the critical value. Also notice that As-

sumptions 1 – 5 impose very little restrictions on the shape restrictions and hence, they are

insufficient to guarantee that the distribution function of T (Zn(θ0,Σ,Ω),Σ) is continuous.

We now get the following result.

Theorem 1. Suppose Assumptions 1 – 5 hold. Then

lim inf
n→∞

inf
P∈P

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ 1− α.

If in addition Assumption 6 holds then

sup
P∈P

∣∣∣P (T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)
)
− (1− α)

∣∣∣→ 0.

The first part of Theorem 1 implies that if we take c1−α,n(θ, Σ̂, Ω̂) + ε for any fixed ε > 0

as the critical value, then the rejection probability is asymptotically at most α under the

null hypothesis, even if Assumption 6 does not hold. In this case, εn can go to 0 arbitrarily

slowly. An alternative interpretation is that with c1−α,n(θ, Σ̂, Ω̂) as the critical value and

without Assumption 6, the rejection probability might be larger than α in the limit, but

the resulting confidence set is arbitrarily close to the 1− α confidence set. The second part

states that the test has the right size asymptotically if Assumptions 1 – 6 hold.

3.2 Rectangular confidence sets for functions

The previous results yield asymptotically valid confidence regions for θ0. However, these

regions might be hard to report if Kn is large and they may not be the main object of interest.

For example, we might be more interested in a uniform confidence band for a function rather

than a confidence region of the coefficients in the series expansion. We now discuss how we

can use these regions to obtain rectangular confidence sets for functions h : RKn → RLn using

projections, similar as in Section 2 where we used h(θ) = θ. Rectangular confidence regions

are easy to report because we only have to report the extreme points of each coordinate,

which is crucial when Ln is large.7 Our method applies to general functions, such as function

values or average derivatives in nonparameteric estimation. In our applications we focus on

7We do not impose any restrictions on Ln and in theory we could have Ln = ∞. For example, uniform

confidence bands are projections of functionals of the form pKn
(x)′θ for possibly infinitely many values of x.

However, in practice, Ln is typically finite. For example, we can calculate the uniform confidence bands on

an arbitrarily fine grid. See Section Sections 4 and 5 for details.
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uniform confidence bands, which we can obtain using specific functions h, as explained in

Sections 4 and 5. Define

CI = {θ ∈ ΘR : T (κn(θ̂r − θ), Σ̂) ≤ c1−α,n(θ, Σ̂, Ω̂)}

and let

ĥLl = inf
θ∈CI

hl(θ) and ĥUl = sup
θ∈CI

hl(θ), l = 1, . . . , Ln.

Notice that if θ0 ∈ CI, then ĥLl ≤ hl(θ0) and ĥUl ≥ hl(θ0) for all l = 1, . . . , Ln. We therefore

obtain the following corollary.8

Corollary 1. Suppose Assumptions 1 – 6 hold. Then

lim inf
n→∞

inf
P∈P

P
(
ĥLl ≤ hl(θ0) ≤ ĥUl for all l = 1, . . . , Ln

)
≥ 1− α.

A projection for any T satisfying the assumptions above yields a rectangular confidence

region with coverage probability at least 1 − α in the limit. In the examples discussed in

Sections 4 and 5 we pick T such that the resulting confidence region is nonconservative for θ0

in the interior of ΘR, just as the confidence sets in Figure 2. In these examples hl(θ) = cl+q
′
lθ,

where cl is a constant and ql ∈ RLn , and possibly Ln > Kn. We then let

T (κn(θ̂r − θ), Σ̂) = sup
l=1,...,Ln

{
κn

∣∣∣q′l(θ̂r − θ)∣∣∣ /√q′lΣ̂ql

}
.

Now suppose that for any θ ∈ CI, the critical value does not depend on θ, which will be the

case with probability approaching 1 if θ0 is in the interior of the parameter space. That is

c(θ, Σ̂, Ω̂) = ĉ. Then

CI =

{
θ ∈ ΘR : hl(θ̂r)−

ĉ

κn

√
q′lΣ̂ql ≤ hl(θ) ≤ hl(θ̂r) +

ĉ

κn

√
q′lΣ̂ql for all l = 1, . . . , Ln

}
.

Moreover, by the definitions of the infimum and the supremum as the largest lower bound

and smallest upper bound respectively, it holds that

ĥLl ≥ hl(θ̂r)−
ĉ

κn

√
q′lΣ̂ql and ĥUl ≤ hl(θ̂r) +

ĉ

κn

√
q′lΣ̂ql

for all l = 1, . . . , Ln and thus,

ĥLl ≤ hl(θ0) ≤ ĥUl for all l = 1, . . . , Ln ⇐⇒ θ0 ∈ CI.
8Under Assumptions 1 - 5 only, we could project onto {θ ∈ ΘR : T (κn(θ̂r − θ), Σ̂) ≤ c1−α,n(θ, Σ̂, Ω̂) + εn}

to obtain the same conclusion as in Corollary 1.
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Consequently

P
(
ĥLl ≤ hl(θ0) ≤ ĥUl for all l = 1, . . . , Ln

)
= P (θ0 ∈ CI) .

We state a formal result, which guarantees that the projection based confidence set does

not suffer from over-coverage if θ0 is sufficiently in the interior of the parameter space, in

Corollary A1 in the appendix. The results can be extended to nonlinear functions h along

the lines of Freyberger and Rai (2018).

4 Conditional mean estimation

In this section we provide sufficient conditions for Assumptions 1 – 5 when

Y = g0(X) + U, E(U | X) = 0

and Y , X and U are scalar random variables. We also explain how we can use the projection

results to obtain uniform confidence bands for g0. We first assume that X is discretely

distributed to illustrate that the inference method can easily be applied to finite dimensional

models. We then let X be continuously distributed and discuss both kernel and series

estimators. Throughout, we assume that the data is a random sample {Yi, Xi}ni=1. The

proofs of all results in this and the following section are in the supplementary appendix.

4.1 Discrete regressors

Suppose that X is discretely distributed with support X = {x1, . . . , xK}, where K is fixed.

Let

θ0 =
(
E(Y | X = x1) . . . E(Y | X = xK)

)′
and

θ̂ur =
(∑n

i=1 Yi1(Xi=x1)∑n
i=1 1(Xi=x1)

. . .
∑n

i=1 Yi1(Xi=xK)∑n
i=1 1(Xi=xK)

)′
.

Define σ2(xk) = V ar(U | X = xk) and p(xk) = P (X = xk) > 0, and let

Σ = diag

(
σ2(x1)

p(x1)
, . . . ,

σ2(xK)

p(xK)

)
and Σ̂ = diag

(
σ̂2(x1)

p̂(x1)
, . . . ,

σ̂2(xK)

p̂(xK)

)
,

where p̂(xk) = 1
n

∑n
i=1 1(Xi = xk) and

σ̂2(xk) =

∑n
i=1 Y

2
i 1(Xi = xk)∑n

i=1 1(Xi = xk)
−
(∑n

i=1 Yi1(Xi = xk)∑n
i=1 1(Xi = xk)

)2

.
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Let ΘR be a convex subset of RK , such as ΘR = {θ ∈ RK : Aθ ≤ b}. Now define

θ̂r = arg min
θ∈ΘR

‖θ − θ̂ur‖2
Σ̂−1

and hence Ω̂ = Σ̂−1. Other weight functions Ω̂, such as the identity matrix, are possible

choices as well. We discuss this issue further in Section 8. As a test statistic we use

T (z, Σ̂) = max

{
|z1|/

√
Σ̂11, . . . , |zK |/

√
Σ̂KK

}
because the resulting confidence region of the unrestricted estimator is rectangular, analogous

to the one in Section 2. We now get the following result.

Theorem 2. Let P be the class of distributions satisfying the following assumptions.

1. {Yi, Xi}ni=1 is an iid sample from the distribution of (Y,X) with σ2(xk) ∈ [1/C,C],

p(xk) ≥ 1/C, and E(U4 | X = xk) ≤ C for all k = 1, . . . , K and for some C > 0.

2. ΘR is closed and convex and θ0 ∈ ΘR.

3. 1√
n

= o(ε3
n).

Then

lim inf
n→∞

inf
P∈P

P
(
T (
√
n(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ 1− α.

If in addition Assumption 6 holds then

sup
P∈P

∣∣∣P (T (
√
n(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
− (1− α)

∣∣∣→ 0.

Next let hl(θ) = θl for l = 1, . . . , K. Then the results in Section 3.2 yield a rectan-

gular confidence region for θ0, which can be interpreted as a uniform confidence band for

g0(x1), . . . , g0(xK). Moreover, Corollary A1 in the appendix shows that the band is noncon-

servative if θ0 is sufficiently in the interior of the parameter space.

4.2 Kernel regression

We now suppose that X is continuously distributed with density fX . We denote its support

by X and assume that X = [x, x]. Let {x1, . . . , xKn} ⊂ X and

θ0 =
(
E(Y | X = x1) . . . E(Y | X = xKn)

)′
.
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Here Kn increases as the sample size increases and thus, our setup is very similar to Horowitz

and Lee (2017). Let K(·) be a kernel function and hn the bandwidth. The unrestricted

estimator is

θ̂ur =

(∑n
i=1 YiK(x1−Xi

hn
)∑n

i=1K(x1−Xi
hn

)
. . .

∑n
i=1 YiK

(
xKn

−Xi
hn

)
∑n

i=1K
(

xKn
−Xi

hn

)
)′
.

Define B =
∫ 1

−1
K(u)2du and σ2(x) = V ar(U | X = x) and let

Σ = diag

(
σ2(x1)B

fX(x1)
, . . . ,

σ2(xKn)B

fX(xKn)

)
and Σ̂ = diag

(
σ̂2(x1)B

f̂X(x1)
, . . . ,

σ̂2(xKn)B

f̂X(xKn)

)
,

where f̂X(xk) = 1
nhn

∑n
i=1K

(
xk−Xi

hn

)
and

σ̂2(xk) =

∑n
i=1 Y

2
i K

(
xk−Xi

hn

)
∑n

i=1 K
(
xk−Xi

hn

) −

∑n
i=1 YiK

(
xk−Xi

hn

)
∑n

i=1 K
(
xk−Xi

hn

)
2

.

Just as before, let ΘR be convex such as ΘR = {θ ∈ RKn : Aθ ≤ b} and define

θ̂r = arg min
θ∈ΘR

‖θ − θ̂ur‖2
Σ̂−1 ,

implying that Ω̂ = Σ̂−1. Finally, as before we let

T (z, Σ̂) = max

{
|z1|/

√
Σ̂11, . . . , |zKn|/

√
Σ̂KnKn

}
.

We get the following result.

Theorem 3. Let P be the class of distributions satisfying the following assumptions.

1. The data {Yi, Xi}ni=1 is an iid sample where X = [x, x].

(a) g0(x) and fX(x) are twice continuously differentiable with uniformly bounded func-

tion values and derivatives. infx∈X fX(x) ≥ 1/C for some C > 0.

(b) σ2(x) is twice continuously differentiable, the function and derivatives are uni-

formly bounded on X , and infx∈X σ
2(x) ≥ 1/C for some C > 0.

(c) E(Y 4 | X = x) ≤ C for some C > 0.

2. xk − xk−1 > 2hn for all k and x1 > x+ hn and xKn < x− hn.

3. K(·) is a bounded and symmetric pdf with support [−1, 1].
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4. ΘR is closed and convex and θ0 ∈ ΘR.

5. Knh
5
nn = o(ε2

n) and K
5/2
n√
nhn

= o(ε3
n).

Then

lim inf
n→∞

inf
P∈P

P
(
T
(√

nhn(θ̂r − θ0), Σ̂
)
≤ c1−α,n

(
θ0, Σ̂, Ω̂

)
+ εn

)
≥ 1− α.

If in addition Assumption 6 holds then

sup
P∈P

∣∣∣P (T (√nhn(θ̂r − θ0), Σ̂
)
≤ c1−α,n

(
θ0, Σ̂, Ω̂

))
− (1− α)

∣∣∣→ 0.

The first assumption contains standard smoothness and moment conditions. The second

assumption guarantees that estimators of g0(xk) and g0(xl) for k 6= l are independent, just

as in Horowitz and Lee (2017), and it also avoids complications associated with xk being too

close to the boundary of the support. The third assumption imposes standard restrictions

on the kernel function and the fourth assumption has been discussed before. The fifth as-

sumption contains rate conditions. Notice that with a fixed Kn, these rates are the standard

conditions for asymptotic normality with undersmoothing in kernel regression. The rate

conditions also imply that Knhn → 0, which is similar to Horowitz and Lee (2017).

Once again with hl(θ) = θl for l = 1, . . . , Kn the results in Section 3.2 yield a rectangular

confidence region for θ0, which is a uniform confidence band for g0(x1), . . . , g0(xKn).

Remark 1. While we use the Nadaraya-Watson estimator for simplicity, the general theory

also applies to other estimators, such as local polynomial estimators. Another possibility is

to use a bias corrected estimator and the adjusted standard errors suggested by Calonico,

Cattaneo, and Farrell (2017). Finally, the general theory can also be adapted to incorporate

a worst-case bias as in Armstrong and Kolesár (2016) instead of using the undersmoothing

assumption; see Section S.2 for details.

4.3 Series regression

In this section we again assume that X ∈ X is continuously distributed, but we use a series

estimator. One advantage of a series estimator is that it yields uniform confidence bands for

the entire function g0, rather than just a vector of function values.

Let pKn(x) ∈ RKn be a vector of basis functions and write g0(x) ≈ pKn(x)′θ0 for some

θ0 ∈ ΘR. We again let ΘR be a convex set such as {θ ∈ RKn : Aθ ≤ b}. For example,

we could impose the constraints ∇pKn(xj)
′θ ≥ 0 for j = 1, . . . , Jn. Notice that Jn is not
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restricted, and we could even impose ∇pKn(x)′θ ≥ 0 for all x ∈ X if it is computationally

feasible.9 The unrestricted and restricted estimators are

θ̂ur = arg min
θ∈RKn

1

n

n∑
i=1

(Yi − pKn(Xi)
′θ)

2

and

θ̂r = arg min
θ∈ΘR

1

n

n∑
i=1

(Yi − pKn(Xi)
′θ)

2
,

respectively. The assumptions ensure that both minimizers are unique with probability

approaching 1. Since the objective function is quadratic in θ0 we have

√
n(θ̂r − θ0) = arg min

λ∈Λn(θ0)

‖λ−
√
n(θ̂ur − θ0)‖2

Ω̂
,

where Ω̂ = 1
n

∑n
i=1 pKn(Xi)pKn(Xi)

′ and Ω = E(Ω̂). Define

Σ = (E(pKn(Xi)pKn(Xi)
′))
−1
E(U2

i pKn(Xi)pKn(Xi)
′) (E(pKn(Xi)pKn(Xi)

′))
−1
.

Also let Ûi = Yi − pKn(Xi)
′θ̂ur and

Σ̂ = Ω̂−1

(
1

n

n∑
i=1

Û2
i pKn(Xi)pKn(Xi)

′

)
Ω̂−1.

Let σ̂(x) =

√
pKn(x)′Σ̂pKn(x). We use the test statistic

T (
√
n(θ̂r − θ0), Σ̂) = sup

x∈X

∣∣∣∣∣∣
pKn(x)′

(√
n(θ̂r − θ0)

)
σ̂(x)

∣∣∣∣∣∣ .
The following theorem provides conditions to ensure that confidence sets for θ0 have the

correct coverage asymptotically. We then explain how we can use these sets to construct

uniform confidence bands for g0(x). To state the theorem, let ξ(Kn) = supx∈X ‖pKn(x)‖.

Theorem 4. Let P be the class of distributions satisfying the following assumptions.

1. The data {Yi, Xi}ni=1 is an iid sample from the distribution of (Y,X) with E(U2 | X) ∈
[1/C,C] and E(U4 | X) ≤ C for some C > 0.

2. The basis functions pk(·) are orthonormal on X with respect to the L2 norm and

fX(x) ∈ [1/C,C] for all x ∈ X and some C > 0.

9For example, with quadratic splines ∇pKn
(x)′θ ≥ 0 reduces to finitely many inequality constraints.
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3. ΘR is closed and convex and θ0 ∈ ΘR is such that for some constants Cg and γ > 0

sup
x∈X
|g0(x)− pKn(x)′θ0| ≤ CgK

−γ
n .

4. nK−2γ
n = o(ε2

n), ξ(Kn)2K4
n

n
= o(ε6

n), and ξ(Kn)4K3
n

n
= o(ε2

n).

Then

lim inf
n→∞

inf
P∈P

P
(
T (
√
n(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ 1− α.

If in addition Assumption 6 holds then

sup
P∈P

∣∣∣P (T (
√
n(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
− (1− α)

∣∣∣→ 0.

The first assumption imposes standard moment conditions. The main role of the second

assumption is to guarantee that the minimum eigenvalues of Σ and Ω are bounded and

bounded away from 0. The third assumption says that g0 can be well approximated by a

function satisfying the constraints, and the fourth assumption provides rate conditions. For

asymptotic normality of nonlinear functionals Newey (1997) assumes that

nK−2γ
n +

ξ(Kn)4K2
n

n
→ 0.

For orthonormal polynomials ξ(Kn) = CpKn and for splines ξ(Kn) = Cs
√
Kn. Thus, our rate

conditions are slightly stronger than the ones in Newey (1997), but we also obtain confidence

sets for theKn dimensional vector θ0, which we can transform to uniform confidence bands for

g0. The last rate condition, ξ(Kn)4K3
n

n
= o(ε2

n), is not needed under the additional assumption

that var(Ui | Xi) = σ2 > 0.

Remark 2. In a finite dimensional regression framework with Kn = K, the third assumption

always holds and the fourth assumption only requires that n→∞. In this case the second

assumption can be replaced with the full rank condition λmin(E(pK(X)pK(X)′)) ≥ 1/C.

To obtain a uniform confidence band for g0(X), define

CI = {θ ∈ ΘR : T (
√
n(θ̂r − θ), Σ̂) ≤ c1−α,n(θ, Σ̂, Ω̂)}

and let

ĝl(x) = min
θ∈CI

pKn(x)′θ and ĝu(x) = max
θ∈CI

pKn(x)′θ.

Also notice that ‖pKn(x)‖2 is bounded away from 0 if the basis functions contain the constant

function. We get the following result.
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Corollary 2. Suppose the assumptions of Theorem 4 and Assumption 6 hold. Further

suppose that infx∈X ‖pKn(x)‖2 > 1/C for some constant C > 0. Then

lim inf
n→∞

inf
P∈P

P (ĝl(x) ≤ g0(x) ≤ ĝu(x) ∀x ∈ X ) ≥ 1− α.

Remark 3. Without any restrictions on the parameter space, inverting our test statistic

results in a uniform confidence band where the width of the band is proportional to the

standard deviation of the estimated function for each x. This band can also be obtained as

a projecting onto the underlying confidence set for θ0; see Freyberger and Rai (2018) for this

equivalence result. If θ0 is sufficiently in the interior of the parameter space, an application

of Corollary A1 shows that the restricted band is equivalent to that band with probability

approaching 1. In this case the projection based band is not conservative.

Remark 4. Similar as before, Assumption 6 is not needed if the band is obtained by pro-

jecting onto {θ ∈ ΘR : T (
√
n(θ̂r − θ), Σ̂) ≤ c1−α,n(θ, Σ̂, Ω̂) + εn}

Remark 5. The results can be extended to a partially linear model of the form Y =

g0(X1) +X ′2γ0 +U . The parameter vector θ0 would then contain both γ0 and the coefficients

of the series approximation of g0.

5 Instrumental variables estimation

As the final application of the general method we consider the NPIV model

Y = g0(X) + U, E(U | Z) = 0,

where X and Z are continuously distributed scalar random variables with bounded support.

We assume for notational simplicity that X and Z have the same support, X , but this

assumption is without loss of generality because X and Z can always be transformed to have

support on [0, 1]. We assume that E(U2 | Z) = σ2 to focus on the complications resulting

from the ill-posed inverse problem. Here, the data is a random sample {Yi, Xi, Zi}ni=1.

As before, let pKn(x) ∈ RKn be a vector of basis functions and write g0(x) ≈ pKn(x)′θ0

for some θ0 ∈ ΘR, where ΘR is a convex subset of RKn . Let PX be the n×Kn matrix, where

the ith row is pKn(Xi)
′ and define PZ analogously. Let Y be the n× 1 vector containing Yi.

Let

θ̂ur = arg min
θ∈RKn

(Y − PXθ)′PZ(P ′ZPZ)−1P ′Z(Y − PXθ)
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and

θ̂r = arg min
θ∈ΘR

(Y − PXθ)′PZ(P ′ZPZ)−1P ′Z(Y − PXθ).

For simplicity we use the same basis function as well as the same number of basis functions

for Xi and Zi. Our results can be generalized to allow for different basis functions and more

instruments than regressors. Since the objective function is quadratic in θ0 we have

√
n(θ̂r − θ0) = arg min

λ∈Λn(θ0)

‖λ−
√
n(θ̂ur − θ0)‖2

Ω̂
,

where Ω̂ = 1
n
(P ′XPZ)(P ′ZPZ)−1(P ′ZPX). Furthermore, let QXZ = E(pKn(Xi)pKn(Zi)

′). Then

Σ = σ2Q−1
XZE(pKn(Zi)pKn(Zi)

′)(Q′XZ)−1,

which we estimate by Σ̂ = σ̂2Ω̂−1 with σ̂2 = 1
n

∑n
i=1 Û

2
i and Ûi = Yi − pKn(Xi)

′θ̂ur.

As before, σ̂(x) =

√
pKn(x)′Σ̂pKn(x) and the test statistic is

T (
√
n(θ̂r − θ0), Σ̂) = sup

x∈X

∣∣∣∣∣∣
pKn(x)′

(√
n(θ̂r − θ0)

)
σ̂(x)

∣∣∣∣∣∣ .
The following theorem provides conditions to ensure that confidence sets for θ0 have the

correct coverage, and analogously to before we can transform these sets to uniform confidence

bands for g0(x). As before, let ξ(Kn) = supx∈X ‖pKn(x)‖.

Theorem 5. Let P be the class of distributions satisfying the following assumptions.

1. The data {Yi, Xi, Zi}ni=1 is an iid sample from the distribution of (Y,X,Z) with E(U2 |
Z) = σ2 ∈ [1/C,C] and E(U4 | Z) ≤ C for some C > 0.

2. The functions pk(·) are orthonormal on X with respect to the L2 norm and the densities

of X and Z are uniformly bounded above and bounded away from 0.

3. ΘR is closed and convex and for some function b(Kn) and θ0 ∈ ΘR

sup
x∈X
|g0(x)− pKn(x)′θ0| ≤ b(Kn).

4. λmin(QXZQ
′
XZ) ≥ τKn > 0 and λmax(QXZQ

′
XZ) ∈ [1/C,C] for some C <∞.

5. nb(Kn)2

τ2Kn

= o(ε2
n) and ξ(Kn)2K4

n

nτ6Kn

= o(ε6
n).
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Then

lim inf
n→∞

inf
P∈P

P
(
T (
√
n(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ 1− α.

If in addition Assumption 6 holds then

sup
P∈P

∣∣∣P (T (
√
n(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
− (1− α)

∣∣∣→ 0.

Assumptions 1 – 3 of the theorem are very similar to those of Theorem 4. Assump-

tion 4 defines a measure of ill-posedness τKn , which affects the rate conditions. It is easy

to show that λmax(QXZQ
′
XZ) is bounded as long as fXZ is square integrable. However,

λmax(QXZQ
′
XZ) ≤ C also allows for X = Z as a special case. In fact, in this case, τKn is

bounded away from 0 and all assumptions reduce to the ones in the series regression frame-

work with homoskedasticity. Moreover, similar to Remark 2, the assumptions also allow for

Kn to be fixed in which case all conditions reduce to standard assumptions in a parametric

IV framework. Finally, the results can also be extended to a partially linear model; see

Remark 5.

6 Monte Carlo simulations

To investigate finite sample properties we simulate data from the model

Y = g0(X) + U, E(U | Z) = 0,

where X ∈ [−1, 1] and

g0(X) = − c√
n
F−1

(
1

4
X +

1

2

)
.

Here, F is the cdf of a t-distribution with one degree of freedom and we vary the constant

c. Figure 3 shows the function for n = 5, 000 and c ∈ {0, 10, 20, 30, 40, 50}. Clearly, c = 0

belongs to the constant function. As c increases the slope of g0(x) increases for every x.

Let X̃, Z̃, and U be jointly normally distributed with var(U) = 0.25 and var(Z̃) =

var(X̃) = 1. Let X = 2FX̃(X̃)− 1 ∼ Unif [−1, 1] and Z = 2FZ̃(Z̃)− 1 ∼ Unif [−1, 1]. We

consider two DGPs. First, we let cov(X̃, U) = 0. Thus, X is exogenous and we use the series

estimator described in Section 4.3. Second, we let cov(X̃, Z̃) = 0.7 and cov(X̃, U) = 0.5

and use the NPIV estimator. In both cases we first focus on uniform confidence bands for

g0. In this section we report results with Legendre polynomials as basis function. In Section

S.4 in the supplement we report qualitatively very similar results for quadratic splines. For

the series regression setting we take n = 1, 000 and for NPIV we use n = 5, 000. We take
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Figure 3: g0 for different values of c
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sample sizes large enough such that the unrestricted estimator has good coverage properties

for a sufficiently large number of series terms, which helps in analyzing how conservative the

restricted confidence bands can be. All results are based on 1, 000 Monte Carlo simulations.

We impose the restriction that g0 is weakly decreasing and we enforce this constraint on

10 equally spaced points. We solve for the uniform confidence bands on 30 equally spaced grid

point. Using finer grids has almost no impact on the results, but increases the computational

costs.10 To solve the optimization problems, we have to calculate c1−α(θ, Σ̂, Ω̂), which is

not available in closed form. To do so, we take 2, 000 draws from a multivariate normal

distribution and use them to estimate the distribution function of T (Zn(θ, Σ̂, Ω̂), Σ̂) using a

kernel estimator and Silverman’s rule of thumb bandwidth. We then take the 1−α quantile

of the estimated distribution function as the critical value. Estimating the distribution

function simply as a step function yields almost identical critical values for any given θ,

but our construction ensures that the estimated critical value is a smooth function of θ.

The number of draws from the normal distribution is analogous to the number of bootstrap

samples in other settings and using more draws has almost no impact on our results.

Tables 1 and 2 show the simulation results for the series regression model and the NPIV

model, respectively. The first column is the order of the polynomial and Kn = 2 belongs to

a linear function. We use the same number of basis functions for X and Z, but using Kn + 3

for the instrument matrix yields very similar results. The third and fourth columns show

10In the application we use a grid of 100 points for the uniform confidence bands, but we use a coarser grid

for the simulations, because our reported results are based on 78, 000 estimated confidence bands in total.
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the coverage rates of uniform confidence bands using the unrestricted and shape restricted

method, respectively. The nominal coverage rate is 0.95. For a confidence band [ĝl(x), ĝu(x)]

define the average width as 1
30

∑30
j=1(ĝu(xj) − ĝl(xj)), where {xj}30

j=1 are the grid points.

Columns 5 and 6 show the medians of the average widths of the 1, 000 simulated data sets for

the unrestricted and restricted estimator, respectively. Let widthsur and widthsr be the average

widths in data set s. The last columns shows the median of (widthsur−widthsr)/widthsur across

the 1, 000 simulated data sets. Even though the mean gains are very similar, we report the

median gains to ensure that our gains are not mainly caused by extreme outcomes.

In Table 1 we can see that the unrestricted estimator has coverage rates close to 0.95 if

c = 0. For Kn = 2 and Kn = 3, the coverage probability drops significantly below 0.95 when

c is large because increasing c also increases the approximation bias. For larger values of Kn,

the coverage probability of the unrestricted band is close to 0.95 for all reported values of

c. Due to the projection, the coverage probability of the restricted band tends to be above

the one of the unrestricted band. When c is large enough, such as c = 10 with Kn = 2, the

two bands are identical with very large probability. The average width of the unrestricted

band does not depend on c. On the other hand, the average width of the restricted band is

much smaller when c is small. Consequently, the restricted band yields width gains of up to

26.2%. Generally, the widths gains are larger, the larger Kn and the smaller c.11

Table 2 shows that the results for the NPIV model are similar, but the gains from using

the shape restrictions are much bigger. For example, when Kn = 5 and c = 0, the gains

are 73.1%. Furthermore, the range of c values for which we achieve sizable gains is much

larger for NPIV relative to the series regression framework. More generally, due to the larger

variance of the estimator in the NPIV model, we observed in a variety of other simulations

that the range of functions for which we obtain gains in this model is much larger than in

11Since U is normally distributed and independent of X, an alternative method to construct confidence

bands in this setting is the one proposed by Dümbgen (2003). Since this method only applies with fixed regres-

sors and since X ∼ Unif(0, 1) in our simulations, we let X ∈ {−1, 000/1, 002,−998/1, 002, . . . , 998/1, 002},
which is an equal spaced grid of size 1, 000. We also assume that the variance of U is known. With the

monotonized bands of Dümbgen (2003) we then get coverage rates and widths of 0.948 and 0.233 when c = 0,

0.974 and 0.258 when c = 2, 0.979 and 0.281 when c = 4, 0.983 and 0.301 when c = 6, 0.986 and 0.319

when c = 8, and 0.988 and 0.336 when c = 10. This method is not conservative at the boundary, but it is

conservative in the interior. The bands can be empty and arbitrarily small (with and without monotonizing),

but they are empty in only 3 out of 1, 000 samples when c = 0. An advantage of the method is that it is

smoothing parameter free, but the widths are much larger than our widths, even when Kn = 5, for all values

of c (our method yields almost identical results as those in Table 1 when we fix the grid). Also notice that

this method only applies when U is normally distributed and the regressors are fixed.
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Table 1: Coverage and width comparison for regression with polynomials

Kn c covur covr widthur widthr % gains

0 0.957 0.948 0.107 0.090 0.175

2 0.946 0.949 0.107 0.104 0.030

2 4 0.939 0.939 0.107 0.106 0.003

6 0.891 0.891 0.107 0.107 0.000

8 0.858 0.858 0.107 0.107 0.000

10 0.813 0.813 0.107 0.107 0.000

0 0.949 0.954 0.142 0.109 0.236

2 0.947 0.963 0.142 0.121 0.143

3 4 0.948 0.960 0.142 0.129 0.091

6 0.925 0.939 0.142 0.134 0.050

8 0.910 0.910 0.142 0.137 0.028

10 0.887 0.884 0.142 0.139 0.015

0 0.949 0.969 0.172 0.131 0.238

2 0.946 0.970 0.172 0.146 0.152

4 4 0.945 0.969 0.172 0.155 0.097

6 0.952 0.963 0.172 0.161 0.058

8 0.930 0.948 0.172 0.166 0.032

10 0.939 0.947 0.172 0.168 0.018

0 0.941 0.970 0.200 0.147 0.262

2 0.943 0.971 0.200 0.162 0.187

5 4 0.945 0.964 0.200 0.173 0.135

6 0.948 0.960 0.199 0.180 0.097

8 0.937 0.951 0.200 0.185 0.072

10 0.948 0.960 0.200 0.189 0.051

29



Table 2: Coverage and width comparison for NPIV with polynomials

Kn c covur covr widthur widthr % gains

0 0.946 0.955 0.059 0.046 0.234

5 0.929 0.929 0.059 0.058 0.016

10 0.879 0.879 0.060 0.060 0.000

2 20 0.608 0.608 0.059 0.059 0.000

30 0.229 0.229 0.059 0.059 0.000

40 0.003 0.003 0.059 0.059 0.000

50 0.000 0.000 0.059 0.059 0.000

0 0.933 0.963 0.107 0.061 0.426

5 0.931 0.949 0.107 0.079 0.257

10 0.921 0.940 0.107 0.091 0.150

3 20 0.821 0.815 0.107 0.101 0.049

30 0.681 0.680 0.107 0.105 0.018

40 0.426 0.426 0.107 0.106 0.002

50 0.201 0.201 0.106 0.106 0.000

0 0.951 0.986 0.207 0.092 0.556

5 0.946 0.982 0.207 0.120 0.422

10 0.944 0.967 0.208 0.143 0.310

4 20 0.942 0.947 0.208 0.171 0.176

30 0.954 0.967 0.208 0.185 0.103

40 0.953 0.959 0.207 0.194 0.057

50 0.952 0.956 0.208 0.199 0.037

0 0.959 0.989 0.456 0.122 0.731

5 0.962 0.994 0.457 0.161 0.649

10 0.956 0.994 0.460 0.197 0.574

5 20 0.957 0.978 0.465 0.248 0.471

30 0.973 0.985 0.457 0.288 0.377

40 0.966 0.978 0.462 0.322 0.310

50 0.953 0.973 0.459 0.345 0.254
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series regression for the same sample size and a similar DGP. Finally notice that when c = 0,

the width increase as Kn increases and it appears that the width gains coverage to 1 (in fact

when Kn = 6 and c = 0 we get % gains = 0.825). Since the gains for c = 0 do not depend

on n, the restricted band seems to converge in probability to g0 at a faster rate than the

unrestricted band if g0 is constant and as n and Kn both diverge. These results are in line

with Chetverikov and Wilhelm (2017) who show, among others, that the restricted estimator

converges at a faster rate than the unrestricted estimator if g0 is constant.

Figure 4 shows the means of the restricted and the unrestricted bands obtained from

the 1, 000 simulated data sets in the NPIV model with Kn = 5. Figure 5 contains four

specific examples when c = 5. In the first example, both the restricted and the unrestricted

estimator are monotone, but the restricted band is still much smaller. In the last example

Figure 4: Average confidence bands for NPIV with polynomials and Kn = 5
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Figure 5: Example confidence bands for NPIV with polynomials and Kn = 5
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the unrestricted band does not contain any monotone function. In contrast, the restricted

bands are always centered around the restricted estimates and both the upper and lower

bound functions are monotonically decreasing.

In addition to some of the information in Table 2, we report the width gains relative

to monotonized bands in Table 3 for a subset of the DGPs with Kn = 5. To obtain these

bands we simply exclude all parts of the unrestricted bands which are not consistent with a

weakly decreasing function. As we can see from the reported widths, our restricted bands

are considerably smaller than these bands as well, and the widths gains are up to 1 −
0.122/0.210 = 41.9%. Moreover, the monotonized band may be empty, which happens in

1.6% of the data sets when c = 0, or they can be extremely narrow.

Finally, to illustrate that our method is also applicable to functionals, Table 4 shows

coverage rates and median widths of confidence intervals for the average derivative of the
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Table 3: Width comparison with monotonized bands for NPIV with polynomials

Kn c covur covr widthsur widthsmon widthsr
% empty

monotone

0 0.959 0.989 0.456 0.210 0.122 0.016

5 10 0.956 0.994 0.460 0.299 0.197 0.002

30 0.973 0.985 0.457 0.373 0.288 0.000

50 0.953 0.973 0.459 0.411 0.345 0.000

function. Here, we compare our method to the series estimator without shape restrictions

(corresponding to covur and widthsur in Table 4), the unrestricted approach, but only includ-

ing the non-positive part of the confidence interval (corresponding to covur and widthsneg),

and the method of Chernozhukov, Newey, and Santos (2015) (corresponding to covcns and

widthscns). Again, our method yields considerable width gains compared to the unrestricted

intervals at or close to the boundary (up to 1−0.233/0.637 = 63% when c = 0) and coverage

rates above 95%. The approach of Chernozhukov, Newey, and Santos (2015) is not conserva-

tive at the boundary, their intervals are in this case narrower than ours (0.164 versus 0.233),

and they are empty in 4% of the samples. As we move into the interior of the parameter

space, our method performs favorably, which could be due to the choice of the user specified

tuning parameters which their approach requires. We use their suggested data dependent

procedures and did not explore other choices.12 The first row of Table 4 contains results

when c = −5 and thus, the model is misspecified and the true function is increasing. In this

Table 4: Width comparison average derivative

Kn c covur covr covcns widthsur widthsneg widthsr widthcns
empty

neg.

empty

CNS

-5 0.957 0.000 0.000 0.636 0.208 0.227 0.030 0.118 0.810

0 0.962 0.957 0.939 0.637 0.325 0.233 0.164 0.026 0.040

5 10 0.953 0.967 0.994 0.641 0.593 0.421 0.428 0.000 0.002

30 0.963 0.971 0.997 0.638 0.638 0.574 0.744 0.000 0.000

50 0.951 0.963 0.998 0.642 0.642 0.612 0.910 0.000 0.000

12Specifically, we use the “aggressive” data dependent choices for rn and ln explained in their Section 7.1.

These choices might lead to a choice of rn which is too large in the interior of the parameter space and thus,

confidence intervals that are too conservative and unnecessarily wide.
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case, their approach yields empty intervals in 81% of the cases, while our method can be

interpreted as providing confidence sets for the projection of the true function.

6.1 Computational costs

We ran the simulations using MATLAB and the resources of the UW-Madison Center For

High Throughput Computing (CHTC) in the Department of Computer Sciences. To get

accurate computational times we rerun a subset of the simulations using MATLAB R2015a on

a desktop computer with an Intel Core i3 processor running at 3.5Ghz. In these simulations,

the median times to solve for the uniform confidence bands in the NPIV setting were roughly

5 minutes when Kn = 2, 15 minutes when Kn = 3, 32 minutes when Kn = 4, and 45 minutes

when Kn = 5. Each of these times is based on 60 simulated data sets. In Section S.3 in the

supplement, we provide additional details, such as our selection of starting values. Since we

use a grid of 30 points to calculate the uniform confidence bands, we solve 60 optimization

problems for each band. Therefore, obtaining confidence intervals for the average derivatives

is considerably faster. In particular, the median time is around 2.5 minutes, even though

Kn = 5. The approach of Chernozhukov, Newey, and Santos (2015) is based on test inversion,

where we test a particular value for the average derivative and obtain critical values using

the bootstrap. With 2, 000 bootstrap samples, which is then comparable to the 2, 000 normal

draws we use for our approach, each test takes around 6 seconds. Thus, the computational

costs of the two approaches in this particular setting are similar if we use 25 grid points for the

test inversion approach of Chernozhukov, Newey, and Santos (2015), which is considerably

less than what we used to obtain the results in Table 4.

There are several possibilities to substantially reduce the computational times. First,

notice that the programs for the uniform confidence bands are very easy to parallelize because

the optimization problems are solved separately for each grid point. Second, in our setting

we could also use an approach recently suggested by Kaido, Molinari, and Stoye (2016) in a

computationally similar problem in the moment inequality literature. In our setting, their

algorithm leads to essentially identical results in both the simulations and the empirical

application; see Section S.3 for more details. Moreover, for the uniform confidence bands

in the NPIV setting, the median times with their approach are roughly 2.5 minutes when

Kn = 2, 8 minutes when Kn = 3, 13 minutes when Kn = 4, and 20 minutes when Kn = 5.

Finally, we recently developed the code in Fortran, which runs approximately ten times faster

than the MATLAB code in the empirical application below, where we have 16 estimated

parameters, and it yields identical results.
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7 Empirical application

In this section, we use the data from Blundell, Horowitz, and Parey (2012) and Chetverikov

and Wilhelm (2017) to estimate US gasoline demand functions and to provide uniform con-

fidence bands under the assumption that the demand function is weakly decreasing in the

price. The data comes from the 2001 National Household Travel Survey and contains,

among others, annual gasoline consumption, the gasoline price, and household income for

4, 812 households. We excludes households from Georgia because their gasoline price is much

smaller than for all other regions (highest log price of 0.133 while the next largest log price

observation is 0.194) and therefore n = 4, 655. We use the model

Y = g0(X1, X2) +X ′3γ0 + U, E(U | Z,X2, X3) = 0.

Here Y denotes annual log gasoline consumption of a household, X1 is the log price of gasoline

(the average local price), X2 is log household income, and X3 contains additional household

characteristics, namely the log age of the household respondent, the log household size, the

log number of drivers, and the number of workers in the household. Following Blundell,

Horowitz, and Parey (2012) and Chetverikov and Wilhelm (2017), we use the distance to a

major oil platform as an instrument, denoted by Z, for X1. We report estimates and uniform

confidence bands for g0(x1, x̄2) + x̄′3γ0 as a function of x1. We fix X3 at their mean values

and we consider three different values of x̄2, namely the 25th percentile, the median, and the

75th percentile of the income distribution.

The estimator is similar to the one described in Section 5 and our specification is similar

to Chetverikov and Wilhelm (2017). Specifically, we use quadratic splines with three interior

knots forX1 (contained in the matrix PX1) and cubic splines with eight knots for Z (contained

in the matrix PZ). The matrix of regressors is then (PX1 , PX1 × X2, X3), where × denotes

the tensor product of the columns of the matrices, and (PZ , PZ × X2, X3) is the matrix of

instruments. Chetverikov and Wilhelm (2017) estimate γ in the first step and subtract X ′3γ̂

from Y , while we estimate all parameters together in order to incorporate the variance of γ̂

when constructing confidence bands. We also report results for a second specification using

quadratic splines with six knots to construct PZ to illustrate the sensitivity of the estimates.

Figure 6 plots unrestricted and restricted estimators for the three income levels along with

95% uniform confidence bands. The left side contains the estimates with quadratic splines

and six knots for Z and right side the estimates with cubic splines and eight knots. The

unrestricted estimates are generally increasing for very low and high prices, suggesting that

the true demand function has a relatively small slope for these price levels. Our bands are
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Figure 6: Estimated demand functions

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
6.5

7

7.5

8

Restricted estimate
Unrestricted estimate
Restricted band
Unrestricted band

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
6.5

7

7.5

8

Restricted estimate
Unrestricted estimate
Restricted band
Unrestricted band

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
6.5

7

7.5

8

Restricted estimate
Unrestricted estimate
Restricted band
Unrestricted band

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
6.5

7

7.5

8

Restricted estimate
Unrestricted estimate
Restricted band
Unrestricted band

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
6.5

7

7.5

8

Restricted estimate
Unrestricted estimate
Restricted band
Unrestricted band

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
6.5

7

7.5

8

Restricted estimate
Unrestricted estimate
Restricted band
Unrestricted band

The three figures on the left side use quadratic splines with six knots to construct PZ . The three

figures on the right side use cubic splines with eight knots.
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centered around the restricted estimates with monotone upper and lower bound functions.

Moreover, the average width of the restricted band is between 25% and 45% smaller than the

average width of the unrestricted band. We can also see from the figures that the unrestricted

estimates and bands are very sensitive to the specification, but the restricted ones are not.

8 Conclusion

We provide a general approach for conducting uniformly valid inference under shape restric-

tions. A main application of our method is the estimation of uniform confidence bands for an

unknown function of interest, as well as confidence regions for other features of the function.

Our confidence bands are well suited to be reported along with shape restricted estimates,

because they are build around restricted estimators and the upper and lower bound func-

tions are consistent with the shape restrictions. In addition, the bands are asymptotically

equivalent to standard unrestricted confidence bands if the true function strictly satisfies all

shape restrictions, but they can be much smaller if some of the shape restrictions are binding

or close to binding. Our method is widely applicable and we provide low level conditions

for our assumptions in a regression framework (for both series and kernel estimation) and

the NPIV model. We demonstrate in simulations and in an empirical application that our

shape restricted confidence bands can be much narrower than unrestricted bands.

There are several interesting directions for future research. First, while we prove uni-

form size control, we do not provide a formal power analysis. It is known that monotone

nonparametric estimators can have a faster rate of convergence if the true function is close

to constant (see for example Chetverikov and Wilhelm (2017)). Our simulation results sug-

gest that our bands also converge at a faster rate than unrestricted bands in this case, but

establishing this result formally is out of the scope of this paper.

Second, we assume that the restricted estimator is an approximate projection of the

unrestricted estimator under a weighted Euclidean norm ‖ · ‖Ω̂. In many settings the matrix

Ω̂ can be chosen by the researcher (as in Section 4.2). For example, in a just identified

GMM setting it is well known that the unrestricted estimator is invariant to the GMM-

weight matrix. However, the restricted estimator generally depends on the GMM-weight

matrix because it affects Ω̂. Notice that θ̂ur is approximately N(θ0, Σ̂/κ
2
n) distributed. To

obtain the restricted estimator of θ0 we could image maximizing the likelihood with respect

to θ0, where the data is θ̂ur, subject to the solution being in ΘR. It is easy to show that

the restricted maximum likelihood estimator is arg minθ∈ΘR
‖θ − θ̂ur‖Σ̂−1 , suggesting to use
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Ω̂ = Σ̂−1, although it is not clear that MLE has optimality properties in this setting. In a

just identified GMM setting, such as our regression or IV framework, this amounts to using

the standard optimal GMM-weight matrix. In simulations, we found that this weight matrix

performs particularly well, but we leave optimality considerations for future research.

Finally, notice that in our setting θ̂r is a function of θ̂ur and hence, θ̂ur provides more

information than θ̂r. Therefore, instead of letting the test statistic depend on κn(θ̂r−θ0), we

could let it depend on κn(θ̂ur−θ0) and incorporate the shape restrictions in the test statistic.

This approach would potentially allow us to use additional test statistics. We are particularly

interested in rectangular confidence sets for functions of θ0, which are equivalent to standard

rectangular confidence sets if θ0 is in the interior of ΘR. Such sets can be obtained using

test statistics that depend on κn(θ̂r − θ0) and it is therefore not immediately obvious what

the potential benefits of a more general formalization are.

A Non-conservative projections

We now formalize the arguments from Section 3.2. Let hl(θ) = cl+q
′
lθ, where cl is a constant

and ql ∈ RLn . Let

Z(Σ̂) =

{
z ∈ RKn : sup

l=1,...,Ln

{
|q′lz| /

√
q′lΣ̂ql

}}
,

where c(Σ̂) is such that for Z ∼ N(0, IKn×Kn), P (Σ̂1/2Z ∈ Z(Σ̂) | Σ̂) = 1 − α. We obtain

the following corollary.

Corollary A1. Suppose that Assumptions 1 – 6 hold. Let

T (κn(θ̂r − θ), Σ̂) = sup
l=1,...,Ln

{
κn

∣∣∣q′l (θ̂r − θ)∣∣∣ /√q′lΣ̂ql

}
and let CI be the corresponding confidence region. Let ΘR = {θ ∈ RKn : Anθ ≤ bn}. Suppose

that, with probability approaching 1, Anz < κn(bn−Anθ) for all θ ∈ CI and for all z ∈ Z(Σ̂).

Then for all θ ∈ CI, c1−α,n(θ, Σ̂, Ω̂) = c(Σ̂) with probability approaching 1 and

lim
n→∞

P
(
ĥLl ≤ hl(θ0) ≤ ĥUl for all l = 1, . . . , Ln

)
= 1− α.

Notice that κn(bn−Anθ) = κn(bn−Anθ0)+κnAn(θ0−θ). If θ0 is sufficiently in the interior

of the parameter space, then each element of κn(bn−Anθ0) goes to infinity. Moreover, if each

element of CI converges in probability to θ0 at rate κn, then each element of κnAn(θ0 − θ)
is bounded in probability. The condition of the corollary then holds for example if Z(Σ̂) is

bounded with probability approaching 1, but the condition also allows the set to grow.
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Proof of Corollary A1. Let z ∈ RKn and θ ∈ CI. Let

zn(θ, Ω̂) = arg min
λ∈RKn :Anλ≤κn(bn−Anθ)

‖λ− z‖2
Ω̂
.

Now notice that if z ∈ Z(Σ̂), then with probability approaching 1 we get zn(θ, Ω̂) = z. It

therefore follows that c(θ, Σ̂, Ω̂) ≤ c(Σ̂). Now take zn(θ, Ω̂) ∈ Z(Σ̂). Then by assumption

Anzn(θ, Ω̂) < κn(bn −Anθ) with probability approaching 1. Since Ω̂ is positive definite with

probability approaching 1, it follows that zn(θ, Ω̂) = z, because otherwise the projection

would be on the boundary of the support. Hence c(θ, Σ̂, Ω̂) ≥ c(Σ̂) and thus c(θ, Σ̂, Ω̂) = c(Σ̂).

As shown in Section 3.2 if c(θ, Σ̂, Ω̂) = c(Σ̂) for all θ ∈ CI, then the projection is not

conservative.

B Useful lemmas

Lemma 1. Let Q and Q̂ be symmetric and positive definite matrices. Then∣∣∣∣min
‖v‖=1

v′Q̂v − min
‖v‖=1

v′Qv

∣∣∣∣ ≤ max
‖v‖=1

|v′(Q̂−Q)v| ≤ ‖Q̂−Q‖S ≤ ‖Q̂−Q‖

and ∣∣∣∣max
‖v‖=1

v′Q̂v − max
‖v‖=1

v′Qv

∣∣∣∣ ≤ max
‖v‖=1

|v′(Q̂−Q)v| ≤ ‖Q̂−Q‖S ≤ ‖Q̂−Q‖.

Proof. For both lines, the first inequality follows from basic properties of minima and max-

ima. The second and third inequalities follow from the Cauchy-Schwarz inequality.

Lemma 2. Let Q and Q̂ be symmetric and positive definite matrices. Then

‖Q1/2 − Q̂1/2‖S ≤
1(

λmin(Q1/2) + λmin(Q̂1/2)
)‖Q− Q̂‖S

and

‖Q− Q̂‖S ≤
(
λmax(Q1/2) + λmax(Q̂1/2)

)
‖Q1/2 − Q̂1/2‖S.

Proof. Let λ2 be the largest eigenvalue of (Q1/2− Q̂1/2)(Q1/2− Q̂1/2) with unit length eigen-

vector vλ. Since (Q1/2 − Q̂1/2) is symmetric either λ or −λ is an eigenvalue of (Q1/2 − Q̂1/2)

with eigenvector vλ. It follows that

sup
‖v‖=1

|v′(Q− Q̂)v| ≥ |v′λ(Q− Q̂)vλ|

= |v′λQ1/2(Q1/2 − Q̂1/2)vλ + v′λ(Q
1/2 − Q̂1/2)Q̂1/2vλ|

= |λ||v′λQ1/2vλ + v′λQ̂
1/2vλ|

≥ |λ|
(
λmin(Q1/2) + λmin(Q̂1/2)

)
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and therefore

‖Q1/2 − Q̂1/2‖S ≤
1(

λmin(Q1/2) + λmin(Q̂1/2)
)‖Q− Q̂‖S.

Similarly, for all v with ‖v‖ = 1 we have

‖(Q− Q̂)v‖ = ‖Q1/2(Q1/2 − Q̂1/2)v + (Q1/2 − Q̂1/2)Q̂1/2v‖

≤
(
λmax(Q1/2) + λmax(Q̂1/2)

)
‖Q1/2 − Q̂1/2‖S.

Therefore,

‖Q− Q̂‖S ≤
(
λmax(Q1/2) + λmax(Q̂1/2)

)
‖Q1/2 − Q̂1/2‖S.

C Proof of Theorem 1

Proof of Theorem 1. First notice that λmin(Σ) is bounded and bounded away from 0 and

since ‖Σ − Σ̂‖S
p→ 0 by Assumption 5 it follows from Lemma 1 that λmin(Σ̂) is bounded

and bounded way from 0 with probability approaching 1. Similarly, λmax(Ω) is bounded

and bounded away from 0 and λmax(Ω̂) is bounded and bounded way from 0 with proba-

bility approaching 1. Hence, there exist constants Bl > 0 and Bu < ∞ such that Bl ≤
λmin(Σ), λmax(Ω) ≤ Bu and Bl ≤ λmin(Σ̂), λmax(Ω̂) ≤ Bu with probability approaching 1

uniformly over P ∈ P .

Also notice that by Assumption 3

|λmin(Ω̂)− λmin(Ω)|
λmin(Ω)

≤ ‖Ω̂− Ω‖S
λmin(Ω)

p→ 0

and therefore uniformly over P ∈ P ∣∣∣∣∣λmin(Ω̂)

λmin(Ω)
− 1

∣∣∣∣∣ p→ 0.

Hence λmin(Ω̂) > 0 with probability approaching 1 and, uniformly over P ∈ P ,∣∣∣∣∣λmin(Ω)

λmin(Ω̂)
− 1

∣∣∣∣∣ p→ 0.

Take Zn as defined in Assumption 2 and Λn(θ0) = {λ ∈ RKn : λ = κn(θ−θ0) for some θ ∈
ΘR} and define

Zn(θ0,Σ,Ω) = arg min
λ∈Λn(θ0)

‖λ− Zn‖2
Ω.
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By Assumptions 5 there exists a constant C such that with probability approaching 1∣∣∣T (κn(θ̂r − θ0), Σ̂)− T (Zn(θ0,Σ,Ω),Σ)
∣∣∣

≤
∣∣∣T (κn(θ̂r − θ0), Σ̂)− T (Zn(θ0,Σ,Ω), Σ̂)

∣∣∣+
∣∣∣T (Zn(θ0,Σ,Ω), Σ̂)− T (Zn(θ0,Σ,Ω),Σ)

∣∣∣
≤ C

∥∥∥κn(θ̂r − θ0)− Zn(θ0,Σ,Ω)
∥∥∥+ C‖Zn(θ0,Σ,Ω)‖‖Σ̂− Σ‖S

≤ C
∥∥∥κn(θ̂r − θ0)− Zn(θ0,Σ, Ω̂)

∥∥∥+ C
∥∥∥Zn(θ0,Σ,Ω)− Zn(θ0,Σ, Ω̂)

∥∥∥
+C‖Zn(θ0,Σ,Ω)‖‖Σ̂− Σ‖S.

We now first prove that each term on the right hand side is op(εn) uniformly over P ∈ P .

Since Λn(θ0) is closed and convex it follows from Assumptions 1 and 2 that∥∥∥κn(θ̂r − θ0)− Zn(θ0,Σ, Ω̂)
∥∥∥

≤

∥∥∥∥∥arg min
λ∈Λn(θ0)

‖λ− κn(θ̂ur − θ0)‖2
Ω̂
− Zn(θ0,Σ, Ω̂)

∥∥∥∥∥+ ‖Rn‖

≤ λmin(Ω̂)−1/2

∥∥∥∥∥arg min
λ∈Λn(θ0)

‖λ− κn(θ̂ur − θ0)‖2
Ω̂
− Zn(θ0,Σ, Ω̂)

∥∥∥∥∥
Ω̂

+ ‖Rn‖

≤ λmin(Ω̂)−1/2‖κn(θ̂ur − θ0)− Zn‖Ω̂ + ‖Rn‖

≤

√
λmax(Ω̂)

λmin(Ω̂)
‖κn(θ̂ur − θ0)− Zn‖+ ‖Rn‖.

Also notice that

√
λmax(Ω̂) = Op(1) and

∣∣∣λmin(Ω)

λmin(Ω̂)
− 1
∣∣∣ = op(1) uniformly over P ∈ P . Com-

bined with Assumptions 1 and 2 this implies that

C
∥∥∥κn(θ̂r − θ0)− Zn(θ0,Σ, Ω̂)

∥∥∥ = op(εn)

uniformly over P ∈ P .

Next notice that the Kn × 1 zero vector is in Λn(θ0). Therefore

‖Zn(θ0,Σ,Ω)− Zn‖Ω ≤ ‖Zn‖Ω

and thus, √
λmin(Ω)‖Zn(θ0,Σ,Ω)− Zn‖ ≤

√
λmax(Ω)‖Zn‖.

It follows that

‖Zn(θ0,Σ, Ω̂)− Zn‖2
Ω̂
≤ ‖Zn(θ0,Σ,Ω)− Zn‖2

Ω̂

= ‖Zn(θ0,Σ,Ω)− Zn‖2
Ω + ‖Zn(θ0,Σ,Ω)− Zn‖2

Ω̂−Ω

≤ ‖Zn(θ0,Σ,Ω)− Zn‖2
Ω + ‖Zn(θ0,Σ,Ω)− Zn‖2‖Ω̂− Ω‖S

≤ ‖Zn(θ0,Σ,Ω)− Zn‖2
Ω +

λmax(Ω)

λmin(Ω)
‖Zn‖2‖Ω̂− Ω‖S.
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Let

V̂1 =
λmax(Ω)

λmin(Ω)
‖Zn‖2‖Ω̂− Ω‖S.

Analogously, we get

‖Zn(θ0,Σ, Ω̂)− Zn‖2
Ω ≤ ‖Zn(θ0,Σ, Ω̂)− Zn‖2

Ω̂
+ V̂2,

where

V̂2 =
λmax(Ω̂)

λmin(Ω̂)
‖Zn‖2‖Ω̂− Ω‖S.

Since Λn(θ0) is convex it follows that for any γ ∈ (0, 1)

‖Zn(θ0,Σ,Ω)− Zn‖2
Ω ≤ ‖γZn(θ0,Σ,Ω) + (1− γ)Zn(θ0,Σ, Ω̂)− Zn‖2

Ω

= γ‖Zn(θ0,Σ,Ω)− Zn‖2
Ω + (1− γ)‖Zn(θ0,Σ, Ω̂)− Zn‖2

Ω

−γ(1− γ)‖Zn(θ0,Σ, Ω̂)− Zn(θ0,Σ,Ω)‖2
Ω

≤ ‖Zn(θ0,Σ,Ω)− Zn‖2
Ω + (1− γ)(V̂1 + V̂2)

−λmin(Ω)γ(1− γ)‖Zn(θ0,Σ, Ω̂)− Zn(θ0,Σ,Ω)‖2.

Therefore,

‖Zn(θ0,Σ, Ω̂)− Zn(θ0,Σ,Ω)‖2 ≤ 1

λmin(Ω)γ
(V̂1 + V̂2)

=
1

λmin(Ω)γ

(
λmax(Ω)

λmin(Ω)
+
λmax(Ω̂)

λmin(Ω̂)

)
‖Zn‖2‖Ω̂− Ω‖S

≤ λmax(Σ)

λmin(Ω)γ

(
λmax(Ω)

λmin(Ω)
+
λmax(Ω̂)

λmin(Ω̂)

)
‖Σ−1/2Zn‖2‖Ω̂− Ω‖S.

Since ∣∣∣∣∣λmin(Ω)

λmin(Ω̂)
− 1

∣∣∣∣∣ p→ 0,

λmax(Ω̂) is bounded with probability approaching 1, and ‖Σ−1/2Zn‖2 = Op(Kn) by Markov’s

inequality, it follows from Assumption 3 that

C2‖Zn(θ0,Σ, Ω̂)− Zn(θ0,Σ,Ω)‖2 = op(ε
2
n)

uniformly over P ∈ P and thus

C‖Zn(θ0,Σ, Ω̂)− Zn(θ0,Σ,Ω)‖ = op(εn)

uniformly over P ∈ P .
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From the arguments above and the reverse triangle inequality we have

‖Zn(θ0,Σ,Ω)‖Ω − ‖Zn‖Ω ≤ ‖Zn(θ0,Σ,Ω)− Zn‖Ω ≤ ‖Zn‖Ω

and therefore

C‖Zn(θ0,Σ,Ω)‖‖Σ̂− Σ‖S ≤ 2C‖Σ̂− Σ‖S

√
λmax(Ω)

λmin(Ω)
‖Zn‖

and by Assumption 3 and ‖Zn‖ = Op(
√
λmax(Σ)Kn)

C‖Zn(θ0,Σ,Ω)‖‖Σ̂− Σ‖S = op(εn)

uniformly over P ∈ P .

Next define

Bn = C
∥∥∥κn(θ̂r − θ0)− Zn(θ0,Σ, Ω̂)

∥∥∥+ C
∥∥∥Zn(θ0,Σ,Ω)− Zn(θ0,Σ, Ω̂)

∥∥∥
+C‖Zn(θ0,Σ,Ω)‖‖Σ̂− Σ‖S,

The previous derivations imply that

sup
P∈P

P

(
Bn ≥

1

2
εn

)
→ 0.

Therefore

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
≥ P

(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α,n(θ0, Σ̂, Ω̂)−Bn

)
− o(1)

≥ P

(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α,n(θ0, Σ̂, Ω̂)− 1

2
εn, Bn ≤

1

2
εn

)
− o(1)

≥ P

(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α,n(θ0, Σ̂, Ω̂)− 1

2
εn

)
− P

(
Bn ≥

1

2
εn

)
− o(1),

where the o(1) term belongs to P (Bl ≤ λmin(Σ̂) ≤ Bu, Bl ≤ λmax(Ω̂) ≤ Bu) and it converges

to 0 uniformly over P ∈ P . Similarly, we get

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
≤ P

(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α,n(θ0, Σ̂, Ω̂)) +

1

2
εn

)
+ P

(
Bn ≥

1

2
εn

)
+ o(1).

We next show that for any sufficiently small δq ∈ (0, α) it holds that

sup
P∈P

∣∣∣∣P (c1−α,n(θ0, Σ̂, Ω̂) ≥ c1−α−δq ,n(θ0,Σ,Ω)− 1

2
εn

)
− 1

∣∣∣∣→ 0
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and

sup
P∈P

∣∣∣∣P (c1−α,n(θ0, Σ̂, Ω̂) ≤ c1−α+δq ,n(θ0,Σ,Ω) +
1

2
εn

)
− 1

∣∣∣∣→ 0.

It then follows that

inf
P∈P

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ inf

P∈P
P
(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α−δq ,n(θ0,Σ,Ω)

)
− o(1)

which implies that

lim inf
n→∞

inf
P∈P

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ 1− α− δq.

Since δq was arbitrary

lim inf
n→∞

inf
P∈P

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂) + εn

)
≥ 1− α,

which is the first conclusion of Theorem 1. Similarly, for all δq sufficiently small

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
≥ P

(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α−δq ,n(θ0,Σ,Ω)− εn

)
− o(1)

which implies that

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
− (1− α)

≥ P
(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α−δq ,n(θ0,Σ,Ω)− εn

)
− (1− α− δq)− δq − o(1).

Analogously,

P
(
T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)

)
− (1− α)

≤ P
(
T (Z(θ0,Σ,Ω),Σ) ≤ c1−α+δq ,n(θ0,Σ,Ω) + εn

)
− (1− α + δq) + δq + o(1).

Hence, if Assumption 6 holds, then for all δq ∈ (0, α)

lim sup
n→∞

sup
P∈P

∣∣∣P (T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)
)
− (1− α)

∣∣∣ ≤ δq

and since δq was arbitrary

sup
P∈P

∣∣∣P (T (κn(θ̂r − θ0), Σ̂) ≤ c1−α,n(θ0, Σ̂, Ω̂)
)
− (1− α)

∣∣∣→ 0.

For the final step of the proof let δq ∈ (0, α) be arbitrary. Let δε > 0, which may

depend on δq, and define the set Hn as all (Σ̃, Ω̃) on the support of (Σ̂, Ω̂) such that Bl ≤
λmin(Σ̃), λmax(Ω̃) ≤ Bu, √

Kn

√
λmax(Σ)√
λmin(Ω)

‖Σ̃− Σ‖S ≤ δεεn
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and

Kn
λmax(Σ)

λmin(Ω)

(
λmax(Ω)

λmin(Ω)
+
λmax(Ω̃)

λmin(Ω̃)

)
‖Ω̃− Ω‖S ≤ δ2

εε
2
n.

Notice that Assumption 3 implies that

sup
P∈P

∣∣∣P ((Σ̂, Ω̂) ∈ Hn

)
− 1
∣∣∣→ 0.

Let Z̃n ∼ N(0, IKn×Kn) be independent of Σ̂ and Ω̂ and define

Z̃n(θ0,Σ,Ω) = arg min
λ∈Λn(θ0)

‖λ− Σ1/2Z̃n‖2
Ω.

For any (Σ∗,Ω∗) ∈ Hn we get by Assumption 5 that∣∣∣T (Z̃n(θ0,Σ
∗,Ω∗),Σ∗)− T (Z̃n(θ0,Σ,Ω),Σ)

∣∣∣
≤
∣∣∣T (Z̃n(θ0,Σ

∗,Ω∗),Σ∗)− T (Z̃n(θ0,Σ,Ω),Σ∗)
∣∣∣

+
∣∣∣T (Z̃n(θ0,Σ,Ω),Σ∗)− T (Z̃n(θ0,Σ,Ω),Σ)

∣∣∣
≤ C

∥∥∥Z̃n(θ0,Σ
∗,Ω∗)− Z̃n(θ0,Σ,Ω

∗)
∥∥∥

+C
∥∥∥Z̃n(θ0,Σ,Ω)− Z̃n(θ0,Σ,Ω

∗)
∥∥∥+ C‖Z̃n(θ0,Σ,Ω)‖‖Σ− Σ∗‖S.

Moreover,

‖Z̃n(θ0,Σ
∗,Ω∗)− Z̃n(θ0,Σ,Ω

∗)‖ ≤
√
λmax(Ω∗)‖(Σ∗)1/2Z̃n − Σ1/2Z̃n‖

≤
√
λmax(Ω∗)‖(Σ∗)1/2 − Σ1/2‖S‖Z̃n‖

≤
√
λmax(Ω∗)√

λmin(Σ) +
√
λmin(Σ∗)

‖Σ∗ − Σ‖S‖Z̃n‖,

where the last line follows from Lemma 2. Also by the previous results

‖Z̃n(θ0,Σ,Ω
∗)− Z̃n(θ0,Σ,Ω)‖2

≤ λmax(Σ)

λmin(Ω)γ

(
λmax(Ω)

λmin(Ω)
+
λmax(Ω∗)

λmin(Ω∗)

)
‖Z̃n‖2‖Ω∗ − Ω‖S.

and

‖Zn(θ0,Σ,Ω)‖ ≤ 2

√
λmax(Ω)λmax(Σ)

λmin(Ω)
‖Z̃n‖.

Let

Hn = C
∥∥∥Z̃n(θ0,Σ

∗,Ω∗)− Zn(θ0,Σ,Ω
∗)
∥∥∥+ C ‖Zn(θ0,Σ,Ω)− Zn(θ0,Σ,Ω

∗)‖

+C‖Zn(θ0,Σ,Ω)‖‖Σ− Σ∗‖S.

45



Then, for constants M1 and M2 that do not depend on P or δε

H2
n ≤ 4C2

∥∥∥Z̃n(θ0,Σ
∗,Ω∗)− Zn(θ0,Σ,Ω

∗)
∥∥∥2

+ 4C2‖Zn(θ0,Σ,Ω)‖2‖Σ− Σ∗‖2
S

+4C2 ‖Zn(θ0,Σ,Ω)− Zn(θ0,Σ,Ω
∗)‖2

≤ M1‖Σ− Σ∗‖2
S‖Z̃n‖2 +M1

λmax(Σ)

λmin(Ω)
‖Z̃n‖2‖Σ− Σ∗‖2

S

+M1
λmax(Σ)

λmin(Ω)

(
λmax(Ω)

λmin(Ω)
+
λmax(Ω∗)

λmin(Ω∗)

)
‖Z̃n‖2‖Ω∗ − Ω‖S

≤ M2ε
2
nδ

2
ε

‖Z̃n‖2

Kn

.

Since E(‖Z̃n‖2) = Kn it follows from Markov’s inequality that

sup
P∈P

P

(
Hn ≥

1

2
εn

)
≤ 4M2δ

2
ε .

Therefore

1− α = P
(
T (Z̃n(θ0,Σ

∗,Ω∗)) ≤ c1−α,n(θ0,Σ
∗,Ω∗)

)
≤ P

(
T (Z̃n(θ0,Σ,Ω)) ≤ c1−α,n(θ0,Σ

∗,Ω∗) +Hn

)
≤ P

(
T (Z̃n(θ0,Σ,Ω)) ≤ c1−α,n(θ0,Σ

∗,Ω∗) +
1

2
εn

)
+ 4M2δ

2
ε .

It follows that we can pick δε small enough such that for any P ∈ P , and any (Σ∗,Ω∗) ∈ Hn

1− α− δq ≤ P

(
T (Z̃n(θ0,Σ,Ω)) ≤ c1−α,n(θ0,Σ

∗,Ω∗) +
1

2
εn

)
and thus

c1−α−δq ,n(θ0,Σ,Ω) ≤ c1−α,n(θ0,Σ
∗,Ω∗) +

1

2
εn.

Hence

P
(

(Σ̂, Ω̂) ∈ Hn

)
≤ P

(
c1−α−δq ,n(θ0,Σ,Ω) ≤ c1−α,n(θ0, Σ̂, Ω̂) +

1

2
εn

)
and since

sup
P∈P

∣∣∣P ((Σ̂, Ω̂) ∈ Hn

)
− 1
∣∣∣→ 0

we have

sup
P∈P

∣∣∣∣P (c1−α−δq ,n(θ0,Σ,Ω) ≤ c1−α,n(θ0, Σ̂, Ω̂) +
1

2
εn

)
− 1

∣∣∣∣→ 0.

Analogously, for any (Σ∗,Ω∗) ∈ Hn

1− α = P
(
T (Z̃n(θ0,Σ

∗,Ω∗)) ≤ c1−α,n(θ0,Σ
∗,Ω∗)

)
≥ P

(
T (Z̃n(θ0,Σ,Ω)) ≤ c1−α,n(θ0,Σ

∗,Ω∗)−Hn

)
≥ P

(
T (Z̃n(θ0,Σ,Ω)) ≤ c1−α,n(θ0,Σ

∗,Ω∗)− 1

2
εn

)
− 4M2δ

2
ε .
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It follows that we can pick δε small enough such that for any P ∈ P , and any (Σ∗,Ω∗) ∈ Hn

c1−α+δq ,n(θ0,Σ,Ω) ≥ c1−α,n(θ0,Σ
∗,Ω∗)− 1

2
εn.

Hence

P
(

(Σ̂, Ω̂) ∈ Hn

)
≤ P

(
c1−α+δq ,n(θ0,Σ,Ω) ≥ c1−α,n(θ0, Σ̂, Ω̂)− 1

2
εn

)
and

sup
P∈P

∣∣∣∣P (c1−α,n(θ0, Σ̂, Ω̂) ≤ c1−α+δq ,n(θ0,Σ,Ω) +
1

2
εn

)
− 1

∣∣∣∣→ 0.
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