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Directed Acyclic Graphs 
DAGs graphically represent non-parametric structural 

equation models. They may look like the path models 
of yore, but they are far more general.  

 
        

 
 
 
 

    This is a DAG 
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Origins 

DAGs have roots in  
1.  Structural equation models (1930s+) 
2.  Social science path models (1960s+) 
3.  Bayesian networks (1980s+). 
Judea Pearl and colleagues synthesized and 

generalized these approaches to develop a powerful 
graphical syntax for causal inference. 

We will follow Pearl (1995, 2009) and read DAGs as 
nonparametric structural equation models (NPSEM), 
which gives them a causal interpretation.   
  Compatible with the potential outcomes 

 (Neyman-Rubin) framework. 
Elwert@wisc.edu. Version 5/2013 



Some Key Players 

Computer Science:  
 Judea Pearl, Jin Tian, Thomas Verma 

 
Philosophy:  

 Peter Spirtes, Clark Glymour, Richard Scheines 
 
Biostatistics:  

 Jamie Robins, Sander Greenland, Tyler 
 VanderWeele, Miguel Hernan 
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Why DAGs? 
•  Rigorous mathematical objects, support proofs 
•  Very general (nonparametric)  
•  For many purposes, DAGs are more accessible than 

potential outcomes notation 
–  All pictures, no algebra 
–  Focus attention on causal assumptions (language of applied 

scientists) 
–  Great for deriving (nonparametric) identification results  
–  Great for deriving the testable implications of a causal model 
–  Intuition for understanding many problems in causal inference. 
–  Particularly helpful for complex causal models 

•  Limitations 
–  Don’t display the parametric assumptions that are often 

necessary for estimation in practice. 
–  Generality can obscure important distinctions between 

estimands. Elwert@wisc.edu. Version 5/2013 



Main Goals of This Course 
•  DAGs are useful for many topics 
•  This course aims to introduce you to DAGs’ three 

main uses: 
1.  Deriving testable implications of a causal model 
2.  Understanding causal identification requirements 
3.  Informing the use of some popular statistical 

techniques 
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Taking the Long View for Today 
•  We’ll have to get through some terminological 

and conceptual setup before we can get to the 
meat of things.  

•  Therefore, I’d like to preview what you may find 
to be the most empowering lesson of today’s 
sessions: using DAGs to identify causal effects 
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Identification 
•  When analyzing data, the analyst needs to 

ask: “Is the association I observe causal or 
spurious?” 

•  Identification: The possibility of separating 
causal from noncausal associations with 
ideal data == reducing the observed 
(conditional) association between 
treatment and outcome to its purely causal 
(i.e., non-spurious) component.  
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At a basic level, identification usually means 
asking: 
 
“What control variables, X, must be included
—and which variables mustn’t be included—
in the analysis to achieve identification?” 

Today’s Goal 
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•  We already know that the total causal effect of T on Y is 
identifiable from observable data {Y, T, X} if treatment is 
conditionally ignorable:  

   {Y1,Y0} ⊥ T | X 
•  But ignorability gives little guidance as to what variables 

should be in X beyond stating that X should make T and 
{YT} conditionally independent.  

•  Most people have poor intuition for unobservable 
counterfactuals, {YT}.  

•  Indeed, the most popular substantive interpretation 
(that X is the assignment mechanism for T), though 
sufficient, is seriously incomplete. 

Today’s Goal 
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•  Instead of dealing in counterfactuals and conditional 
independences, it may be easier to talk about 
identification in terms of cause-effect statements–the 
common currency of scientific discourse. 

•  DAGs are powerful because they encode causal 
assumptions and permit the analyst to translate between 
(substantive) causal statements and (statistical) 
independence statements.  

•  The promise: once we lay out our causal assumptions, 
it’s easy to derive all implied marginal and conditional 
independences in the system.   

•  This permits judgment about when ignorability is met, and 
what variables  should be (or mustn’t be) included in the 
analysis.  Elwert@wisc.edu. Version 5/2013 



3. DAGs 
Elements and Interpretation 

 
(Lots of terminology. It’s worth the effort.) 
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Section Overview 

•  Basic elements 
•  Interpretation: encoding the qualitative causal 

assumptions of the data generating model 
•  DAGs as NPSEM 
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Building Blocks 
 
 
 
 
 
DAGs consist of three elements: 
1.  Variables (nodes, vertices) 
2.  Arrows (directed edges, arcs): possible direct causal 

effects. The arrows order the variables in time.  
3.  Missing arrows; sharp assumptions about absent 

direct causal effects. 
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Nonparametric 

 
 
 
 
 
 
DAGs are non-parametric, i.e. they make no assumption about  

1.  The distribution of the variables (nodes) in the DAG 
2.  The functional form of the direct causal effects (arcs) 
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Present and Missing Arcs 

 
 
 
 
 
DAGs encode the analyst’s qualitative causal knowledge/beliefs/

assumptions:  
 Directed arcs represent possible direct causal effects.  

- E.g., C may or may not directly cause Y 
 Missing arcs represent sharp Nulls of no-effect. 

- E.g., U2 does not directly cause T; and T does not directly cause Y for 
anybody. 
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Missing Arcs Encode Assumptions 

 
 
 
 
 
Thus, only missing arcs encode causal assumptions, whereas 

directed arcs represent ignorance! 
  - (As a sloppy shortcut, we often read arcs as existing causal effects) 

 
In assessing whether a particular DAG is theoretically plausible/

valid, the debate should be about which arrows can be assumed 
to be absent.  
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Node Terminology 

 
 
 
 
 

 Descendants of a node: all nodes directly or indirectly caused by the node 
   desc(T) = {C, Y} 
  Children of a node: all nodes directly caused by the node 
   child(T) = {C} 
 Ancestors of a node: all nodes directly or indirectly causing the node 
   an(T) = {X, U1, U2} 
  Parents of a node: all direct causes of the node 
   pa(T) = {X} 
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Paths 

 
 
 
 
 
A path is a sequence of non-intersecting adjacent edges 

 E.g., XàTàC or U2àYßCßT 
 Note: (1) The direction of the arrows doesn’t matter.  
    (2) Non-intersecting  = a path cannot cross a node more than once 
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Colliders 

 
 
 
 
 
Perhaps the most important concept! 

 A collider variable is a variable along a path with two arrows pointing in 
  E.g.,X is a collider on the path U1àXßU2.  
  But X is not a collider on the path U1àXàT.  
 =>Colliders are specific to a path.  
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Directed Acyclic Graphs 

 
 
 
 
 
DAGs are “directed” in that each arrow is single headed, 

expressing a single causal statement, e.g. T directly causes C. 
(We’ll meet bi-headed arrows later.) 
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Directed Acyclic Graphs 

 
 
 
 
DAGs are “acyclic” in that they contain no directed cycles: one 

cannot trace a sequence of arcs in the direction of the arrows 
and arrive whence one started.  

“The future cannot directly or indirectly cause the past.” 
 Apparent counterexamples (‘schooling and wages cause each 
other’) are usually resolved by redrawing the DAG with a finer 
temporal articulation.  
  No “simultaneity.” 

(There’s theory for cyclical graphs, too, see Pearl 2009.) 
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Causal DAGs 

 
 
 
 
 

Definition: Causal DAGs include all common causes of 
any pair of variables already included in the DAG.  

 � E.g., there is no variable U3 with direct effects 
into U2 and T 
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Causal DAGs 

 
 
 
 
 

 
Causal DAGs may include additional nodes that are not 

common causes (e.g. T, C), as long as all common 
causes involving these additional variables are also 
included. 
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Causal DAGs 

 
 
 
 
 
 
In everything that follows, we assume that the DAGs are causal.  

 This is a very strong assumption, but it’s often necessary for 
deriving identification results.  
 Things get bad enough without doubting theory. 
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Causal DAGs 

 
 
 
 
 

 It can be shown that complicating a DAG by adding arrows to a 
given node set (i.e. relaxing assumptions) never helps non-
parametric identification.  
 Adding nodes (variables) to a DAG, however, may help non-
parametric identification. 
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Causal DAGs Encode the Data-
Generating Model 

 
 
 
 
 
Causal DAGs encode the qualitative causal assumptions of the 

data-generating model (“model-of-how-the-world-works”) 
against which all inferences must be judged. 

Specifically, the DAG must capture the causal structure of 
1.  How the variables take their values in “nature” 
2.  What variables and values are collected 
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Consider Observed and 
Unobserved Variables 

 
 
 
 
 
Note!  When building a model (= drawing a DAG), you must consider all 

factors/variables that play a role in data generation, regardless of 
whether they are observed or unobserved.  

Also include all variables on which we explicitly or implicitly condition in the 
course of analysis (including a variable for “data collection” itself if data 
collection is affected by any variable in the DAG). (Examples later.) 

It is a common mistake to reason ‘backward” from the observed variables 
in a dataset rather than considering how the world really works.  
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If we are not willing to make assumptions, we cannot point-identify causal 

effects. 
  Assumption-free causal inference is impossible. 

If our assumptions are wrong, our inference may be wrong. 
We should make the least onerous assumptions possible. 

“Garbage in, garbage out” (Nancy Cartwright).  

Assumptions Are Unavoidable 
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Suppressing Independent Errors 

 
 
 
 
 
 

We usually omit the set of independent “error term” (idiosyncratic 
direct causes) on each variable from the causal DAG because 
they don’t help with non-parametric identification.  

Sometimes, however, these independent error terms are useful for 
showing why a particular effect is not identified (examples later).  
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DAGs as NPSEM 

 
 
 
 

Technically, we interpret DAGs as visual representations of 
nonparametric structural equation models (NPSEM).  

Each variable, V, is generated by a NPSE that relates the variable 
to its parents in the causal DAG, pa(V), and to its idiosyncratic 
error, eV, via some arbitrary deterministic function, fV. 

 
Since the error term is stochastic, the NPSEM is stochastic. Given 

the error terms, everything else is determined.  
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DAGs as NPSEM 

 
 
 
 

The following equations give the NPSEM for the above DAG: 
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A Qualitative DAG is Consistent With Multiple 
Quantitative Models 

 
 
 
 

Since DAGs represent a NPSEM with arbitrary nonparametric functions f, a given 
DAG is compatible with many specific parametric models, e.g.,  

 
 
 
 
 
 
Therefore, every DAG is compatible with multiple joint probability densities. 

 Note: the parameters of f may vary across individuals, and f permits interactions. 
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Complete DAGs 

 
 
 
 
A “complete DAG” (no missing arcs) is compatible with all possible 

probability density functions over the node set, P(Y,C,T,X,U1,U2).  
Incomplete DAGs are compatible with all possible pdfs over the node 

set subject to the constraints placed on the system by the missing 
arrows. 

This makes DAGs a very general tool.  
Drawbacks:  1. Interactions and effect heterogeneity are implied, 

       not notated.  
   2. DAGs are primarily designed to assist with  

      nonparametric identification (that’s a good thing) 
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DAGs vs. Algebra 

 
 
 
 

 
 
Note that it’s easy to misread the equality signs in NPSEM. The 

r.h.s. is the causal inputs for the l.h.s.: Intervening in the world to 
change the r.h.s. will change the l.h.s. But intervening on the 
l.h.s. will not change the r.h.s—the future cannot change the 
past. (The symbols of conventional algebra weren’t designed for 
causation—graphs are clearer.)  
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DAGs Represent the Population 

 
 
 
 
 

 
Think of DAGs as population-level representations of 

the data (probability distributions) generated by a 
model 
 => No sampling variability–identification is about bias,  
  not efficiency 
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4. Deriving Testable 
Implications of a DAG 

(d-Separation) 

Moving from Causation to Association 
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Section Overview 
•  DAGs encode causal assumptions about the 

relationships between variables (i.e. a qualitative 
causal model of data generation). 

•  From these causal assumptions, one can deduce all 
associations (marginal and conditional dependences 
and independences) in the system.  

⇒ In this section, we use DAGs to deduce the testable 
implications of causal models.  

⇒ Later, we will use the DAG’s causal assumptions and 
implied associations to determine which observable 
associations are causal, and which ones are not 
causal (spurious), i.e. which associations identify 
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Adages 

1.  “Association does not imply causation.”  
•  True: Just because two variables are associated 

does not mean that one causes the other. 

2.  “No association without causation” 
•  Absent chance (sampling variation) all 

associations are assumed to have a causal origin.  

⇒ #2 is arguably more helpful for our 
purposes 
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Reading Associations Off of DAGs 

When are two variables in a DAG 
associated? 
⇒ We can determine all observable 

associations implied by the assumptions 
encoded in a DAG from just three 
elementary rules.  
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3 Sources of Association Between 
Two Variables A & B 

(1) Direct and indirect  causation 

C 

A 

B 

(2) Common cause confounding 

A 

B 

C 

(3) Conditioning on a common  
      effect (“collider”): Selection 

A  B and A  B|C 

A  B and A  B|C 

 : non-causal (spurious) association.        : conditioning.  

A B C 

A  B and A  B|C 

Elwert@wisc.edu. Version 5/2013 



Conditioning on a Collider 

A 

B 

C A    B: marginally independent 
 

A 

B 

C A    B|C: conditionally dependent 
⇒ The association is biased for the 
     true causal effect. 

Notice: No causal effect of A on B 

True under very mild conditions. 
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Pearl’s Sprinkler Example 
A: It rains 
B: The sprinkler is on 
C: The lawn is wet 
Hollywood Success 
A: Good looks 
B: Acting skills 
C: Fame 
Academic Tenure Example 
A: Productivity 
B: Originality 
C: Tenure 

Conditioning on a Collider 

In all three examples, conditioning on the collider C induces a spurious  
association between two variables, A and B, that don’t cause each other and  
share no common cause, i.e. that are marginally independent in the population.   

A    
  C 

B 

A 
  C 

B 
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Notice: A  B, but A  B. The induced association between A and 

B flips signs across levels of C. (The two conditional 
associations do not cancel out in a logistic regression of Y on A 
and B.) 

Conditioning on a Collider 
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Conditioning on a Collider FAQ 

1.  True under very mild conditions (“faithfulness”: essentially, non-
cancellation; exact cancellation has probability zero) 

2.  Adding arrows doesn’t help—conditioning on the collider would 
still distort the association between its ancestors. 

3.  Conditioning on a collider = Berkson’s Bias/Paradox (1946) 
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Conditioning on a Descendant 
of a Collider 

 
Same problem as outright conditioning on the collider itself 

Intuition: D carries information about C, so conditioning on D 
qualitatively amounts to conditioning on C itself.  
(More precisely, D carries information about C and the information 
about A and B encoded in C.  Information on C alone is not enough. 
E.g., conditioning on E would not induce an association between A and 
B because the information about C contained in E is independent of A 
and B.)  Elwert@wisc.edu. Version 5/2013 



“Conditioning” 
Conditioning may occur in the data analysis stage or in the 

data collection stage.  
There are many ways to “condition” on a variable: 
•  Generally: introducing information about a variable into the 

analysis by some means.  
•  Controlling (e.g. in regression) 
•  Stratification (e.g. crosstabs, survival analysis, log-

linear models) 
•  Subgroup analysis (e.g. restrict analysis to 

employed women) 
•  Sample selection (e.g. only collect data on poor 

whites) 
•  Attrition, censoring, nonresponse (e.g., analyze only 

respondents or survivors) 
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3 Sources of Bias in Estimating the 
Causal Effect of A on B 

Overcontrol: intercepting 
the causal pathway 

 
Confounding bias: failure to 

condition on a common 
cause 

 
Endogenous selection bias: 

mistaken conditioning on 
a common effect. 

C 

A 

B 

A 
C 

B 
All three constitute analytic mistakes (Elwert 2013). 

A B C 
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Bi-headed Arrows and Boxes 
•  Unless otherwise stated, we reserve bi-headed arrows for 

spurious association induced by conditioning on a collider—it 
acts like a real path (that exists only depending on            
what we condition on).  (Note that this is just a  

     handy shortcut for this workshop.) 
 
•  In the literature, bi-headed arrows are also used to       

indicate confounding by an unobserved variable. In this    
workshop, I won’t use that convention unless noted.  

 
•  We never use bi-headed arrows to indicate confounding when 

the confounding variable is explicitly drawn. 
 
•  Boxes around nodes indicate conditioning. 
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Putting It All Together: 
d-Separation 
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DAGs from the Elements 
 
 
 
 
All DAGs can be constructed from 
just three elements—causal 
chains, forks, and inverted forks—
the very elements that give rise to 
all associations via causation, 
confounding and endogenous 
selection.   

A B 

C 

A 

B 

A 

B 

C 
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Paths Transmit Association 

All associations are transmitted along paths. 
But not all paths transmit association!  

(Recall: A path is a non-intersecting sequence of adjacent 
arrows, regardless of the direction of the arrows; no path 
can pass through a given variable more than once.) 
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Causal and Non-Causal Paths 

We distinguish two types of paths: 
1.  Causal Path: A path in which all arrows point away from the 

treatment, T, to the outcome, Y. 
 Causal paths represent the causal effect of a treatment on the 
 outcome. They give rise to the association of interest.  
 The total causal effect of a treatment on an outcome consists of all 
 causal paths connecting them.  

2.  Non-causal path: A path connecting T and Y in which at least one 
arrow points against the flow of time. 

 Non-causal paths represent potential spurious sources of 
 association between treatment and outcome.  

Elwert@wisc.edu. Version 5/2013 



Exercise: Paths 

•  List all causal paths from T to Y 
•  List all non-causal paths between T and Y 

•  List all causal paths from X to Y 
•  List all non-causal paths between X and Y 
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d-Separation 
•  The concept of d-separation (“directional 

separation;” Pearl 1988) subsumes the three 
structural sources of association and gives 
them a name.   

•  d-separation determines which paths transmit 
association, and which ones don’t. 

•  We’ll first state the definition formally and 
then explain it more accessibly.  
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d-Separation 
•  Definition: A path P is said to be “d-separated” (or “blocked”) by 

a conditioning set of nodes {Z} iff 
1. P contains a chain IàMàJ or a fork IßMàJ such that the 

middle node M is in {Z}, or 
2. P contains a collider IàMßJ such that neither the middle 

node M, nor any descendant of M, is in {Z}. 
•  Definition: A path P is said to be “d-connected” (or “unblocked” 

or “open”) by a conditioning set of nodes {Z} iff it is not d-
separated. 

•  Note: {Z} may be the empty set { }. 
 
(See Pearl 2009) 
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Probabilistic Implications 
Theorem: If two sets of variables X and Y are d-
separated by Z along all paths in a DAG, then X is 
statistically independent of Y conditional on Z in every 
distribution compatible with the DAG. 
Conversely, if X and Y are not d-separated by Z along 
all paths in the DAG, then X and Y are dependent 
conditional on Z in at least one distribution compatible 
with the DAG. 

 (Verma and Pearl 1988) 
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d-Separation:  
Blocking and the “Flow” of Association 
Here’s the same phrased more accessibly:  
•  “Blocked” (d-separated) paths don’t transmit 

association.  
•  “Unblocked” (d-connected) paths may transmit 

association. 
•  Three blocking criteria (key!!) 

1.  Conditioning on a non-collider blocks a path 
2.  Conditioning on a collider, or a descendent of a 

collider, unblocks a path 
3.  Not conditioning on a collider leaves a path 

“naturally” blocked.  
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Probabilistic Implications 

Two variables that are d-separated along all 
paths given {Z} are conditionally independent 
given {Z}.  
Conversely, two variables that are not d-
separated along all paths given {Z} are 
potentially dependent given {Z}. 
 
Note: “Conditioning” on Z here refers to perfect stratification on Z. 
Conditioning on some parsimonious function of a non-collider Z 
(e.g. in regression) may not fully block a path and let some residual 
association pass.  
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Examples 1 (d-separation) 
•  Which conditioning sets {Z} d-separate X and Y? List 

all permissible conditioning sets (including, if 
appropriate the empty set, { }). All U are unobserved. 

1. 

2. 

3. 
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Testable Implications  
•  One important use of DAGs is that they support the derivation of 

all testable (structural) implications of a model.  
–  Since we know that causal inference requires causal 

assumptions, it’s important to test one’s assumptions 
empirically as far as possible.  

•  Using the d-separation/blocking criterion, we can read all 
implied marginal and conditional dependences and 
independences off the DAG. 

•  The implications involving only observed variables are testable! 
–  Note: independences are considered a stronger test of a 

model because independences are implied under weaker 
conditions. 
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Testable Implications 
These are the associational implications of the causal assumptions 
embedded in the DAG (Elwert 2013) (assuming “strong 
faithfulness”). The relations involving only observed variables are 
the testable implications of the model. 

57 
 

(a)     (b) 

A     A 
 
 
  C     C 
 
 
B     B 
          
 
Figure 4. (a) A and B are conditionally independent given C. The conditional association 
identifies the causal effect of A on B. (b) A and B are associated due to conditioning on a 
common outcome (collider). The conditional association between A and B given C does 
not identify the causal effect of A on B (endogenous selection bias). 
 

 
A 
 
 
  C  D 
 
 
B 

 
Figure 5. Conditioning on a descendant, D, of a collider also induces a spurious 
association between A and B. 
 
 
    U 
   
 
X  Z1  Z2  Z3  Y 
 
 
Figure 6. X and Y can be d-separated and d-connected by conditioning on various sets of 

observed variables. U is unobserved. 
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Limitations of Model Testing 
•  Even under ideal conditions (infinite sample size, no 

measurement error), one can never test all assumptions in a 
model.  

1.  Recall that we must assume that the DAG is “causal,” i.e. that it 
includes all common causes. One can never test out the 
absence of all possible common causes, known and unknown, 
observed and unobserved.  

2.  Some models that are causally distinct (different DAGs) are 
“observationally equivalent,” i.e. they have identical 
observational implications, e.g. (if U is unobserved), 

(Observational equivalence is a big topic in (so far largely theoretical) 
work dealing with the recovery of latent causal structures from 
observational data.)  Elwert@wisc.edu. Version 5/2013 



Examples 2: Testable Implications 
•  List the testable independences implied by these DAGs. 
•  Can we observationally distinguish between DAGs 1, 2, and 3; 

or between DAGs 4 and 5? 

C 

A 

B 

A 

B 

C 

A B C 

C 

A 

B 

A 

B 

C 

1. 

2. 

3. 

4. 

5. 
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5. Graphical Identification Criteria 
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Section Overview 

•  Graphical identification criteria 
•  Adjustment criterion 
•  Backdoor criterion 
•  Some sufficient shortcuts 
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Identification 
•  The causal effect of T on Y is said to be “identified” if 

it is possible, with ideal data (infinite sample size, 
perfect measurement), to purge all non-causal 
association from the observed association between T 
and Y such that only the causal association remains.  

•  Question: How can one tell with DAGs whether a total 
causal effect is nonparametrically identified? (There 
are many answers to this question—stay tuned!) 
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Graphical Identification Criteria 

•  Pearl and others have discovered a great 
number of graphical identification criteria.  

•  A graphical identification criterion is a set of 
rules that use DAGs (“graphs”) to detect 
identifiability in a class of models represented 
by a DAG.  
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Graphical Identification Criteria 
•  Most graphical identification criteria give sufficient 

conditions (i.e., “if this criterion is met, then the model 
is nonparametrically identifiable”). Note that a model 
may fail a given sufficient criterion and still be 
identified by some other criterion. 

•  Only Pearl’s (1995) “do-calculus” is a complete 
identification criterion (i.e., can tell for all models 
whether or not they are nonparametrically identified).  

•  Here, we focus on arguably the most important of 
sufficient criterion: the adjustment criterion (which 
generalizes Pearl’s famous backdoor criterion) 
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Adjustment Criterion 
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Adjustment Criterion (Shpitser et al. 2010) 

•  Recall that the ACE of T on Y is said to be “identified” if 
it is possible, with ideal data to purge all non-causal 
association from the observed association between T 
and Y such that only the causal association remains.  

•  One way to interpret this with DAGs, is to note that the 
total causal effect of T on Y is identifiable if one can 
condition on (“adjust for”) a set of variables {Z} that  
1.  blocks all non-causal paths between T and Y, 
2.  without blocking any causal paths between T and Y. 

•  (Equivalently: d-separate T and Y along all noncausal 
paths while leaving all causal paths d-connected.) 
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Adjustment Criterion (Shpitser et al. 2010) 

•  Formally: 
•  A set of variables {Z} (which may be empty) fulfills the 

adjustment criterion relative to the total causal effect 
of T on Y iff  
1.  {Z} blocks all noncausal paths from T to Y, and 
2.  No element of {Z} is on a causal path from T to Y 

or descends from a variable on a causal path 
from T to Y. 
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Examples 3 (identification) 
•  Can we identify the ACE of X on Y by conditioning on 

some set {Z} (which may be empty)? 

U is unobserved 
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Examples 4 
•  Can we identify the ACE of T on Y by conditioning? 
•  Can we identify the ACE of X on Y by conditioning? 

U is unobserved 

Elwert@wisc.edu. Version 5/2013 



Examples 5 
•  Why does conditioning on {X, D} violate the 

adjustment criterion for the causal effect of T on Y? 

U is unobserved 
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The Adjustment Criterion is 
Complete 

•  The adjustment criterion is “complete,” meaning 
that it detects all, and only those, sets of variables 
{Z} that identify the effect of T on Y by simply 
conditioning on {Z}. (Shpitser et al. 2010) 
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DAGs, Ignorability, Counterfactuals 
Shpitser, VanderWeele, and Robins (2010) prove: 
  
Iff {Z} satisfies the adjustment criterion for the effect of T on Y, 

then T is ignorable given {Z}, 
    {YT}⊥T | Z.  

 
Question: Which variables should or can one control for to get 

ignorability?  
Answer: The variables that satisfy the adjustment criterion 

relative to the DAG that generated the data!  
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DAGs, Ignorability, Counterfactuals 

 
“Reducing ignorability conditions to [a graphical 

criterion] replaces judgments about 
counterfactual dependencies with ordinary 
judgments about cause-effect 
relationships” (Pearl 2009:80).  
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Excursus: Nonparametric estimation 
If the adjustment criterion is met for the total causal effect of T 

on Y given Z then it implies a non-parametric estimator: 
 
The distribution of the counterfactuals YT, P(YT), is given by 

  P(YT) = ∑ZP(Y | T, Z) P(Z). 
The total causal effect of T on C for a binary Y is non-

parametrically estimated (with discrete variables) as: 
Pr(Y1=1) – Pr(Y0=1)  = ∑zPr(Y=1 | T=1, Z=z) P(Z=z) – 

                      ∑zPr(Y=1 | T=0, Z=z) P(Z=z). 
Unfortunately, we rarely have datasets large enough to implement 

this estimator (because Z tends to be high dimensional).  (For 
continuous variables, replace sums with integrals.) 

The mechanics are explained in Pearl (2009) Ch1 & Ch3. 
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Backdoor Criterion 
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Adjustment Criterion vs. 
Backdoor Criterion 

•  The adjustment criterion gives all identifying conditioning sets. 
But it sometimes includes variables in the conditioning set that, 
though valid, are not necessary.  
–  E.g., in this DAG, conditioning on Z is permissible by the 

adjustment criterion for identifying the effect of T on Y, but it is not 
necessary:  

  ZßTàY 
–  In fact, it is never necessary to adjust for a descendant of 

treatment, and often harmful. 
•  The backdoor criterion is a narrower version of the adjustment 

criterion that omits some unnecessary conditioning sets.  
•  The backdoor criterion is easily the most famous graphical 

identification criterion, and it underlies all regression-based 
identification for observational data.  
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Backdoor Criterion (Pearl 1995) 
•  Definition: A set of variables {Z} satisfies the 

backdoor criterion relative to an ordered pair of 
variables (T,Y) in a DAG if: 

1.  no node in {Z} is a descendant of T, and 
2.  {Z} blocks (d-separates) every path between T and Y 

that contain an arrow into T (so-called “backdoor 
paths”). 

•  Theorem: The total causal effect of T on Y is non-
parametrically identifiable given {Z} if {Z} meets the 
backdoor criterion. 
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Backdoor Criterion (With Comments) 
Claim: The total causal effect of T on Y is non-parametrically 
identifiable given {Z} if {Z} meets the backdoor criterion..  
•  We need to block all non-causal paths between T and Y.  

–  Paths starting “Tà” are either causal paths of interest or 
naturally blocked non-causal paths. Therefore, we never 
need to condition on a descendant of T. 

–  Backdoor Paths starting “àT”, however, are always 
noncausal, and they may be open. Thus, we may need to 
block them. 

•  What should be in the conditioning set {Z}? 
–  A (possibly empty) set of variables that blocks all backdoor 

paths. 
•  What should not be in the conditioning set {Z}? 

–  Any descendant of T because conditioning on any variable 
downstream from T is either unnecessary or harmful (by 
blocking a causal path or unblocking a non-causal path). 
[Exercise: verify this against our past examples] Elwert@wisc.edu. Version 5/2013 
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Backdoor Identification In Practice 
Here’s an algorithm for the backdoor criterion (less cumbersome 

algorithms exist, but this one is good for practice). 
To check identification: 

1.  List all backdoor paths connecting T and Y.  
2.  Check whether all backdoor paths are naturally 

(unconditionally) blocked. [Yes: identified. No: move on.] 
3.  Check whether the unblocked paths can be blocked by 

conditioning on non-descendants of T. [Yes: move on. No: 
not identified.] 

4.  Check whether Step 3 unblocked any non-causal paths 
and then check if those can be blocked. [Yes: move on. 
No: not identified.] 

5.  Check whether any of the variables that must be 
conditioning on to block backdoor paths are on the causal 
pathway from T to Y or are descendants of a variable on 
the causal pathway. [Yes: Not identified. No: identified.] 

Elwert@wisc.edu. Version 5/2013 



Instructions 
Instructions for all examples below: 
1.  Assume that the DAG is causal  
2.  Check identification via the adjustment criterion (or, 

equivalently, the backdoor criterion) 
3.  All variables U are unobserved.  All other variables are 

observed. 
4.  If an effect is identifiable, write down a permissible 

conditioning set. 
5.  If an effect is not identifiable, list the non-causal path(s) that 

cannot be blocked.  
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Example 6 

Is the causal effect of T on Y identifiable by adjustment? 
   
   
        A 
     U1     T     B   Y 
     E      U2 

 
Note: {U} are unobserved, all other observed. 
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Example 7 

Is the causal effect of T on Y identifiable by adjustment? 
   
   
        U3 
     U1     T     B   Y 
     E      U2 

 
Note: {U} are unobserved, all other observed. 
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Example 8 

Is the causal effect of T on Y identifiable by adjustment? 
   
   
        A 
     U1     T     B   Y 
     E      U2 

 
Note: {U} are unobserved, all other observed. 
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Example 9 

Is the causal effect of T on Y identifiable by adjustment? 
 
 
 
 
 
 
 
 
Note: All but U are unobserved. 
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Some observations 
•  Note that more than one set {Z} may satisfy the 

adjustment (or backdoor) criterion.  
•  We need not necessarily control for all direct causes 

of T, nor for all direct causes of Y in order to identify 
the ACE of T on Y. (This is a fairly deep insight—
think about it.)   

•  Please note that I’ve assumed a single treatment and 
a single outcome variable. The adjustment and 
backdoor criteria generalize to multiple treatment and 
outcome variables (see Pearl 2009 for glorious detail, 
see Elwert 2013 for an introduction). 
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If the DAG is Not Fully Known 
•  Applying the adjustment criterion is difficult if the DAG 

isn’t fully known.  
•  Conventional practice suggests controlling for all pre-

treatment variables (“kitchen sink” approach).  
•  As we will see in the next unit (on endogenous 

selection), controlling for the pre-treatment kitchen 
sink is dangerous.  

•  Sufficient and safe recommendation: If there is a set 
of observed pre-treatment variables that meet the 
adjustment criterion (i.e., if we can assume 
conditional ignorability), then controlling only for those 
observed variables that either cause treatment or 
outcome (directly or indirectly) is sufficient 
(VanderWeele and Shpitser 2011). 
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Helpful Weaker Criteria 
•  The backdoor and adjustment criteria can be somewhat 

unwieldy in practice. Weaker sufficient criteria (that apply to 
smaller classes of models) exist.  Here are some: 

•  “Parent criterion”: If all parents of T are observed (no arrows 
UàT), then the effect of T on Y is identifiable by conditioning on 
its parents. 

•  “Strong bow-pattern criterion”: If some unobserved variable has 
arrows into T and into a child of T on a causal pathway to Y then 
the effect of T on Y is not nonparametrically identifiable by any 
criterion.  

•  “Weak bow-pattern criterion”: If some unobserved variable has 
arrows into T and any descendant of T on the causal pathway to 
Y then the effect of T on Y is not nonparametrically identifiable 
by the adjustment criterion. 
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Summary 
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•  DAGs graphically encode data-
generating non-parametric structural 
equation models. 

•  DAGs encode the analyst’s qualitative 
causal assumptions. 
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•  Three simple rules (causation, 
confounding, endogenous selection) 
translate between causation and 
association (d-separation). 

•  The d-separation criterion detects the 
testable implications in the model.  
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•  The adjustment criterion (and the 
backdoor criterion) give the conditioning 
set(s) of variables that permit the non-
parametric identification of a total causal 
effect by simple conditioning.  

•  This is the strategy implicitly invoked 
when we give a causal interpretation to 
matching or regression models. 
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•  DAGs are compatible with the potential 
outcomes (counterfactual) framework of 
causality. 

•  The adjustment criterion reveals which 
variables give (conditional) ignorability.  
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•  DAGs offer a rigorous yet intuitive and 
entirely algebra-free approach to really 
complicated causal inference 
challenges 

•  Consult Pearl’s book Causality (2009) 
for more results, details, references, 
and proofs.  
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Cautionary Remark 
•  In observational social and medical science, we often lack 

theory to credibly delete arrows from a DAG (Greenland 2010). 
This is a real problem since it’s the missing arrows that enable 
identification. 

•  In this unit, we have reviewed the basic tools required to derive 
positive identification results conditional on the assumption that 
the DAG is true. You may question whether the exercises 
(resting on sly exclusion restrictions) are particularly realistic.  
Fortunately, we can also use DAGs for another purpose: 
deriving negative identification results. 

•  I find that the practical value of DAGs often lies in revealing 
which identification strategies do not work.  To show that 
something does not work given a theory (DAG), you needn’t 
worry so much about strong assumptions—if it doesn’t work in a 
sparse DAG, it won’t work in a DAG with more arrows (though it 
may work with additional nodes).  We’ll see some scary 
examples in the next unit.  
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The End 
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More Exercises 
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Example 10 

Can we identify the causal effect of D1 on Y by 
adjustment? What about D2 on Y? 

 
 
 
 
Note: {U} are unobserved, all other observed. 
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Example 11 

X1 

X4 X3 

T 

X5 

X6 

X2 

Y 

Which variables Xj need to be in {Z} to satisfy the backdoor  
Criterion for the causal effect of T on Y?  

A canonic example from Pearl (1995) 
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Example 12 
Why would conditioning on B ruin identification of the causal effect 

of T on Y? 
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Example 13 
Can we identify the effect of  T on Y by adjustment? 
 
 
 
 
 
 
 
 
Bi-headed arrows here represent confounding by unobserved 

variables. (Pearl, 2009, p.345).  
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Example 14 
Can we identify the effect of  T on Y by adjustment? 
 
 
 
 
 
 
 
 
Note: Bi-headed arrows here represent confounding by unobserved 

variables. 
(Pearl, 2009, p.90).  
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Example 15 
Can you test the Null of no effect of T on Y? 
 
 
 
 
 
 
Bi-headed arrows represent confounding by unobserved variables. 
 
Tip: First draw the DAG representing the Null.  Then check if it 

implies an independence that would vanish if the Null is false.  
 
(This tricky-yet-beautiful example is due to Brito [2010].)  
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