Chapter 7: Solow Model I¹

1 The Solow-Swan Model

1.1 Per-worker Quantities

Cobb-Douglas production function: $Y = F(K, L) = K^{\alpha}L^{1-\alpha}$ Output per worker: $y \equiv \frac{Y}{L}$; capital per worker: $k \equiv \frac{K}{L}$; consumption per worker: $c \equiv \frac{C}{L}$; investment per worker: $i \equiv \frac{I}{L}$.

$$Y = K^{\alpha}L^{1-\alpha} \implies \frac{Y}{L} = \left(\frac{K}{L}\right)^{\alpha} \implies y = k^{\alpha}$$
$$C = (1-s)Y \implies \frac{C}{L} = (1-s)\frac{Y}{L} \implies c = (1-s)y$$
$$I = sY \implies \frac{I}{L} = s\frac{Y}{L} \implies i = sy$$

1.2 Assumptions

- 1. No technological progress: $A = \overline{A}$
- 2. No population/labor force growth: $L = \overline{L}$
- 3. Exogenous, constant savings rate: $s = \bar{s}$
- 4. Exogenous, constant depreciation rate: $\delta = \bar{\delta}$
- 5. No government sector: G = T = 0
- 6. No international sector: X = M = 0

$$G = NX = 0 \ \Rightarrow \ Y = C + I$$

1.3 Law of Motion for the Capital Stock

"Capital gain": investment, $i = sf(k) = sk^{\alpha}$ "Capital loss": depreciated capital, δk Law of motion (discrete time): $\Delta k = i - \delta k = sk^{\alpha} - \delta k$ $i < \delta k \Rightarrow \Delta k < 0$ $i = \delta k \Rightarrow \Delta k = 0$ $i > \delta k \Rightarrow \Delta k > 0$

 $^{^{1}\}mathrm{Econ}$ 302, Week 9, 10/30/2009; UW-Madison. TAs Lihan Liu and Scott Swisher.

1.4 Steady-state (Equilibrium)

<u>Steady-state in the Solow model</u>: in long-run equilibrium, capital per worker (the capital-labor ratio) is constant.

<u>Steady-state condition</u>: the following equation defines a steady-state in the Solow model. General case:

$$sf(k_{ss}) = \delta k_{ss} \Rightarrow \frac{k_{ss}}{f(k_{ss})} = \frac{s}{\delta}$$
 (1)

Cobb-Douglas case:

$$sk_{ss}^{\alpha} = \delta k_{ss} \Rightarrow k_{ss} = \left(\frac{s}{\delta}\right)^{\frac{1}{1-\alpha}} \tag{2}$$

If this steady-state condition holds, the flows in to (investment) and out of (depreciation) k are constant.

$$k < k_{ss} \Rightarrow sf(k) > \delta k \Rightarrow \Delta k > 0$$
$$k = k_{ss} \Rightarrow sf(k) = \delta k \Rightarrow \Delta k = 0$$
$$k > k_{ss} \Rightarrow sf(k) < \delta k \Rightarrow \Delta k < 0$$

Steady-state quantities associated with k_{ss} : y_{ss} , c_{ss} , i_{ss} ($k^* : y^*, c^*, i^*$).

1.5 Policy and the Golden Rule k_{qr}

The Solow model predicts that countries with higher rates of savings and investment will have higher levels of capital and output/income per worker in the long-run, *ceteris paribus*. How to increase k_{ss} , and therefore y_{ss} ?

- 1. Increase s: $s \uparrow \Rightarrow k_{ss} \uparrow \Rightarrow y_{ss} \uparrow$
- 2. Decrease $\delta: \delta \downarrow \Rightarrow k_{ss} \uparrow \Rightarrow y_{ss} \uparrow$

<u>"Golden rule" capital-labor ratio</u>: The level of capital per worker k_{gr} that maximizes $c_{ss} = f(k) - \delta k$. First-order condition with respect to k:

$$\frac{\partial y}{\partial k} = \delta \implies f'(k_{gr}) = \alpha k_{gr}^{\alpha - 1} = \delta$$
$$k_{gr}^{1 - \alpha} = \frac{\alpha}{\delta} \implies k_{gr} = (\frac{\alpha}{\delta})^{\frac{1}{1 - \alpha}}$$

2 Exercise: Solow Model

Consider the Solow growth model without population growth or technological change. The parameters of the model are given by s = 0.2 (savings rate) and $\delta = 0.05$ (depreciation rate). Let k denote capital per worker; y output per worker; c consumption per worker; i investment per worker.

- a) Rewrite production function $Y = K^{\frac{1}{3}}L^{\frac{2}{3}}$ in per-worker terms.
- b) Find the steady-state level of the capital stock, k_{ss} .
- c) What is the "golden rule" level of k for this economy? Recall that the golden rule level of the capital stock k_{qr} maximizes consumption per worker in steady-state. Report your answer to two decimal places.
- d) Let's say that a benevolent social planner wishes to obtain $k = k_{gr}$ in steady-state. What is the associated savings rate s_{gr} that must be imposed by the social planner to support k_{gr} ?
- e) Compare your result in the previous part with the assumed savings rate s. To obtain k_{gr} , do citizens need to save more or less?
- f) Plot the following on a single graph: y = f(k), δk , sf(k), and $s_{gr}f(k)$. Does the savings curve pivot up or down, relative to its initial position, when the planner's s_{gr} is implemented?
- g) Discuss two to three economic policies that could help the social planner implement s_{gr} in a real-world situation.