Problem Set 1 Econometrics 742 Chris Taber Due: Wed. Feb. 8

Problem 1. Take any data set you would like and verify the two part regression results (if you google something like econometric data sets there are a lot to choose from). That is think about a multiple regression which you can separate the independent variables into to groups.

$$Y_i = X'_{1i}\beta_1 + X'_{2i}\beta_2 + u_i$$

Verify that you get exactly the same results for $\hat{\beta}_1$ doing the two things:

- **a)** A big multiple regression of Y_i on (X_{1i}, X_{2i}) .
- **b)** Two part regression where you first run Y_i and X_{1i} on X_{2i} and take residuals and then run the residuals from the Y regression on the residuals for the X regressions.
- c) Now suppose that rather than the first set you just regressed Y_i on \widetilde{X}_{1i} . (where Y_i is the original data and \widetilde{X}_{1i} is the residuals). Does that give you the same result? Why or why not?
- Problem 2. Again with any data set you would like and with any software you would like think about the exactly identified IV problem. I would like you to produce the IV estimate in four different ways and show they are numerically equivalent (I don't care whether the instrument is really uncorrelated with the residua):
 - a) IV, that is $(Z'X)^{-1}Z'Y$ (you can use ivregress with the gmm option in stata)
 - b) Two staged least squares. That is first run the treatment variable on the instrument and the X's, form the predicted value, then run a regression of the outcome on the predicted value and the other X's.
 - c) Ratio of reduced form coefficients. Run the two reduced forms and take the ratio of the coefficients on the Z.
 - d) Literally use

$$\widehat{\alpha} = \frac{scov(\widetilde{Z}, \widetilde{Y})}{svar(\widetilde{Z}, \widetilde{T})}$$

where the tildes mean residuals after regressing on X, scov means sample covariance, and svar means sample variance.

- **Problem 3.** Verify the measurment error result. That is I want you to use your statistical package to contruct
 - T_i to have whatever distribution you want (a uniform might be easy)
 - •

$$Y_i = \beta_0 + \beta_1 T_i + u_i$$

where u_i is $N(0, \sigma_u^2)$. You can choose these parameters to be anything you want.

$$\tau_{1i} = T_i + \xi_i$$

where ξ_i is $N(0, \sigma_{\xi}^2)$

$$\tau_{2i} = T_i + \eta_i$$

where η_i is $N(0, \sigma_{\eta}^2)$

Show that

- a) If you run a regression of Y_i on T_i you get something close to β_1
- **b)** If you run a regression of Y_i on τ_{1i} you get something close to

$$\beta_1 \frac{Var(T_i)}{Var(T_i) + \sigma_{\xi}^2}$$

c) Doing IV using τ_{2i} as an instrument for τ_{1i} gives an estimate close to β_1