Heterogeneous Treatment Effects

Christopher Taber
University of Wisconsin

February 23, 2012

So far in this course we have focused on the case

$$
Y_{i}=\alpha T_{i}+\varepsilon_{i}
$$

Think about the case in which T_{i} is binary
Let

- $Y_{1 i}$ denote the value of Y_{i} for individual i when $T_{i}=1$
- $Y_{0 i}$ denote the value of Y_{i} for individual i when $T_{i}=0$

It is useful to define the treatment effect as

$$
\pi_{i}=Y_{1 i}-Y_{0 i}
$$

Note that in the case we have been thinking about so far

$$
\begin{aligned}
\pi_{i} & =\alpha+\varepsilon_{i}-\varepsilon_{i} \\
& =\alpha
\end{aligned}
$$

and thus we have imposed that it can not vary over the population

This seems pretty unreasonable for almost everything we have thought about in this class

A relatively recent literature has tried to study heterogeneous treatment effects in which these things vary across individuals

A clear problem is that even if we have estimated the full distribution what do we present in the paper?

We must focus on a feature of the distribution

The most common:

- Average Treatment Effect (ATE)

$$
E\left(\pi_{i}\right)
$$

- Treatment on the Treated (TT)

$$
E\left(\pi_{i} \mid T_{i}=1\right)
$$

- Treatment on the Untreated (TUT)

$$
E\left(\pi_{i} \mid T_{i}=0\right)
$$

(Heckman and Vytlacil discuss Policy Relevant Treatment effects, but I need more notation than I currently have to define those)

These each answer very different questions

In terms of identification they are related.
All we can directly identify from the data is:

$$
E\left(Y_{1 i} \mid T_{i}=1\right), E\left(Y_{0 i} \mid T_{i}=0\right), \operatorname{Pr}\left(T_{i}=1\right)
$$

and at this point, without anything else, that is all you can directly identify.

There are two key missing pieces:

$$
E\left(Y_{1 i} \mid T_{i}=0\right), E\left(Y_{0 i} \mid T_{i}=1\right)
$$

Knowledge of these would be sufficient to identify the parameters:

$$
\begin{aligned}
T T & =E\left(\pi_{i} \mid T_{i}=1\right)=E\left(Y_{1 i} \mid T_{i}=1\right)-E\left(Y_{0 i} \mid T_{i}=1\right) \\
T U T & =E\left(\pi_{i} \mid T_{i}=0\right)=E\left(Y_{1 i} \mid T_{i}=0\right)-E\left(Y_{0 i} \mid T_{i}=0\right)
\end{aligned}
$$

$A T E=E\left(\pi_{i}\right)=\left[E\left(Y_{1 i} \mid T_{i}=1\right)-E\left(Y_{0 i} \mid T_{i}=1\right)\right] \operatorname{Pr}\left(T_{i}=1\right)$

$$
+\left[E\left(Y_{1 i} \mid T_{i}=0\right)-E\left(Y_{0 i} \mid T_{i}=0\right)\right]\left[1-\operatorname{Pr}\left(T_{i}=1\right)\right]
$$

Now how do we estimate these?

Selection only on Observables

Lets start with the case in which we only have selection on observables

Assumption

For all x in the support of X_{i} and $t \in\{0,1\}$,

$$
\begin{aligned}
& E\left(Y_{1 i} \mid X_{i}=x, T_{i}=t\right)=E\left(Y_{1 i} \mid X_{i}=x\right) \\
& E\left(Y_{0 i} \mid X_{i}=x, T_{i}=t\right)=E\left(Y_{0 i} \mid X_{i}=x\right)
\end{aligned}
$$

A "slightly" stronger version of this is random assignment of T_{i} conditional on X_{i}

This is often also called unconfoundedness
A very strong assumption

Interestingly this is still not enough if there are sets of observable covariates χ with positive measure for which $\operatorname{Pr}\left(T_{i}=1 \mid X_{i} \in \chi\right)=1$ or $\operatorname{Pr}\left(T_{i}=0 \mid X_{i} \in \chi\right)=0$ then clearly the full distribution of treatment effects is not identified.

For example suppose T_{i} is being pregnant and ment are never pregnant, we could never how to identify

$$
E(\text { Income | Pregnant, Male) }
$$

This is perhaps not a very interesting counterfactual (actually relevant is probably a better word-it is kind of interesting)

But if you want to measure the average treatment effect you can't.

It wouldn't be a problem for the treatment on the treated

Thus we need the additional assumption

Assumption

For almost all x in the support of X_{i},

$$
0<\operatorname{Pr}\left(T_{i}=1 \mid X_{i}=x\right)<1
$$

Theorem

Under assumptions 1 and 2 the ATE, TT, and TUT are identified

It is pretty clear to see why
Consider the treatment on the treated.
Note that $E\left(Y_{1 i} \mid T_{i}=1\right)$ is identified directly from the data so all we need to get is $E\left(Y_{0 i} \mid T_{i}=0\right)$.

Let $F\left(x \mid T_{i}\right)$ be the distribution of X_{i} conditional on T_{i}
$F\left(x \mid T_{i}\right)$ is identified directly from the data

Then under the first assumption above

$$
E\left(Y_{0 i} \mid T_{i}=1\right)=\int E\left(Y_{0 i} \mid X_{i}=x\right) d F\left(x \mid T_{i}=1\right)
$$

As long as assumption 2 holds, $E\left(Y_{0 i} \mid X_{i}=x\right)$ is directly identified from the data so $E\left(Y_{0 i} \mid T_{i}=1\right)$ is identified

You can also get

$$
E\left(Y_{1 i} \mid T_{i}=0\right)=\int E\left(Y_{1 i} \mid X_{i}=x\right) d F\left(x \mid T_{i}=0\right)
$$

and use this to identify the ATE or the TUT

Estimation

There are a number of different ways to estimate this model
The most obvious is to just use OLS defining

$$
\begin{aligned}
& Y_{0 i}=X_{i}^{\prime} \beta_{0}+u_{0 i} \\
& Y_{1 i}=X_{i}^{\prime} \beta_{1}+u_{1 i}
\end{aligned}
$$

Then one could estimate

$$
\widehat{A T E}=\frac{1}{N} \sum_{i=1}^{N} X_{i}^{\prime}\left(\widehat{\beta}_{1}-\widehat{\beta}_{0}\right)
$$

or alternatively:

$$
\widehat{A T E}=\frac{1}{N} \sum_{i=1}^{N} T_{i}\left[Y_{1 i}-X_{i}^{\prime} \widehat{\beta}_{0}\right]-\left(1-T_{i}\right)\left[X_{i}^{\prime} \widehat{\beta}_{1}-Y_{0 i}\right]
$$

TT and TUT are analogous (although second method might be more natural)

Clearly, if you want to be more nonparametric you can either run nonparametric regression or allow a functional form that becomes more flexible with the sample size

Matching

Heckman and coauthors made a strong case for matching over regression

If say you are interested in TT , but the support of X_{i} conditional on $T_{i}=1$ is very different than the unconditional support of X_{i} than the regression approach can be pretty screwed up

They made this argument in the context of JTPA where only low income people are eligible for treatment

The idea of matching with data with discrete support is relatively easy, lets focus on the TT case

Let N_{1} be the the number of respondents with $T_{i}=1$ and for simplicity label them $i=1, . ., N_{1}$

Similarly let N_{0} be the number of respondents with $T_{i}=0$ and label them $j=1, \ldots, N_{0}$
(1) For each i find a control j with exactly the same value of X_{i}. That is

$$
J(i)=\left\{j \in\left\{1, . ., N_{0}\right\}: X_{i}=X_{j}\right\}
$$

and $j(i)$ is a random element from this set
(2) We can get a consistent estimate using

$$
\widehat{T T}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}}\left(Y_{1 i}-Y_{0 j(i)}\right)
$$

This is difficult to do in practice for two reasons:
(1) If X_{i} is continuous we can't match exactly
(2) If X_{i} is very high dimensional, even with discrete data we probably couldn't match directly

Propensity Score Matching

Propensity score matching is a way of getting around the second problem.

Rather than matching on the high dimensional X_{i} we can match on the lower dimensional

$$
P(x)=\operatorname{Pr}\left(T_{i}=1 \mid X_{i}=x\right)
$$

The reason why comes from Bayes Theorem

For any x,

$$
\begin{aligned}
& F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=1\right) \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho, T_{i}=1\right) \\
& =\frac{\operatorname{Pr}\left(T_{i}=1 \mid X_{i} \leq x, P\left(X_{i}\right)=\rho\right) \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{\operatorname{Pr}\left(T_{i}=1 \mid P\left(X_{i}\right)=\rho\right)} \\
& =\frac{\rho \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{\rho} \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)
\end{aligned}
$$

and analogously for any x,

$$
\begin{aligned}
& F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=0\right) \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho, T_{i}=0\right) \\
& =\frac{\operatorname{Pr}\left(T_{i}=0 \mid X_{i} \leq x, P\left(X_{i}\right)=\rho\right) \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{\operatorname{Pr}\left(T_{i}=0 \mid P\left(X_{i}\right)=\rho\right)} \\
& =\frac{(1-\rho) \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{1-\rho} \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right) \\
& =F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=1\right)
\end{aligned}
$$

Thus if we condition on the propensity score, the distribution of X_{i} is identical for the controls and the treatments.

But since the error term is uncorrelated with X_{i},

$$
\begin{aligned}
E\left(Y_{0 i}\right. & \left.\mid T_{i}=1, P\left(X_{i}\right)=\rho\right) \\
& =\int E\left(Y_{0 i} \mid X_{i}=x\right) d F\left(x \mid T_{i}=1, P\left(X_{i}\right)=\rho\right) \\
& =\int E\left(Y_{0 i} \mid X_{i}=x\right) d F\left(x \mid T_{i}=0, P\left(X_{i}\right)=\rho\right) \\
& =E\left(Y_{0 i} \mid T_{i}=0, P\left(X_{i}\right)=\rho\right)
\end{aligned}
$$

This means that we can match on the propensity score rather than the full set of $X^{\prime} s$.

This makes the problem much simpler, but

- You still need to estimate the propensity score which is a high dimensional non-parametric problem. People typically just use a logit
- Now you have to figure out how to match a control to treatment i.

There are essentially 3 ways to do that:

- Just take nearest neighbor (or perhaps caliper that you throw out observations without a close neighbor)
- Use all of the observations that are sufficiently close
- Estimate $E\left(Y_{0 j} \mid T_{j}=0, P\left(X_{j}\right)=P\left(X_{i}\right)\right)$ say with local polynomial regression

Reweighting

Another approach is reweighting
Let $f_{j}(x)$ be the density of X_{i} conditional on $T_{i}=j$.
Note that using Bayes theorem

$$
\begin{aligned}
f_{1}(x) & =\frac{P(x) f(x)}{\operatorname{Pr}\left(T_{i}=1\right)} \\
f_{0}(x) & =\frac{(1-P(x)) f(x)}{\operatorname{Pr}\left(T_{i}=0\right)}
\end{aligned}
$$

$$
\begin{aligned}
E\left(Y_{0 i} \mid T_{i}=1\right) & =\int E\left(Y_{0 i} \mid X_{i}=x\right) f_{1}(x) d x \\
& =\int E\left(Y_{0 i} \mid X_{i}=x\right) \frac{f_{1}(x)}{f_{0}(x)} f_{0}(x) d x \\
& =E\left(Y_{0 i} \frac{P\left(X_{i}\right)}{1-P\left(X_{i}\right)}\right) \frac{\operatorname{Pr}\left(T_{i}=0\right)}{\operatorname{Pr}\left(T_{i}=1\right)}
\end{aligned}
$$

Putting this together we can use the estimator

$$
\begin{aligned}
\frac{\sum_{i=1}^{N_{1}} Y_{1 i}}{N_{1}}-\frac{\sum_{j=1}^{N_{0}} Y_{0 j} \frac{P\left(X_{j}\right)}{1-P\left(X_{j}\right)}}{N_{1}} & =\frac{\sum_{i=1}^{N_{1}} Y_{1 i}}{N_{1}}-\frac{\frac{1}{N_{0}} \sum_{j=1}^{N_{0}} Y_{0 j} \frac{P\left(X_{j}\right)}{1-P\left(X_{j}\right)}}{\frac{N_{1}}{N_{0}}} \\
& \approx E\left(Y_{1 i} \mid T_{i}=1\right)-\frac{E\left(Y_{0 i} \mid T_{i}=1\right) \frac{\operatorname{Pr}\left(T_{i}=1\right.}{\operatorname{Pr}\left(T_{i}=0\right.}}{\frac{\operatorname{Pr}\left(T_{i}=1\right)}{\operatorname{Pr}\left(T_{i}=0\right)}} \\
& =T T
\end{aligned}
$$

Instrumental Variables

Define

$$
\begin{aligned}
Y_{i} & = \begin{cases}Y_{0 i} & \text { if } T_{i}=0 \\
Y_{1 i} & \text { if } T_{i}=1\end{cases} \\
& =Y_{0 i}+\pi_{i} T_{i}
\end{aligned}
$$

Assume that we have an instrument Z_{i} that is correlated with T_{i} but not with $Y_{0 i}$ or $Y_{1 i}$.

Does IV estimate the ATE?

Lets abstract from other regressors

IV yields

$$
\begin{aligned}
\operatorname{plim} \widehat{\beta}_{1} & =\frac{\operatorname{Cov}\left(Z_{i}, Y_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Z_{i}, Y_{0 i}+\pi_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Z_{i}, Y_{0 i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)}+\frac{\operatorname{Cov}\left(Z_{i}, \pi_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Z_{i}, \pi_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)}
\end{aligned}
$$

In the case in which treatment effects are constant so that $\pi_{i}=\pi_{0}$ for everyone

$$
\begin{aligned}
\operatorname{plim} \widehat{\beta}_{1} & =\frac{\operatorname{Cov}\left(Z_{i}, \pi_{0} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\pi_{0}
\end{aligned}
$$

However, more generally IV does not converge to the Average treatment effect

Local Average Treatment Effects

Imbens and Angrist (1994) consider the case in which there are not constant treatment effects

The consider a simple version of the model in which Z_{i} takes on 2 values, call them 0 and 1 for simplicity and without loss of generality assume that

$$
\operatorname{Pr}\left(T_{i}=1 \mid Z_{i}=1\right)>\operatorname{Pr}\left(T_{i}=1 \mid Z_{i}=0\right)
$$

There are 4 different types of people those for whom $T_{i}=1$ when:
(1) $Z_{i}=1, Z_{i}=0$
(2) never
(3) $Z_{i}=1$ only
(4) $Z_{i}=0$ only

Imbens and Angrist's monotonicity rules out 4 as a possibility
Let μ_{1}, μ_{2}, and μ_{3} represent the sample proportions of the three groups
and G_{i} an indicator of the group

Note that

$$
\begin{aligned}
\widehat{\beta}_{1} \xrightarrow{p} & \frac{\operatorname{Cov}\left(Z_{i}, \pi_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{E\left(\pi_{i} T_{i} Z_{i}\right)-E\left(\pi_{i} T_{i}\right) E\left(Z_{i}\right)}{E\left(T_{i} Z_{i}\right)-E\left(T_{i}\right) E\left(Z_{i}\right)}
\end{aligned}
$$

Let ρ denote the probability that $Z_{i}=1$. Lets look at the pieces

first the numerator

$$
\begin{aligned}
& E\left(\pi_{i} T_{i} Z_{i}\right)-E\left(\pi_{i} T_{i}\right) E\left(Z_{i}\right) \\
= & \rho E\left(\pi_{i} T_{i} \mid Z_{i}=1\right)-E\left(\pi_{i} T_{i}\right) \rho \\
= & \rho E\left(\pi_{i} T_{i} \mid Z_{i}=1\right) \\
& -\left[\rho E\left(\pi_{i} T_{i} \mid Z_{i}=1\right)+(1-\rho) E\left(\pi_{i} T_{i} \mid Z_{i}=0\right)\right] \rho \\
= & \rho(1-\rho)\left[E\left(\pi_{i} T_{i} \mid Z_{i}=1\right)-E\left(\pi_{i} T_{i} \mid Z_{i}=0\right)\right] \\
= & \rho(1-\rho)\left[E\left(\pi_{i} \mid G_{i}=1\right) \mu_{1}+E\left(\pi_{i} \mid G_{i}=3\right) \mu_{3}-E\left(\pi_{i} \mid G_{i}=1\right) \mu_{1}\right] \\
= & \rho(1-\rho) E\left(\pi_{i} \mid G_{i}=3\right) \mu_{3}
\end{aligned}
$$

Next consider the denominator

$$
\begin{aligned}
& E\left(T_{i} Z_{i}\right)-E\left(T_{i}\right) E\left(Z_{i}\right) \\
= & \rho E\left(T_{i} \mid Z_{i}=1\right)-E\left(T_{i}\right) \rho \\
= & \rho E\left(T_{i} \mid Z_{i}=1\right) \\
& -\left[\rho E\left(T_{i} \mid Z_{i}=1\right)+(1-\rho) E\left(T_{i} \mid Z_{i}=0\right)\right] \rho \\
= & \rho(1-\rho)\left[E\left(T_{i} \mid Z_{i}=1\right)-E\left(T_{i} \mid Z_{i}=0\right)\right] \\
= & \rho(1-\rho)\left[\mu_{1}+\mu_{3}-\mu_{1}\right] \\
= & \rho(1-\rho) \mu_{3}
\end{aligned}
$$

Thus

$$
\begin{gathered}
\widehat{\beta}_{1} \xrightarrow{p} \frac{\rho(1-\rho) E\left(\pi_{i} \mid G_{i}=3\right) \mu_{3}}{\rho(1-\rho) \mu_{3}} \\
=E\left(\pi_{i} \mid G_{i}=3\right)
\end{gathered}
$$

They call this the local average treatment effect

