Problem Set 4 Econometrics 742 Chris Taber Due: Wed. Feb. 29

Problem 1. Consider a model in which

$$Y_i = \beta_0 + \beta_1 T_i + \mu_i + \xi_i$$

Assume that

- ξ_i is mean 0 and independent of everything else in the model
- μ_i is 0 with probability 0.5 and 1 with probability 0.5.
- There is a further variable X_i which is

$$X_i = \frac{1}{2}\mu_i + \nu_i$$

where ν_i is independent of everything else in the model and uniformly distributed on [0, 1]

- T_i is binary and determined according to the following rule
 - When $X_i < x^*$ and $\mu_i = 0$ then $Pr(T_i = 1) = 0$
 - When $X_i \ge x^*$ and $\mu_i = 0$ then $Pr(T_i = 1) = p_0$
 - When $X_i < x^*$ and $\mu_i = 1$ then $Pr(T_i = 1) = 0$
 - When $X_i \ge x^*$ and $\mu_i = 1$ then $Pr(T_i = 1) = p_1$
- The econometricial observes X_i , T_i , and Y_i but not the other variables.
- a) Suppose you run a regression of Y_i onto T_i . What is the plim of $\hat{\beta}_1$ (where $\hat{\beta}_1$ is the OLS estimator of the coefficient on T_i)?
- b) Suggest a methodology to get a consistent estimate of β_1 and sketch how identification works.
- c) Now suppose the type 1 people (i.e. the people for whom $\mu_i = 1$) can manipulate their X_i . In particular they can change their X_i to $X_i + \delta$ at some cost, and anyone with $X_i < x^* < X_i + \delta$ pay this cost and manipulate there X_i . How does this affect your estimates from you estimation method above?
- d) Now suppose they can not manipulate it exactly but in reality

$$X_i = Z_i + \omega_i$$

and they can manipulate Z_i but not ω_i where ω_i is independent of everything else and uniform. Sketch why this form of manipulation is not a problem. For simplicity (if you want) assume that Z_i only takes on two values, but that the distribution of Z_i depends on μ_i . **Problem 2.** Take a real data set with a real X and a real Y that are related somehow. Construct a placebo treatment T_i by choosing some rule for so that $T_i = 1$ when $X_i > x^*$ for some x^* . Now try estimating the model

$$Y_i = \beta_0 + \alpha T_i + u_i$$

by regression discontinuity in several different ways (i.e. kernel regression, local linear regression, using polynomials etc.) Compare the results (given that you should get an effect of zero)

Problem 3. Construct a dummy data set as I did in class in the rd.do file (which is on my website). Modify the simulated model and the estimation method for a fuzzy design rather than a sharp design and show what you get.