
Instrumental Variables

Department of Economics
University of Wisconsin-Madison

January 23, 2012



Treatment Effects

Throughout my part of the course we will focus on the
“Treatment Effect Model”

For now take that to be

Yi = αTi + X ′i β + ui

α measures the causal effect of Ti on Yi .

We don’t want to do OLS because we are worried that Ti is not
randomly assigned, that is that Ti and ui are correlated.

There are a number of different reasons that might be true-I
think the main thing that we are worried about in the treatment
effects literature is omitted variables.

In this sub-course we are going to think about a lot of different
ways of dealing with this potential problem and estimating α.



Instrumental Variables

Lets start with the instrumental variables way of thinking of
things

I basically want to think about three completely different
approaches for identifying α

The first is the GMM approach (the second two will come from
simultaneous equations)



To justify OLS we would need

E (Tiui) = 0
E(Xiui) = 0

The focus of IV is to try to relax the first assumption

(There is much less concern about the second)



Lets suppose that we have an instrument Zi for which

E (Ziui) = 0

We also will stick with the exactly identified case (1 dimensional
Zi )

Define

Z ∗i =

[
Zi
Xi

]
,Wi =

[
Ti
Xi

]
,B =

[
α
β

]
Then we know

E
[
Z ∗i
(
Yi −W ′

i B
)]

= 0



Turning this into a GMM problem we get

0 =
1
N

N∑
i=1

Z ∗i
(

Yi −W ′
i B̂
)

=
1
N

N∑
i=1

Z ∗i Yi −

(
1
N

N∑
i=1

Z ∗i W ′
i

)
B̂

which we can solve as

B̂ =

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1
1
N

N∑
i=1

Z ∗i Yi

And that is IV.



To see it is consistent note that

B̂ =

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1
1
N

N∑
i=1

Z ∗i Yi

=

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1
1
N

N∑
i=1

Z ∗i
(
W ′

i B + ui
)

=

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1(
1
N

N∑
i=1

Z ∗i W ′
i

)
B

+

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1
1
N

N∑
i=1

Z ∗i ui

=B +

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1
1
N

N∑
i=1

Z ∗i ui

≈B



since
1
N

N∑
i=1

Z ∗i ui ≈ 0

I take the notation ≈ to mean that the difference between the
two objects converges in probability to zero.



Furthermore we get standard errors from

√
N
(

B̂ − B
)
≈

(
1
N

N∑
i=1

Z ∗i W ′
i

)−1 [
1√
N

N∑
i=1

Z ∗i ui

]

Since under standard conditions:

1√
N

N∑
i=1

Z ∗i ui ≈ N(0,E(u2
i Z ∗i Z ∗

′

i )

so
√

N
(

B̂ − B
)
≈ N

(
0,E(Z ∗i W ′

i )−1E(u2
i Z ∗i Z ∗

′

i )E(WiZ ∗
′

i )−1
)

And that is the formal econometrics, but lets get under the hood



Partitioned Regression

This is a really useful trick that I want to review-we will use it
quite a few times in the next few weeks

Think about the model (in large matrix notation)

Y = X1β1 + X2β2 + u

We will define
M2 ≡ I − X2

(
X ′2X2

)−1 X
′

2.

Two facts about M2



M2 is idempotent

M2M2=
(

I − X2
(
X ′2X2

)−1 X
′

2

)(
I − X2

(
X ′2X2

)−1 X
′

2

)
=I − 2X2

(
X ′2X2

)−1 X
′

2 + X2
(
X ′2X2

)−1 X
′

2X2
(
X ′2X2

)−1 X
′

2

=I − X2
(
X ′2X2

)−1 X
′

2

=M2



Residuals from Regression

For any potential dependent variable (say Y ), M2Y is the
residuals I would get if I regressed Y on X2

To see that let those regressors be ĝ and generically let W̃ be
those residuals so that

W̃ ≡W − X2ĝ

=W − X2
(
X ′2X2

)−1 X ′2W

=
[
I − X2

(
X ′2X2

)−1 X
′

2

]
W

=M2W .



If I think of the GMM moment equations for least squares I get
the “two equations”

0 = X ′1
(

Y − X1β̂1 − X2β̂2

)
0 = X ′2

(
Y − X1β̂1 − X2β̂2

)
The second can be solved as

β̂2 =
(
X ′2X2

)−1 X ′2
(

Y − X1β̂1

)
Now plug this into the first

0 = X ′1
(

Y − X1β̂1 − X2β̂2

)
= X ′1

(
Y − X1β̂1 − X2

(
X ′2X2

)−1 X ′2
(

Y − X1β̂1

))
= X ′1M2Y − X ′1M2X1β̂1



Or

β̂1 =
(
X ′1M2X1

)−1 X ′1M2Y

=
(

X̃ ′1X̃1

)−1
X̃ ′Ỹ

That is if I

1 Run a regression of X1 on X2 and form its residuals X̃1

2 Run a regression of Y on X2 and form its residuals Ỹ
3 Run a regression of Ỹ on X̃1

This gives me exactly the same result as if I had run the full
regression of Y on X1 and X2



It turns out the same idea works for IV.

Put everything we had before into large Matrix notation and we
can write GMM as:

0 = Z ′
(

Y − T α̂− X β̂
)

0 = X ′
(

Y − T α̂− X β̂
)

The second can be solved as

β̂ =
(
X ′X

)−1 X ′ (Y − T α̂)

Now plug this into the first

0 = Z ′
(

Y − T α̂− X β̂
)

= Z ′
(

Y − T α̂− X
(
X ′X

)−1 X ′ (Y − T α̂)
)

= Z ′MX Y − Z ′MX T α̂



so

α̂ =
Z̃ ′Ỹ

Z̃ ′T̃

≈ cov(Z̃i , Ỹi)

cov(Z̃i , T̃i)



Next note that

Ỹ =MxY
=αMxT + MxXβ + Mxu

=αT̃ + ũ

so

α̂ ≈ cov(Z̃i , Ỹi)

cov(Z̃i , T̃i)

≈ cov(Z̃i , αT̃i + ũi)

cov(Z̃i , T̃i)

= α +
cov(Z̃i , ũi)

cov(Z̃i , T̃i)



This formula is helpful. In order for the bias to be small you
want

cov(Z̃i , ũi) to be small

cov(Z̃i , T̃i) to be large

You can also see that there is some tradeoff between them.

If your instrument is not very powerful, a little bit of correlation
in cov(Z̃i , ũi) could lead to a large bias.



Simultaneous equations

A second way to see IV is from the simultaneous equations
framework

Yi = αTi + X ′i β + ui

Ti = ρYi + X ′i γ + Ziδ + νi

Thee are called the “structural equations”

Note the difference between Xi and Zi in that we restrict what
can affect what.

We could also have stuff that affects Yi but not not Ti but lets
not worry about that (some of the γ coefficients could be zero)



We assume that

E(ui | Xi ,Zi) = 0
E(vi | Xi ,Zi) = 0

but notice that almost for sure Ti is correlated with ui because
ui influences Ti through Yi



It is useful to calculate the “reduced form” for Ti , namely

Ti = ρYi + X ′i γ + Ziδ + νi

= ρ
[
αTi + X ′i β + ui

]
+ X ′i γ + Ziδ + νi

= ραTi + X ′i [ρβ + γ] + Z ′i δ + (ρui + νi)

= X ′i
ρβ + γ

1− ρα
+ Z ′i

δ

1− ρα
+
ρui + νi

1− ρα
= X ′i β

∗
2 + Z ′i δ

∗
2 + ν∗i

where

β∗2 =
ρβ + γ

1− ρα

δ∗2 =
δ

1− ρα

Note that E(νi | Xi ,Zi) = 0, so one can identify β∗2 and δ∗2.



This is called the “reduced form” equation for Ti

Note that the parameters here are not the fundamental
structural parameters themselves, but the are a known function
of these parameters



This model is identified if we have “exclusion restrictions”

That is we can identify α as long as we have some Zi

I want to show this two different ways



Method 1

We can also solve for the reduced for for Yi

Yi = αTi + X ′i β + ui

= α
(
ρYi + X ′i γ + Ziδ + νi

)
+ X ′i β + ui

= αρYi + Xi (αγ + β) + αδ + ανi + ui

= Xi
αγ + β

1− αρ
+ Zi

αδ

1− αρ
+
ανi + ui

1− αρ
= Xiβ

∗
1 + Ziδ

∗
2 + u∗i

with

β∗1 =
αγ + β

1− αρ

δ∗1 =
αδ

1− αρ



Notice then that
δ∗1
δ∗2

= α

So we can get the coefficient α simply by taking the ratio of the
reduced form coefficients

In the exactly identified case, this is numerically identical to IV.



To see why this is identical note that in a regression of Yi and Ti
on (Xi ,Zi) yields

δ̂1 =
Z̃ ′i Ỹi

Z̃ ′i Z̃i

δ̂2 =
Z̃ ′i T̃i

Z̃ ′i Z̃i

so

δ̂1

δ̂2
=

Z̃ ′i Ỹi

Z̃ ′i T̃i

= α̂IV



Method 2

Define
T f

i ≡ X ′i β
∗
2 + W ′

i δ
∗
2

we have shown that this is identified

Now notice that

Yi = αTi + X ′i β + ui

= α
[
T f

i + ν∗i

]
+ X ′i β + ui

= αT f
i + X ′i β2 + (αν∗i + ui)

One could get a consistent estimate of α by regressing Yi on Xi
and T f

i .



Two Stage Least Squares

In practice we don’t know T f
i but can get a consistent estimate

of it from a fitted regression call this T̂i

That is:

1 Regress Ti on Xi and Zi , form the predicted value T̂i

2 Regress Y on Xi and T̂i

To run the second regression one needs to be able to vary T̂i
separately from Xi which can only be done if there is a Zi



It turns out that the sample analogue of this also is numerically
identical to IV

Note that
T̂ = Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
T

Then we can write

B̂2SLS =

([
T̂ X

]′ [
T̂ X

])−1 [
T̂ X

]′
Y

However, note that we can write

X = Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
X

That is projecting X on (X ,Z ) and using it to predict X will be a
perfect fit.



That means that[
T̂ X

]
= Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
W

Then (in the exactly identified case) we can write

B̂2SLS =

(
W ′Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
W
)−1

×

W ′Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=

(
W ′Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
W
)−1

W ′Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=
(

Z ∗
′
W
)−1 (

Z ∗
′
Z ∗
) (

W ′Z ∗
)−1 W ′Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
Y

=
(

Z ∗
′
W
)−1 (

Z ∗
′
Z ∗
)(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=
(

Z ∗
′
W
)−1

Z ∗
′
Y

=β̂IV



Experiments

Forget the X we just want to estimate the effect of some
treatment on Y ,

Yi = α0 + αTi + ui

Easiest way to solve the OLS problem is random assignment

So flip a coin, if heads then assign treatment (i.e. give the
drug), if tails don’t give treatment (i.e. give a placebo)

Then we can get consistent estimates of α by running a
regression of Yi on Ti which is equivalent to taking the
difference in means between the treatment and control



The Problem

People are not like plants, just because we assign the
treatment doesn’t mean they take their medicine.

This is a bigger deal with social experiments like schools, job
training programs, or the military

You can get the other problem as well-some controls might get
the treatment.

This invalidates the experiment. As long as the decision not to
take the treatment was not done at Random, we no longer have
random assignment and Ti is correlated with ui



For example, treatments who find jobs early are less likely to
take job training

You can’t fix this problem easily because you don’t know which
controls would have refused treatment had it been assigned



The Solution

Let Ri be a dummy variable for random assignment (the coin
flip)

Ri is correlated with Ti by construction

Ri is uncorrelated with ui by construction

Thus we can use Ri as an instrument for Ti

This is done routinely in randomized trials



To see why this works think about the ratio of reduced forms
interpretation of IV

For simplicity assume no controls receive the treatment

E(Ti | Ri) = Pr(Ti = 1 | Ri = 1)Ri

E(Yi | Ri) = E(α0 + αTi + ui | Ri)

= α0 + αPr(Ti = 1 | Ri = 1)Ri

Thus the ratio of the coefficients is

αPr(Ti = 1 | Ri = 1)

Pr(Ti = 1 | Ri = 1)
= α



Returns to Schooling

This comes from the Card’s chapter in the 1999 Handbook of
Labor Economics

Lets assume that

log(Wi) = a + bSi + g(Xi) + εi

where Wi is wages, Si is schooling, and Xi is experience.



We are worried about ability bias we want to use instrumental
variables

A good instrument should have two qualities:

It should be correlated with schooling
It should be uncorrelated with ability (and other
unobservables)

Many different things have been tried. Lets go through some of
them



Family Background

If my parents earn quite a bit of money it should be easier for
me to borrow for college

Also they might put more value on education

This should make me more likely to go

This has no direct effect on my income-Wisconsin did not ask
how much education my Father had when they made my offer

But is family background likely to be uncorrelated with
unobserved ability?



Closeness of College

If I have a college in my town it should be much easier to attend
college

I can live at home
If I live on campus

I can travel to college easily
I can come home for meals and to get my clothes washed

I can hang out with my friends from High school

But is this uncorrelated with unobserved ability?



Quarter of Birth

This is the most creative

Consider the following two aspects of the U.S. education
system (this actually varies from state to state and across time
but ignore that for now),

People begin Kindergarten in the calendar year in which
they turn 5
You must stay in school until you are 16

Now consider kids who:

Can’t stand school and will leave as soon as possible
Obey truancy law and school age starting law
Are born on either December 31,1972 or January 1,1973



Those born on December 31 will

turn 5 in the calendar year 1977 and will start school then
(at age 4)
will stop school on their 16th birthday which will be on Dec.
31, 1988
thus they will stop school during the winter break of 11th
grade

Those born on January 1 will

turn 5 in the calendar year 1978 and will start school then
(at age 5)
will stop school on their 16th birthday which will be on Jan.
1, 1989
thus they will stop school during the winter break of 10th
grade



The instrument is a dummy variable for whether you are born
on Dec. 31 or Jan 1

This is pretty cool:

For reasons above it will be correlated with education
No reason at all to believe that it is correlated with
unobserved ability

The Fact that not everyone obeys perfectly is not problematic:

An instrument just needs to be correlated with schooling, it
does not have to be perfectly correlated

In practice we can’t just use the day as an instrument, use
“quarter of birth” instead



Policy Changes

Another possibility is to use institutional features that affect
schooling

Here often institutional features affect one group or one cohort
rather than others









Consistently IV estimates are higher than OLS

Why?

Bad Instruments
Ability Bias
Measurement Error
Publication Bias
Discount Rate Bias



Measurement Error

Another way people use instruments is for measurement error

In the classic model suppose we get rid of X ′s so we want to
measure the effect of T on Y .

Yi = β0 + αTi + ui

and lets not worry about endogeneity so assume that
cov(Ti ,ui) = 0.

The problem is that I don’t get to observe Ti , I only get to
observe a noisy version of it:

τ1i = Ti + ξi

where ξi is i.i.d measurement error with variance σ2
ξ



What happens if I run the regression on τ1i instead of Ti?

α̂ ≈ Cov (τ1i ,Yi)

Var(τ1i)

=
Cov (Ti + ξi , β0 + αTi + ui)

Var(Ti + ξi)

= α
Var (Ti)

Var(Ti) + σ2
ξ



Now suppose we have another measure of Ti ,

τ2i = Ti + ηi

where ηi is uncorrelated with everything else in the model.



Note that we can write

Yi = β0 + ατ1i + ui − αξi .

You can see the problem with OLS:, τ1i is correlated with ξi

However, IV gives us a solution.

τ2i is correlated with τ1i (through Ti),but uncorrelated with
ξi (and ui) so we can use one measure as an instrument for the
other.



Twins

(Here we will think about both measurement error and fixed
effect approaches)

log(wif ) = αf + βSif + uif

The problem is that αf is correlated with Sif

We can solve by differencing

E
(
log(wif )− log(wjf )

)
= βE

(
Sif − Sjf

)
Use this to get consistent estimates of β



The problem here is that a little measurement error can screw
up things quite a bit because the variance of Sif − Sjf is small.

A solution of this is to get two measures on schooling

Ask me about my schooling
Also ask my brother about my schooling
do the same think for my brother’s schooling

This gives us two different measure of Sif − Sjf .

Use one as an instrument for the other





Overidentification

What happens when we have more than one instrument?

Lets think about a general case in which Zi is multidimensional

Let KZ be the dimension of Z ∗i
Let KX denote the dimension of Wi

Now we have more equations then parameters so we can no
longer solve

0 = Z ∗
′
(

Y −WB̂
)

This gives us KZ equations in KX unknowns.



A simple solution is follow GMM and weight the moments by
some KZ × KZ weighting matrix Ω and then minimize[

Z ∗
′
(

Y −WB̂
)]′

Ω
[
Z ∗

′
(

Y −WB̂
)]

which gives

−2W ′Z ∗ΩZ ∗
′
(

Y −WB̂
)

= 0

(notice that in the exactly identified case W ′Z ∗Ω drops out)

We can solve directly for our estimator

B̂GMM =
(

W ′Z ∗ΩZ ∗
′
W
)−1

W ′Z ∗ΩZ ∗
′
Y



Two staged least squares is a special case of this:

B̂2SLS =

(
W ′Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
W
)−1

W ′Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

Notice that this is the same as B̂GMM when

Ω =
(

Z ∗
′
Z ∗
)−1



Consistency

B̂GMM =

(
1
N

W ′Z ∗Ω
1
N

Z ∗
′
W
)−1 1

N
W ′Z ∗Ω

1
N

Z ∗
′
(WB + U)

=B +

(
1
N

W ′Z ∗Ω
1
N

Z ∗
′
W
)−1 1

N
W ′Z ∗Ω

1
N

Z ∗
′
U

≈B +
(

E
(

WiZ ∗
′

i

)
ΩE

(
Z ∗i W

′

i

))−1
E
(

WiZ ∗
′

i

)
ΩE(Ziui)

=B



Inference

√
N
(

B̂ − B
)

=

(
1
N

W ′Z ∗Ω
1
N

Z ∗
′
W
)−1 1

N
W ′Z ∗Ω

1√
N

Z ∗
′
U

Using a standard central limit theorem with i.i.d. data

1√
N

Z ∗
′
U =

1√
N

N∑
i=1

Z ∗i ui

≈ N
(

0,E
(

u2
i Z ∗i Z ∗

′

i

))
Thus

√
N
(

B̂ − B
)
≈N

(
0,A′VA

)
with

V =E
(

WiZ ∗
′

i

)
ΩE

(
u2

i Z ∗i Z ∗
′

i

)
ΩE

(
Z ∗i W

′

i

)
A =

(
E
(

WiZ ∗
′

i

)
ΩE

(
Z ∗i W

′

i

))−1



From GMM results we know that the efficient weighting matrix is

Ω =E
(

u2
i Z ∗i Z ∗

′

i

)−1

in which case the Covariance matrix simplifies to(
E
(

WiZ ∗
′

i

)
E
(

u2
i Z ∗i Z ∗

′

i

)−1
E
(

Z ∗i W
′

i

))−1

This also means that under homoskedasticity two staged least
squares is efficient.



Overidentification Tests

Lets think about testing in the following way.

Suppose we have two instruments so that we have three sets of
moment conditions

0 = Z ′1
(

Y − T α̂− X β̂
)

0 = Z ′2
(

Y − T α̂− X β̂
)

0 = X ′
(

Y − T α̂− X β̂
)



As before we can use partitioned regression to deal with the X’s
and then write the first two moment equations as

0 = Z̃ ′1
(

Ỹ − T̃ α̂
)

0 = Z̃ ′2
(

Ỹ − T̃ α̂
)

Thus the way I see the overidentification test is whether we can
find an α̂ that solves both equations.



That is let

α̂1 =
Z̃ ′1Ỹ

Z̃ ′2T̃

α̂2 =
Z̃ ′1Ỹ

Z̃ ′2T̃

If
α̂1 ≈ α̂2

then the test will not reject the model, otherwise it will

For this reason I am not a big fan of overidentification tests:

If you have two crappy instruments with roughly the same
bias you will fail to reject
Why not just estimate α̂1 and α̂2 and look at them? It
seems to me that you learn much more from that than a
simple F-statistic


