* Compare coefficients and standard errors from * data which is measured coarsely set seed 1062016 postfile msd rep sample coef se using results, replace quietly forvalues rep = 1/1000 { clear set obs 20 generate x = runiform(-5, 5) generate y = 3*x + rnormal() regress y x post msd (`rep') (0) (_b[x]) (_se[x]) generate x1 = round(x, 0.5) regress y x1 post msd (`rep') (1) (_b[x]) (_se[x]) generate x2 = round(x) regress y x2 post msd (`rep') (2) (_b[x]) (_se[x]) generate x3 = round(x,2) regress y x3 post msd (`rep') (3) (_b[x]) (_se[x]) } postclose msd use results.dta, clear bysort sample: summarize coef se * As we throw away information, our standard errors grow.