Variable-wise and Term-wise Recentering

Doug Hemken

December 2015

Variable-wise recentering

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

- Let
 - $\Delta x_i = x_i \mu_{x_i}$ for i = 1,2, with μ_{x_i} as arbitrary constants (perhaps a mean)
- Then the variable-wise recentered version is

•
$$y = \beta_0^{\Delta} + \beta_1^{\Delta} \Delta x_1 + \beta_2^{\Delta} \Delta x_2 + \beta_{12}^{\Delta} \Delta x_1 \Delta x_2$$

Term-wise recentering

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

- Let
 - $\Delta x_i = x_i \mu_{x_i}$ for i = 1,2 and arbitrary μ_{x_i} .
 - $x_{12} = x_1 x_2$
 - $\Delta x_{12} = x_1 x_2 \mu_{x_{12}}$, with $\mu_{x_{12}}$ as another arbitrary constant
- Then the term-wise recentered equation is
 - $y = \beta_0^{\text{tw}} + \beta_1^{\text{tw}} \Delta x_1 + \beta_2^{\text{tw}} \Delta x_2 + \beta_{12}^{\text{tw}} \Delta x_{12}$

Deriving variable-wise parameters

•
$$y = \beta_0^{\Delta} + \beta_1^{\Delta} \Delta x_1 + \beta_2^{\Delta} \Delta x_2 + \beta_{12}^{\Delta} \Delta x_1 \Delta x_2$$

- Starting from the original equation and substituting
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$
 - $y = \beta_0 + \beta_1(\Delta x_1 + \mu_{x_1}) + \beta_2(\Delta x_2 + \mu_{x_2}) + \beta_{12}(\Delta x_1 + \mu_{x_1})(\Delta x_2 + \mu_{x_2})$
 - $y = (\beta_0 + \beta_1 \mu_{x_1} + \beta_2 \mu_{x_2} + \beta_{12} \mu_{x_1} \mu_{x_2}) + (\beta_1 + \beta_{12} \mu_{x_2}) \Delta x_1 + (\beta_2 + \beta_{12} \mu_{x_1}) \Delta x_2 + \beta_{12} \Delta x_1 \Delta x_2$
- We get
 - $\beta_{12}^{\Delta} = \beta_{12}$
 - $\beta_1^{\Delta} = \beta_1 + \beta_{12}\mu_{x_2}$ and $\beta_2^{\Delta} = \beta_2 + \beta_{12}\mu_{x_1}$
 - $\beta_0^{\Delta} = \beta_0 + \beta_1 \mu_{x_1} + \beta_2 \mu_{x_2} + \beta_{12} \mu_{x_1} \mu_{x_2}$

Deriving term-wise parameters

•
$$y = \beta_0^{\text{tw}} + \beta_1^{\text{tw}} \Delta x_1 + \beta_2^{\text{tw}} \Delta x_2 + \beta_{12}^{\text{tw}} \Delta x_{12}$$

- Starting from the original equation and substituting
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$
 - $y = \beta_0 + \beta_1(\Delta x_1 + \mu_{x_1}) + \beta_2(\Delta x_2 + \mu_{x_2}) + \beta_{12}(\Delta x_{12} + \mu_{x_{12}})$
 - $y = (\beta_0 + \beta_1 \mu_{x_1} + \beta_2 \mu_{x_2} + \beta_{12} \mu_{x_{12}}) + \beta_1 \Delta x_1 + \beta_2 \Delta x_2 + \beta_{12} \Delta x_{12}$
- We get
 - $\beta_1^{tw} = \beta_1$, $\beta_2^{tw} = \beta_2$, and $\beta_{12}^{tw} = \beta_{12}$
 - $\beta_0^{tw} = \beta_0 + \beta_1 \mu_{x_1} + \beta_2 \mu_{x_2} + \beta_{12} \mu_{x_{12}}$
- Which can also be written
 - $y = \beta_0^{tw} + \beta_1 \Delta x_1 + \beta_2 \Delta x_2 + \beta_{12} \Delta x_{12}$

Using the term-wise equation

- In the term-wise centered equation, the value of Δx_{12} depends on the values of Δx_1 and Δx_2 .
 - $\Delta x_{12} = x_1 x_2 \mu_{x_{12}} = (\Delta x_1 + \mu_{x_1})(\Delta x_2 + \mu_{x_2}) \mu_{x_{12}}$
 - $\Delta x_{12} = \Delta x_1 \Delta x_2 + \Delta x_1 \mu_{x_2} + \Delta x_2 \mu_{x_1} + \mu_{x_1} \mu_{x_2} \mu_{x_{12}}$
- Now the term-wise centered equation is equivalent to the variable-wise centered equation with the terms rearranged.
 - $y = \beta_0^{\text{tw}} + \beta_1^{\text{tw}} \Delta x_1 + \beta_2^{\text{tw}} \Delta x_2 + \beta_{12}^{\text{tw}} \Delta x_{12}$
 - $y = \beta_0^{tw} + \beta_1 \Delta x_1 + \beta_2 \Delta x_2 + \beta_{12} \Delta x_{12}$
 - $y = \beta_0^{tw} + \beta_1 \Delta x_1 + \beta_2 \Delta x_2 + \beta_{12} (\Delta x_1 \Delta x_2 + \Delta x_1 \mu_{x_2} + \Delta x_2 \mu_{x_1} + \mu_{x_1} \mu_{x_2} \mu_{x_{12}})$
- We see that the final Δx_{12} term includes adjustments to Δx_1 , Δx_2 , and the constant. If we rearrange and simplify in the usual way, we arrive back at the variable-wise centered equation!
 - $y = (\beta_0^{tw} + \beta_{12}\mu_{x_1}\mu_{x_2} \beta_{12}\mu_{x_{12}}) + (\beta_1 + \beta_{12}\mu_{x_2})\Delta x_1 + (\beta_2 + \beta_{12}\mu_{x_1})\Delta x_2 + \beta_{12}\Delta x_1\Delta x_2$
 - [Now simplify the constant, and voila!]

As linear transformations

$$\bullet \quad \beta^{\Delta} = C^{\Delta}\beta$$

$$\bullet \quad \begin{bmatrix} \beta_0^{\Delta} \\ \beta_1^{\Delta} \\ \beta_2^{\Delta} \\ \beta_{12}^{\Delta} \end{bmatrix} = \begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1\mu_2 \\ 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{12} \end{bmatrix}$$

$$\bullet \quad \beta^{tw} = C^{tw}\beta$$

$$\bullet \quad \begin{bmatrix} \beta_0^{tw} \\ \beta_0^{tw} \\ \beta_1^{tw} \\ \beta_2^{tw} \\ \beta_{12}^{tw} \end{bmatrix} = \begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_{12} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{12} \end{bmatrix}$$

$$\bullet \quad \beta^{\Delta} = C^{t\Delta} \beta^{tw}$$

$$\bullet \quad \begin{bmatrix} \beta_0^{\Delta} \\ \beta_1^{\Delta} \\ \beta_{12}^{\Delta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \mu_1 \mu_2 - \mu_{12} \\ 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0^{tw} \\ \beta_1^{tw} \\ \beta_2^{tw} \\ \beta_{12}^{tw} \end{bmatrix}$$

$$\bullet \quad \text{Note } C^{t\Delta} = C^{\Delta} (C^{tw})^{-1}$$