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So far in this course we have focused on the case

Yi = αTi + εi

Think about the case in which Ti is binary

Let

Y1i denote the value of Yi for individual i when Ti = 1
Y0i denote the value of Yi for individual i when Ti = 0

It is useful to define the treatment effect as

πi = Y1i − Y0i



Note that in the case we have been thinking about so far

πi = α+ εi − εi

= α

and thus we have imposed that it can not vary over the
population

This seems pretty unreasonable for almost everything we have
thought about in this class

A relatively recent literature has tried to study heterogeneous
treatment effects in which these things vary across individuals

A clear problem is that even if we have estimated the full
distribution what do we present in the paper?

We must focus on a feature of the distribution



The most common:

Average Treatment Effect (ATE)

E(πi)

Treatment on the Treated (TT)

E(πi | Ti = 1)

Treatment on the Untreated (TUT)

E(πi | Ti = 0)

(Heckman and Vytlacil discuss Policy Relevant Treatment
effects, but I need more notation than I currently have to define
those)

These each answer very different questions



In terms of identification they are related.

All we can directly identify from the data is :

E(Y1i | Ti = 1),E(Y0i | Ti = 0),Pr(Ti = 1)

and at this point, without anything else, that is all you can
directly identify.



There are two key missing pieces:

E(Y1i | Ti = 0),E(Y0i | Ti = 1)

Knowledge of these would be sufficient to identify the
parameters:

TT = E(πi | Ti = 1) =E(Y1i | Ti = 1)− E(Y0i | Ti = 1)

TUT = E(πi | Ti = 0) =E(Y1i | Ti = 0)− E(Y0i | Ti = 0)

ATE = E(πi) = [E(Y1i | Ti = 1)− E(Y0i | Ti = 1)] Pr(Ti = 1)

+ [E(Y1i | Ti = 0)− E(Y0i | Ti = 0)] [1− Pr(Ti = 1)]

Now how do we estimate these?



Selection only on Observables
Lets start with the case in which we only have selection on
observables

Assumption

For all x in the support of Xi and t ∈ {0,1},

E(Y1i | Xi = x ,Ti = t) =E(Y1i | Xi = x)

E(Y0i | Xi = x ,Ti = t) =E(Y0i | Xi = x)

A “slightly” stronger version of this is random assignment of Ti
conditional on Xi

This is often also called unconfoundedness

A very strong assumption



Interestingly this is still not enough if there are sets of
observable covariates χ with positive measure for which
Pr(Ti = 1 | Xi ∈ χ) = 1 or Pr(Ti = 0 | Xi ∈ χ) = 0 then clearly
the full distribution of treatment effects is not identified.

For example suppose Ti is being pregnant and ment are never
pregnant, we could never how to identify

E(Income | Pregnant, Male)

This is perhaps not a very interesting counterfactual (actually
relevant is probably a better word-it is kind of interesting)

But if you want to measure the average treatment effect you
can’t.

It wouldn’t be a problem for the treatment on the treated



Thus we need the additional assumption

Assumption

For almost all x in the support of Xi ,

0 < Pr(Ti = 1 | Xi = x) < 1



Theorem

Under assumptions 1 and 2 the ATE, TT, and TUT are identified

It is pretty clear to see why

Consider the treatment on the treated.

Note that E(Y1i | Ti = 1) is identified directly from the data so
all we need to get is E(Y0i | Ti = 0).

Let F (x | Ti) be the distribution of Xi conditional on Ti

F (x | Ti) is identified directly from the data



Then under the first assumption above

E(Y0i | Ti = 1) =

∫
E(Y0i | Xi = x)dF (x | Ti = 1)

As long as assumption 2 holds, E(Y0i | Xi = x) is directly
identified from the data so E(Y0i | Ti = 1) is identified

You can also get

E(Y1i | Ti = 0) =

∫
E(Y1i | Xi = x)dF (x | Ti = 0)

and use this to identify the ATE or the TUT



Estimation
There are a number of different ways to estimate this model

The most obvious is to just use OLS defining

Y0i = X ′i β0 + u0i

Y1i = X ′i β1 + u1i

Then one could estimate

ÂTE =
1
N

N∑
i=1

X ′i
(
β̂1 − β̂0

)
or alternatively:

ÂTE =
1
N

N∑
i=1

Ti

[
Y1i − X ′i β̂0

]
− (1− Ti)

[
X ′i β̂1 − Y0i

]

TT and TUT are analogous (although second method might be
more natural)



Clearly, if you want to be more nonparametric you can either
run nonparametric regression or allow a functional form that
becomes more flexible with the sample size



Matching

Heckman and coauthors made a strong case for matching over
regression

If say you are interested in TT, but the support of Xi conditional
on Ti = 1 is very different than the unconditional support of Xi
than the regression approach can be pretty screwed up

They made this argument in the context of JTPA where only low
income people are eligible for treatment



The idea of matching with data with discrete support is
relatively easy, lets focus on the TT case

Let N1 be the the number of respondents with Ti = 1 and for
simplicity label them i = 1, ..,N1

Similarly let N0 be the number of respondents with Ti = 0 and
label them j = 1, ...,N0

1 For each i find a control j with exactly the same value of Xi .
That is

J(i) = {j ∈ {1, ..,N0} : Xi = Xj}

and j(i) is a random element from this set
2 We can get a consistent estimate using

T̂T =
1

N1

N1∑
i=1

(
Y1i − Y0j(i)

)



This is difficult to do in practice for two reasons:

1 If Xi is continuous we can’t match exactly
2 If Xi is very high dimensional, even with discrete data we

probably couldn’t match directly



Propensity Score Matching

Propensity score matching is a way of getting around the
second problem.

Rather than matching on the high dimensional Xi we can match
on the lower dimensional

P(x) = Pr(Ti = 1 | Xi = x)



The reason why comes from Bayes Theorem

For any x ,

F (x | P(Xi) = ρ,Ti = 1)

= Pr(Xi ≤ x | P(Xi) = ρ,Ti = 1)

=
Pr(Ti = 1 | Xi ≤ x ,P(Xi) = ρ)Pr(Xi ≤ x | P(Xi) = ρ)

Pr(Ti = 1 | P(Xi) = ρ)

=
ρPr(Xi ≤ x | P(Xi) = ρ)

ρ

= Pr(Xi ≤ x | P(Xi) = ρ)



and analogously for any x ,

F (x | P(Xi) = ρ,Ti = 0)

= Pr(Xi ≤ x | P(Xi) = ρ,Ti = 0)

=
Pr(Ti = 0 | Xi ≤ x ,P(Xi) = ρ)Pr(Xi ≤ x | P(Xi) = ρ)

Pr(Ti = 0 | P(Xi) = ρ)

=
(1− ρ)Pr(Xi ≤ x | P(Xi) = ρ)

1− ρ
= Pr(Xi ≤ x | P(Xi) = ρ)

= F (x | P(Xi) = ρ,Ti = 1)



Thus if we condition on the propensity score, the distribution of
Xi is identical for the controls and the treatments.

But since the error term is uncorrelated with Xi ,

E(Y0i | Ti = 1,P(Xi) = ρ)

=

∫
E(Y0i | Xi = x)dF (x | Ti = 1,P(Xi) = ρ)

=

∫
E(Y0i | Xi = x)dF (x | Ti = 0,P(Xi) = ρ)

= E(Y0i | Ti = 0,P(Xi) = ρ)

This means that we can match on the propensity score rather
than the full set of X ′s.



This makes the problem much simpler, but

You still need to estimate the propensity score which is a
high dimensional non-parametric problem. People typically
just use a logit
Now you have to figure out how to match a control to
treatment i .



There are essentially 3 ways to do that:

Just take nearest neighbor (or perhaps caliper that you
throw out observations without a close neighbor)
Use all of the observations that are sufficiently close
Estimate E(Y0j | Tj = 0,P(Xj) = P(Xi)) say with local
polynomial regression



Reweighting

Another approach is reweighting

Let fj(x) be the density of Xi conditional on Ti = j .

Note that using Bayes theorem

f1(x) =
P(x)f (x)

Pr(Ti = 1)

f0(x) =
(1− P(x)) f (x)

Pr(Ti = 0)



so

E(Y0i | Ti = 1) =

∫
E(Y0i | Xi = x)f1(x)dx

=

∫
E(Y0i | Xi = x)

f1(x)

f0(x)
f0(x)dx

=E
(

Y0i
P(Xi)

1− P(Xi)

)
Pr(Ti = 0)

Pr(Ti = 1)

Putting this together we can use the estimator

∑N1
i=1 Y1i

N1
−

∑N0
j=1 Y0j

P(Xj )
1−P(Xj )

N1
=

∑N1
i=1 Y1i

N1
−

1
N0

∑N0
j=1 Y0j

P(Xj )
1−P(Xj )

N1
N0

≈E(Y1i | Ti = 1)−
E(Y0i | Ti = 1)Pr(Ti=1)

Pr(Ti=0)

Pr(Ti=1)
Pr(Ti=0)

=TT



Instrumental Variables

Define

Yi =

{
Y0i if Ti = 0
Y1i if Ti = 1

= Y0i + πiTi

Assume that we have an instrument Zi that is correlated with Ti
but not with Y0i or Y1i .

Does IV estimate the ATE?



Lets abstract from other regressors

IV yields

plimβ̂1 =
Cov(Zi ,Yi)

Cov(Zi ,Ti)

=
Cov(Zi ,Y0i + πiTi)

Cov(Zi ,Ti)

=
Cov(Zi ,Y0i)

Cov(Zi ,Ti)
+

Cov(Zi , πiTi)

Cov(Zi ,Ti)

=
Cov(Zi , πiTi)

Cov(Zi ,Ti)
.



In the case in which treatment effects are constant so that
πi = π0 for everyone

plimβ̂1 =
Cov(Zi , π0Ti)

Cov(Zi ,Ti)

= π0

However, more generally IV does not converge to the Average
treatment effect



Local Average Treatment Effects

Imbens and Angrist (1994) consider the case in which there are
not constant treatment effects

The consider a simple version of the model in which Zi takes on
2 values, call them 0 and 1 for simplicity and without loss of
generality assume that
Pr(Ti = 1 | Zi = 1) > Pr(Ti = 1 | Zi = 0)



There are 4 different types of people those for whom Ti = 1
when:

1 Zi = 1,Zi = 0
2 never
3 Zi = 1 only
4 Zi = 0 only

Imbens and Angrist’s monotonicity rules out 4 as a possibility

Let µ1, µ2, and µ3 represent the sample proportions of the three
groups

and Gi an indicator of the group



Note that

β̂1
p→Cov(Zi , πiTi)

Cov(Zi ,Ti)

=
E(πiTiZi)− E (πiTi) E (Zi)

E(TiZi)− E (Ti) E (Zi)

Let ρ denote the probability that Zi = 1. Lets look at the pieces



first the numerator

E(πiTiZi)− E (πiTi) E (Zi)

=ρE(πiTi | Zi = 1)− E (πiTi) ρ

=ρE(πiTi | Zi = 1)

− [ρE(πiTi | Zi = 1) + (1− ρ) E(πiTi | Zi = 0)] ρ

=ρ(1− ρ) [E(πiTi | Zi = 1)− E(πiTi | Zi = 0)]

=ρ(1− ρ) [E(πi | Gi = 1)µ1 + E(πi | Gi = 3)µ3 − E(πi | Gi = 1)µ1]

=ρ(1− ρ)E(πi | Gi = 3)µ3



Next consider the denominator

E(TiZi)− E (Ti) E (Zi)

=ρE(Ti | Zi = 1)− E (Ti) ρ

=ρE(Ti | Zi = 1)

− [ρE(Ti | Zi = 1) + (1− ρ) E(Ti | Zi = 0)] ρ

=ρ(1− ρ) [E(Ti | Zi = 1)− E(Ti | Zi = 0)]

=ρ(1− ρ) [µ1 + µ3 − µ1]

=ρ(1− ρ)µ3



Thus

β̂1
p→ρ(1− ρ)E(πi | Gi = 3)µ3

ρ(1− ρ)µ3

=E(πi | Gi = 3)

They call this the local average treatment effect


