
The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142
979-845-3144 FAX
jnewton@stata-journal.com

Executive Editor
Nicholas J. Cox
Department of Geography
University of Durham
South Road
Durham City DH1 3LE
United Kingdom
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
Texas A&M University

Stephen Jenkins
University of Essex

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
Inst. of Psychiatry, King’s College London

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Jeroen Weesie
Utrecht University

Jeffrey Wooldridge
Michigan State University

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by Stata Corporation. The contents of the supporting files (programs, datasets,

and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any

copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from Stata Corporation if you wish to make electronic copies of the

insertions. This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly

accessible web sites, fileservers, or other locations where the copy may be accessed by anyone other than the

subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or Stata Corporation. In particular, there is no warranty of fitness of purpose or merchantability, nor for

special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to

promote free communication among Stata users.

The Stata Technical Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is

a registered trademark of Stata Corporation.



The Stata Journal (2003)
3, Number 1, pp. 32–46

Intra-class correlation in random-effects models

for binary data

Germán Rodŕıguez
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Abstract. We review the concept of intra-class correlation in random-effects mod-
els for binary outcomes as estimated by Stata’s xtprobit, xtlogit, and xtclog.
We consider the usual measures of correlation based on a latent variable formu-
lation of these models and note corrections to the last two procedures. We also
discuss alternative measures of association based on manifest variables or actual
outcomes and introduce a new command xtrho for computing these measures for
all three types of models.

Keywords: st0031, intra-class correlation, random-effects, probit, logit, comple-
mentary log-log, Pearson’s r, Yule’s Q

1 Introduction

Random-effects models are used in the analysis of clustered or longitudinal data, where
the usual assumption of independence of the responses is not appropriate. The mea-
surement of the extent to which the observations in a cluster or within an individual are
correlated is often of interest. In this note, we discuss measures of intra-class correlation
in random-effects models for binary outcomes.

We start with the classical definition of intra-class correlation for continuous data
(Longford 1993, Chapter 2). We then consider the usual extensions to binary outcomes
based on a latent-variable formulation of generalized linear models with binomial errors
and link probit, logit, or complementary log-log (Fahrmeir and Tutz 1994). In this
process, we note a couple of errors in Stata’s xtlogit and xtclog as documented in
version 7. (Both corrected in Stata 8.)

We also consider alternative measures of intra-class correlation based on manifest
rather than latent variables. The possible outcomes for two observations on the same
group or individual may be viewed as a two by two contingency table, and we consider
measures of association based on Pearson’s correlation coefficient and measures based
on the odds-ratio such as Yule’s Q coefficient. We describe the calculation of these mea-
sures for probit, logit, and complementary log-log models, using numerical integration
procedures for the last two. Finally, we introduce a new command, xtrho, that can be
used to compute these measures.

c© 2003 Stata Corporation st0031
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2 Linear models

Let Yij represent a continuous outcome for the jth observation in the ith group. The
usual linear mixed-effects model estimated by xtreg assumes that

Yij = µ + ui + eij (1)

where µ is a constant and ui ∼ N(0, σ2
u) independently of eij ∼ N(0, σ2

e). In this
model, E(Yij) = µ, var(Yij) = σ2

u + σ2
e , and cov(Yij , Yik) = σ2

u for two observations
in the same group (and 0 otherwise). We could introduce covariates simply by writing
x′

ijβ instead of µ, but we will keep things simple to focus on the covariance structure.
The correlation between any two observations in the same group is, from the standard
definition of Pearson’s correlation coefficient (as the ratio of the covariance to the square
root of the product of the variances),

ρ =
σ2

u

σ2
u + σ2

e

(2)

Although ρ is defined in the conventional way, it turns out to represent the ratio of the
variance of the random effect ui to the total variance and thus can be interpreted as the
proportion of variance explained by clustering. (Note that we have not squared ρ. If we
did, we would obtain the proportion of variance of one response explained by another
response in the same group, not the proportion explained by clustering.)

3 Probit models

In random-effects probit models as estimated by xtprobit, we assume that conditional
on unobserved random effects ui, the outcomes are realizations of independent Bernoulli
random variables Yij with probabilities depending on ui. Specifically, we assume that
the conditional probability of a positive outcome given the random effect ui is

πij = Pr(Yij = 1|ui) = Φ(η + ui)

where Φ is the standard normal c.d.f. and η is a constant. (In the more general case
with covariates, we would write x′

ijβ instead of η.) The inverse transformation Φ−1 is,
of course, the probit leading to the model

Φ−1(πij) = η + ui (3)

Estimation of this model requires integrating out ui to obtain the unconditional distri-
bution of the outcomes Yij , which are of course correlated within groups.

3.1 Latent correlation in probit models

The probit model can be reformulated in terms of a continuous latent variable Y ∗

ij such
that the outcome is positive if, and only if, Y ∗

ij is above a threshold. The latent variable
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follows the usual linear mixed-effects model in (1), but with mean η. The threshold can
be taken to be zero with no loss of generality, as any other value can be absorbed into
the constant. As is often the case with latent variables, it turns out that the scale of
Y ∗

ij is not identified either. To see this point, note that the conditional probability of a
positive outcome is

Pr(Y ∗

ij > 0|ui) = Pr(eij > −η − ui) = Φ{(η + ui)/σe}

and depends only on the ratio of η and ui to σe. To maintain consistency with (3), we
take σe = 1. This means that all coefficients are scaled in terms of the within-group
standard deviation.

A nice feature of the latent variable formulation is that it allows us to compute
the intra-class correlation using the same formula given in (2) for continuous outcomes,
except that σ2

e = 1, so we now have

ρprobit =
σ2

u

σ2
u + 1

(4)

This is the formula used in xtprobit and is correct as long as you realize that it refers
to correlations in the latent scale.

The Stata 7 Reference Manual Volume 4 illustrates the use of several xt commands
using data from a subsample of the National Longitudinal Survey of Youth (NLSY). The
union.dta subset has union membership information from 1970–88 for 4,434 women
aged 14–26 in 1968. An analysis using xtprobit yields an estimated intra-class corre-
lation of 0.6367, which is reproduced in Table 1 for later reference. We interpret this
result as indicating that unobserved individual characteristics (the ui) account for 64%
of a woman’s propensity to belong to a union in different years (the latent variable Y ∗

ij).

Table 1: Intra-class correlations for union membership data

Model Manual Revised
Probit 0.6367 0.6367
Logit 0.8417 0.6175
C-log-log 0.7611 0.6595

3.2 Manifest association in probit models

An alternative way to look at intra-class correlation is to focus on the actual dichotomous
outcomes. We view the joint distribution of two observations Yij and Yik in the same
group as a two-by-two contingency table. The cell probabilities can be computed in
terms of two types of quantities: the marginal probability of a positive outcome, which
for a probit model is

π.1 = Pr(Yij = 1) = Φ(η/
√

1 + σ2
u)
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and the joint probability of two positive outcomes in the same group, which is

π11 = Pr(Yij = 1, Yik = 1) = Φ2(η/
√

1 + σ2
u, η/

√

1 + σ2
u, ρ)

where Φ2 denotes the standard bivariate normal distribution as computed by Stata’s
binorm. Note that these quantities depend on both σ2

u and η. For simplicity, we continue
to take η as fixed, but we could easily introduce covariates by writing ηij = x′

ijβ instead.

We are now in a position to compute any standard measure of association for dichoto-
mous variables. For example, Pearson’s correlation coefficient between two outcomes in
the same group (and with the same marginal probability) is

r =
π11 − π2

.1

π.1(1 − π.1)
(5)

This formula follows directly from the general definition of Pearson’s coefficient. (Note
that we are using r and ρ to distinguish manifest and latent measures rather than sample
and population quantities.) The dashed line on the left panel of Figure 1 plots latent
ρ as a function of σu. The solid lines plot the values of manifest r corresponding to
values of η chosen to produce conditional probabilities of 0.5, 0.2, 0.1, 0.05, 0.025, and
0.01 (from top to bottom) when the random effect is zero. Because the correlation is a
symmetric function of η, these curves also represent conditional probabilities increasing
from 0.5 to 0.99. The graph shows that the manifest correlation is always less than
the latent correlation when both are measured using Pearson’s coefficient, although
both measures approach one as σu → ∞ for any η. The difference increases with the
magnitude of η for any fixed value of σu.
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Figure 1: Latent and manifest intra-class correlation for probit models

As noted in the classic text by Bishop et al. (1975, Chapter 11), all the standard
measures of association for a two-by-two table are essentially functions of Pearson’s
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correlation coefficient or functions of the odds ratio, which in the present context can
be written as

α =
π11(1 − 2π.1 + π11)

(π.1 − π11)2

Perhaps the best-known measure depending on the odds ratio is Yule’s Q, defined as

Q =
α − 1

α + 1
(6)

For two-by-two tables, Q coincides with Goodman and Kruskal (1959)’s γ and thus
has a nice interpretation as the difference between the probabilities of like and unlike
orderings of the responses of two randomly chosen pairs from different groups. The
right panel of Figure 1 shows latent ρ using a dashed line and values of manifest Q
using solid lines for the same values of η as the left panel. Yule’s Q always exceeds the
latent correlation, and the difference increases with |η| for fixed σu.

Yule (1912) was troubled by the dependence of Q on the margins. He proposed
standardizing the two-by-two table so that it would have 50:50 margins while preserving
the odds ratio, and then taking the difference between the diagonal and off-diagonal
probabilities as a measure of ‘colligation’, Y . This measure can be computed as

Y =

√
α − 1√
α + 1

(7)

and turns out to be equivalent to Pearson’s r for the standardized table. In our context,
Yule’s Y always lies between Q and r and is thus closer to latent ρ, but still depends
on η for fixed σu. Latent ρ itself, by the way, coincides with the tetrachoric correlation
coefficient proposed by Pearson (1900).

The choice between latent and manifest measures is not obvious. The latent correla-
tion has the advantage of not depending on the marginal distribution, while the manifest
association has the advantage of referring more directly to observable quantities.

4 Logit models

A similar development applies to random-effects logit models as estimated by xtlogit.
We assume that conditional on random effects ui the observations have independent
Bernoulli distributions with probabilities

πij = Pr(Yij = 1|ui) = F (η + ui)

where F is the standard logistic distribution with c.d.f. F (η) = eη/(1+eη). The inverse
transformation F−1 is the logit, leading to the model

logit(πij) = log
πij

1 − πij

= η + ui (8)
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4.1 Latent correlation in logit models

This model also admits a latent variable formulation, except that this time the individual
error terms eij are assumed to follow standard logistic rather than standard normal
distributions. To be precise, we assume that Yij = 1 if, and only if, Y ∗

ij > 0, just as
before. We further assume that Y ∗

ij follows the linear mixed model in (1) with mean

η and ui ∼ N(0, σ2
u), but eij now has a logistic distribution with mean 0 and variance

σ2
e . Just as before, we note that the scale of the latent variable is not identified. For

convenience, we take eij to have a standard logistic distribution, which happens to
have variance π2/3 or approximately 3.29. (We could, of course, set the variance to
one for comparability with probit models, but then we would lose some convenience in
calculation, not to mention the fact that coefficients in standard logit models have a
nice interpretation in terms of log-odds ratios.)

In view of this development, we can compute the latent intra-class correlation using
the same general formula as in linear models except that σ2

e = π2/3, so we now have

ρlogit =
σ2

u

σ2
u + π2/3

(9)

The Stata 7 manual takes the individual variance as one, but the code has since been
patched to use (9) instead. Note that using one instead of the logistic variance would
lead to overestimation of ρ.

As shown in Table 1, the logit estimate of the intra-class correlation for the union
data based on (9) is 0.6175 (rather than 0.8417 using a variance of one) and is very
similar to the probit estimate.

4.2 Manifest association in logit models

We now consider the marginal and joint probabilities required to compute measures of
manifest association. The marginal probability of a positive outcome given η and σu is

π.1 = Pr{Yij = 1} =

∫ +∞

−∞

exp(η + σuz)

1 + exp(η + σuz)
φ(z)dz

where φ(z) denotes the standard normal density. The joint probability of two positive
outcomes in the same group and with the same linear predictor η is

π11 = Pr{Yij = 1, Yik = 1} =

∫ +∞

−∞

{

exp(η + σuz)

1 + exp(η + σuz)

}2

φ(z)dz

Unfortunately, these integrals do not have a closed form and must be computed by
numerical quadrature as explained further below. The dashed line in Figure 2 shows
the intra-class correlation in the latent scale as a function of σu, computed using (9).
It also shows the intra-class association in the manifest scale as a function of σu and
η. We show Pearson’s r on the left panel and Yule’s Q on the right, computed using
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(5) and (6), respectively. The horizontal scale on the graph was chosen to represent the
same range of latent correlation as in the probit graph and can be made comparable
dividing by π/

√
3, the same transformation used to make logit and probit coefficients

comparable. The values of η were chosen to produce conditional probabilities of 0.5,
0.2, 0.1, 0.05, 0.025, and 0.01 when the random effect is zero, just as in Figure 1. We
can see that, after appropriate scaling, the latent and marginal correlations for logit
models behave very much like their probit counterparts.
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Figure 2: Latent and manifest intra-class correlation for logit models

The marginal and joint probabilities can be computed using Gaussian quadrature,
which is the method used by Stata to fit the model. We found that accurate estimation
of these probabilities over the entire range of interest shown in Figure 2 required a large
number of quadrature points. We also tried adaptive Gaussian quadrature as described
by Liu and Pierce (1994). This procedure rescales the evaluation points so that the
integrand is sampled in a more appropriate region and produced accurate estimates
over our range of interest using fewer quadrature points. The method we finally used,
however, is based on Crouch and Spiegelman (1990) and relies on a trapezoid rule that
combines simplicity with remarkable accuracy. The rule approximates

∫ +∞

−∞

F (η + σz)kφ(z)dz ≈ 1

h

+∞
∑

−∞

F{η + σ(z0 + ih)}kφ(z0 + ih)

where h is the step size, F is the logistic c.d.f., k is one for marginal and two for joint
probabilities, and z0 is an arbitrary value chosen for convenience. We compute the sum
starting at z0 given by the mode of the integrand and proceed towards the tails until
the terms became negligible, repeatedly halving the step size until the desired accuracy
is attained. The computations can be organized so that each step-halving reuses all the
terms calculated previously. Crouch and Spiegelman (1990) show how to precompute
the step size required to attain a given accuracy for logit models; our simplified approach
works just as well and can also be applied to the next family of models.
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5 Complementary log-log models

A third approach to modeling binary data, implemented in xtclog, uses the comple-
mentary log-log link

log{− log(1 − πij)} = η + ui (10)

where η is a constant and ui ∼ N(0, σ2
u) as before. The inverse of this transformation

is the c.d.f. of the extreme value (or log-Weibull) distribution,

F (η + ui) = 1 − exp{− exp(η + ui)}

The complementary log-log link can also be obtained from the general latent variable
formulation if we assume that the individual error terms eij have (reverse) extreme value
distributions with c.d.f. F (eij) = exp{− exp(−eij)}. This distribution is asymmetric,
with a long tail to the right. It has mean equal to Euler’s constant (0.577) and variance
π2/6 or about 1.645 (Johnson et al. 1995, Chapter 22). Under these assumptions, the
latent variable Y ∗

ij has mean η + 0.577 and variance σ2
u + π2/6. It follows that for this

model, we should calculate the latent intra-class correlation as

ρclog =
σ2

u

σ2
u + π2/6

(11)

The formula reported in the Stata 7 manual and used by xtclog takes the individual
variance to be one and therefore tends to overestimate the intra-class correlation, al-
though not as much as would be the case for xtlogit. In Stata 8, all correlations have
been corrected.

As shown in Table 1, the complementary log-log estimate of the intra-class correla-
tion for the union data based on (11) is 0.6595 (compared with 0.7611 using a variance
of one). Note that the revised estimate is much closer to the estimates obtained using
the probit and logit links.

Measures of manifest association based on Pearson’s r or Yule’s Q can be computed
along the same lines as for logit models. The marginal probability of a positive outcome
is

π.1 = Pr(Yij = 1) =

∫ +∞

−∞

1 − exp
{

− exp(η + σuz)
}

φ(z)dz

where φ(z) denotes the standard normal density. The joint probability of two positive
outcomes in the same group and with the same linear predictor η is

π11 = Pr(Yij = 1, Yik = 1) =

∫ +∞

−∞

[

1 − exp
{

− exp(η + σuz)
}

]2

φ(z)dz

These integrals do not have a closed form solution but can be approximated easily and
accurately using the trapezoid rule described in the previous section.

Figure 3 shows the latent and manifest measures for complementary log-log models.
The horizontal scale covers the same range of latent correlations as the previous graphs
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and can be made comparable to the probit graph by dividing by π/
√

6, the same trans-
formation used to make complementary log-log and probit coefficients comparable. The
values of η were chosen to produce conditional probabilities of 0.01, 0.025, 0.05, 0.10,
0.20, 0.50, 0.80, 0.90, 0.95, 0.975 and 0.99 when the random effect is zero. Unlike the
probit and logit links, the complementary log-log link is not a symmetric function of η,
and this produces some interesting results.
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Figure 3: Latent and manifest intra-class correlation for c-log-log models

Figure 3 uses solid lines for values of η ≤ −0.3665 corresponding to conditional
probabilities below 0.5 and dotted lines for the rest. We see that Pearson’s r varies
substantially with η when the conditional probability is below one half (solid lines),
with lower values for more negative η’s, but doesn’t vary much when the outcome
is more likely (dotted lines). Yule’s Q exhibits the oppositive behavior. This time,
the solid lines corresponding to less frequent outcomes are tightly clustered, while the
dotted lines corresponding to higher conditional probabilities fan out considerably, with
Q increasing with η for fixed σu.

6 Inference about intra-class correlation

It may be useful to remind the reader that testing the hypothesis H0 : σ2
u = 0, which is

equivalent to the hypothesis H0 : ρ = 0 of no intra-class correlation for any of the mea-
sures discussed here, requires special care because the postulated value lies on a bound-
ary of the parameter space. In this case, the likelihood-ratio test does not have the usual
χ2 distribution with one degree of freedom but may be better approximated as a 50:50
mixture of χ2s with zero and one degree of freedom, the approximation used by Stata;
see Stram and Lee (1994) and Gutierrez et al. (2001). However, Pinheiro and Bates
(2000, Section 2.4.1) note from simulations that this adjustment is not always success-
ful. As an alternative, one can use the nominal one-degree-of-freedom test and treat
the resulting p-value as a conservative approximation.
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By the same token, the normal approximation to the distribution of the estimator of
latent ρ may not be adequate, particularly for small amounts of clustering. Stata reports
standard errors for σu and latent ρ but wisely computes confidence intervals working
with log σ2

u, for which a normal approximation should be more reasonable. A similar
approach can be used to compute confidence intervals for the measures of manifest
association introduced here. Note, however, that by construction these intervals could
never include the value ρ = 0 (or equivalently σ2

u = 0), so they should not be used in
lieu of a test of significance.

In the union membership example, the 95% confidence intervals for log σ2
u lead to

95% confidence intervals for latent ρ of (0.5974, 0.6372), using (9) for xtlogit and
(0.6420, 0.6766) using (11) for xtclog.

7 Stata commands: xtrho and xtrhoi

We have written two commands that can be used to compute the marginal and joint
probabilities of a positive outcome and three measures of intra-class manifest associa-
tion: the odds ratio, Pearson’s r and Yule’s Q. You can obtain these commands while
you are online by typing into Stata net from http://opr.princeton.edu/stata.

7.1 Syntax for xtrho

xtrho is a post-estimation command that can be used following a random effects
xtprobit, xtlogit, or xtclog. The syntax is

xtrho
[

, level(#) detail
]

By default, the calculations are done with η set to the median in the estimation sam-
ple and σu set to its maximum likelihood estimate. Confidence intervals are computed
by setting σu to its lower and upper confidence bounds while keeping η at the median.

7.2 Options for xtrho

level(#) specifies the confidence level, in percent, for confidence intervals. The default
is level(95) or as set by set level; see [R] level.

detail computes the measures with the linear predictor η set to percentiles 1, 25, 50,
75, and 99 in the estimation sample, and is useful to ascertain how the measures of
association vary with observed characteristics.

7.3 Syntax for xtrhoi

xtrhoi is an immediate command that can be used to compute the measures for given
values of η and σu for any of the three link functions. The syntax is
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xtrhoi η σu

[

link
]

where η and σu must be numbers and link must be one of logit, probit, or clog, with
logit as the default.

7.4 Saved Results

The post-estimation and immediate commands are both r-class and save in r():

Scalars
r(mp) marginal probability r(r) Pearson’s r

r(jp) joint probability r(Q) Yule’s Q

r(or) odds ratio

For xtrho, the saved quantities are the estimates at the median η.

8 Application to the union data

We illustrate these ideas by computing and interpreting measures of latent correlation
and manifest association for the union data.

8.1 Latent propensity to unionize

We start by first fitting a random-effects logit model to the union data. This is the
same model used in [R] xtlogit ([XT] for Stata 8).

. xtlogit union age grade not_smsa south southXt, i(id)

(output omitted )

Random-effects logit Number of obs = 26200
Group variable (i) : idcode Number of groups = 4434

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.9
max = 12

Wald chi2(5) = 221.95
Log likelihood = -10556.294 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0092401 .0044368 2.08 0.037 .0005441 .0179361
grade .0840066 .0181622 4.63 0.000 .0484094 .1196038

not_smsa -.2574574 .0844771 -3.05 0.002 -.4230294 -.0918854
south -1.152854 .1108294 -10.40 0.000 -1.370075 -.9356323

southXt .0237933 .0078548 3.03 0.002 .0083982 .0391884
_cons -3.25016 .2622898 -12.39 0.000 -3.764238 -2.736081

/lnsig2u 1.669888 .0430016 1.585607 1.75417

sigma_u 2.304685 .0495526 2.209582 2.403882
rho .6175213 .0030872 .5974278 .6372209

Likelihood ratio test of rho=0: chibar2(01) = 5978.89 Prob >= chibar2 = 0.000
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The intra-class latent correlation ρ for this model is 0.6175, indicating a high cor-
relation between a woman’s propensity to be a union member in different years, after
controlling for her education and residence. The estimate of σu can be interpreted
as an ordinary logit coefficient by writing the random effect uij ∼ N(0, σ2

u) as σuzij ,
where zij ∼ N(0, 1). In this formulation, there is a parallel between the covariates xij ,
representing observed characteristics with coefficients β, and the standardized random
effects zij , representing unobserved traits with coefficient σu. In the union data, the
odds of belonging to a union in a given year for a woman who has unobserved propen-
sity one standard deviation above the mean are about ten times the corresponding odds
for a woman with average unobserved propensity and the same observed characteristics
(exp(2.305) = 10.02).

8.2 Manifest union membership

Next, we use xtrho to translate the results into quantities pertaining to observable
outcomes.

. xtrho

Measures of intra-class manifest association in random-effects logit
Evaluated at median linear predictor

Measure Estimate [95% Conf.Interval]

Marginal prob. .22696 .22084 .233181
Joint prob. .123255 .116043 .130688
Odds ratio 7.67092 7.12563 8.26475
Pearson’s r .408917 .390966 .426798
Yule’s Q .769344 .753865 .784128

For a woman whose observed propensity is at the sample median, the marginal
probability of belonging to a union in any given year is 0.227. The joint probability of
belonging to a union in two given years is 0.123. From these quantities, we can compute
various measures of association pertaining to union membership in any two given years,
say, 1975 and 1980 to fix ideas. Consider first the odds ratio of 7.67. This means that the
odds of being a union member in 1980 for a woman who was a member in 1975 are nearly
eight times the corresponding odds for a woman with the same observed characteristics
who was not a member in 1975. Note the difference in interpretation between the two
types of odds ratios discussed so far. The odds ratio of ten described earlier contrasts
behavior in a given year for women with different unobserved propensities. The odds
ratio of almost eight described here contrasts behavior in a given year for women with
different observed behaviors in another year.

Pearson’s correlation coefficient is 0.409, indicating much lower manifest than latent
association. Squaring this coefficient, we see that union membership in a given year
explains only about 17% of the variation in union behavior in another year. In contrast,
persistent unobserved traits explain 62% of the latent propensity to belong to a union
in a given year.
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Finally, we come to Yule’s Q, which is estimated as 0.769 when the linear predictor
is set to the median. This means that if we picked at random two women with median
observed characteristics as summarized by the linear predictor, the probability that their
union memberships in two given years would be concordant exceeds the probability that
they would be discordant by 77 percentage points. A pair is considered concordant if one
of the women is a union member in both years and the other isn’t. A pair is discordant
if one woman becomes a union member while the other discontinues membership. Other
combinations do not enter in the calculation.

The default output also shows a confidence interval for each measure. In our example,
σu is estimated quite precisely, and consequently, all intervals are reasonably narrow.
Recall, however, that these measures depend on observed characteristics via the linear
predictor. We next use the detail option to explore how much these measures vary
across the sample.

. xtrho, detail

Measures of intra-class manifest association in random-effects logit
Evaluated with linear predictor set at selected percentiles

Measure p1 p25 p50 p75 p99

Marginal prob. .107702 .16166 .22696 .253184 .311292
Joint prob. .045003 .07794 .123255 .142897 .189065
Odds ratio 9.49691 8.39124 7.67092 7.47801 7.16908
Pearson’s r .347578 .382257 .408917 .416721 .429884
Yule’s Q .809468 .787036 .769344 .764096 .755174

We see that the marginal probability of belonging to a union in a given year ranges
from 0.108 to 0.311 as we move from the first to the 99th percentile in terms of observed
propensity to belong to a union. As we would expect from the general results shown
before, this variation affects Pearson’s r and Yule’s Q in opposite ways. Pearson’s r
is higher among women who are most likely to unionize, whereas Yule’s Q, and the
odds-ratio on which it is based, are higher among women least likely to belong to a
union. Among women who have on average a thirty percent probability of belonging
to a union, membership in a given year is associated with a seven-fold increase in the
odds of being a union member in another year. But among women who have only a ten
percent probability of unionizing, membership in one year is associated with almost a
ten-fold increase in the odds of union membership in another year.

The immediate command xtrhoi can be used to explore these quantities for other
values of σu or the linear predictor η.

8.3 A note on quadrature checks

We should note in closing that the model fitted here using 12 quadrature points (the
default setting) does not quite pass the checks in quadchk, which refits the model using
8 and 16 points. Things look better if we use 30 points, the maximum that Stata allows.
While some of the coefficients change, the general tenor of the results and conclusions
remains the same, so we decided to keep the defaults to maintain consistency with the
Stata manual.
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