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Model

Lets start with the constant treatment effect model

For now take that to be

Yi = αTi + X′iβ + ui

α measures the causal effect of Ti on Yi.

We don’t want to just run OLS because we are worried that Ti is
not randomly assigned, that is that Ti and ui are correlated.

There are a number of different reasons that might be true-I
think the main thing that we are worried about in the treatment
effects literature is omitted variables.

In this course we are going to think about a lot of different ways
of dealing with this potential problem for estimating α.



Instrumental Variables

Lets start with instrumental variables

I want to think about three completely different approaches for
estimating α

The first is the GMM approach and the second two will come
from a Simultaneous Equations framework



To justify OLS we would need

E (Tiui) = 0

E(Xiui) = 0

The focus of IV is to try to relax the first assumption

(There is much less concern about the second)



Lets suppose that we have an instrument Zi for which

E (Ziui) = 0

and we continue to assume that

E(Xiui) = 0

We also will stick with the exactly identified case (1 dimensional
Zi)

Define

Z∗i =

[
Zi

Xi

]
,X∗i =

[
Ti

Xi

]
,B =

[
α
β

]
Then we know

E
[
Z∗i
(

Yi − X∗
′

i B
)]

= 0



Turning this into a GMM estimator we get

0 =
1
N

N∑
i=1

Z∗i
(

Yi − X∗
′

i B̂IV

)
=

1
N

N∑
i=1

Z∗i Yi −

(
1
N

N∑
i=1

Z∗i X∗
′

i

)
B̂IV

which we can solve as

B̂IV ≡

(
1
N

N∑
i=1

Z∗i X∗
′

i

)−1
1
N

N∑
i=1

Z∗i Yi

And that is IV.



Consistency Notation

I will use ≈ to mean asymptotically equivalent. Typically the
phrase

An ≈ Bn

means that
(An − Bn)

p→ 0

So I want to be formal in this sense

However I will not be completely formal as this could also mean
almost sure convergence, convergence in distribution or some
sort of uniform convergence. The differences between these
are not relevant for anything we will do in class.



Consistency of IV

B̂IV =

(
1
N

N∑
i=1

Z∗i X∗
′

i

)−1
1
N

N∑
i=1

Z∗i Yi

=

(
1
N

N∑
i=1

Z∗i X∗
′

i

)−1
1
N

N∑
i=1

(
Z∗i X∗

′
i B + Z∗i ui

)

=B +

(
1
N

N∑
i=1

Z∗i X∗
′

i

)−1
1
N

N∑
i=1

Z∗i ui

≈B



since
1
N

N∑
i=1

Z∗i ui ≈ 0

So (assuming iid sampling) this only took two assumptions.
The moment conditions and the fact that you can invert

E
(

Z∗i X∗
′

i

)
As we will discuss this assumption is typically a bigger deal
than in OLS



Furthermore we get (Huber-White) standard errors from

√
N
(

B̂IV − B
)

=

(
1
N

N∑
i=1

Z∗i X∗
′

i

)−1 [
1√
N

N∑
i=1

Z∗i ui

]

Under standard conditions:

1√
N

N∑
i=1

Z∗i ui ≈ N
(

0,E
(

u2
i Z∗i Z∗

′
i

))
so

√
N
(

B̂IV − B
)
≈ N

(
0,E

(
Z∗i X∗

′
i

)−1
E
(

u2
i Z∗i Z∗

′
i

)
E
(

X∗i Z∗
′

i

)−1
)



We approximate this by

E
(

Z∗i X∗
′

i

)
≈ 1

N

N∑
i=1

Z∗i X∗
′

i

E
(

u2
i Z∗i Z∗

′
i

)
≈

N∑
i=1

û2
i Z∗i Z∗

′
i



It actually turns out that IV is not unbiased even when it is
consistent, so lets derive the asymptotic bias more generally

Before that I want to take a detour and discuss partitioned
regression which will turn out to be really useful for this and we
will use it many times in this course



Partitioned Regression

Think about the standard regression model (in large matrix
notation)

Y = X1β1 + X2β2 + u

We will define
M2 ≡ I − X2

(
X′2X2

)−1 X
′
2.

Two facts about M2



Fact 1: M2 is idempotent

M2M2=
(

I − X2
(
X′2X2

)−1 X
′
2

)(
I − X2

(
X′2X2

)−1 X
′
2

)
=I − 2X2

(
X′2X2

)−1 X
′
2 + X2

(
X′2X2

)−1 X
′
2X2

(
X′2X2

)−1 X
′
2

=I − X2
(
X′2X2

)−1 X
′
2

=M2



Fact 2: M2Y is the Residuals from Regression

For any potential dependent variable (say Y), M2Y is the
residuals I would get if I regressed Y on X2

To see that let the regression coefficients be be ĝ and
generically let Ỹ be residuals from a regression of Y on X2 so
that

Ỹ ≡Y − X2ĝ

=Y − X2
(
X′2X2

)−1 X′2Y

=
[
I − X2

(
X′2X2

)−1 X
′
2

]
Y

=M2Y.



An important special case of this is that if I regress something
on itself, the residuals are all zero

That is

M2X2 = X2 − X2(X′2X2)−1X′2X2

= 0



If I think of the GMM moment equations for least squares I get
the “two equations”

0 = X′1
(

Y − X1β̂1 − X2β̂2

)
0 = X′2

(
Y − X1β̂1 − X2β̂2

)
We can solve for β̂2 in the second as

β̂2 =
(
X′2X2

)−1 X′2
(

Y − X1β̂1

)
Now plug this into the first

0 = X′1
(

Y − X1β̂1 − X2β̂2

)
= X′1

(
Y − X1β̂1 − X2

(
X′2X2

)−1 X′2
(

Y − X1β̂1

))
= X′1M2Y − X′1M2X1β̂1



Or

β̂1 =
(
X′1M2X1

)−1 X′1M2Y

=
(

X̃′1X̃1

)−1
X̃′Ỹ

That is if I

1 Run a regression of X1 on X2 and form its residuals X̃1

2 Run a regression of Y on X2 and form its residuals Ỹ
3 Run a regression of Ỹ on X̃1

Since I derived this from the sample analogue of the GMM
moment equations (or the normal equations), this gives me
exactly the same result as if I had run the full regression of Y on
X1 and X2



It turns out the same idea works for IV.

Put everything we had before into large Matrix notation and we
can write GMM as:

0 = Z′
(

Y − Tα̂IV − Xβ̂IV

)
0 = X′

(
Y − Tα̂IV − Xβ̂IV

)
The second can be solved as

β̂IV =
(
X′X
)−1 X′ (Y − Tα̂IV)

Now plug this into the first

0 = Z′
(

Y − Tα̂IV − Xβ̂IV

)
= Z′

(
Y − Tα̂IV − X

(
X′X
)−1 X′ (Y − Tα̂IV)

)
= Z′MXY − Z′MXTα̂IV



so

α̂IV =
(
Z′MXT

)−1 Z′MXY

=
Z̃′Ỹ

Z̃′T̃

≈ cov(Z̃i, Ỹi)

cov(Z̃i, T̃i)

(This last expression assumes that there is an intercept in the
model. If not it would be expected values rather than
covariances, but covariances make things easier to interpret-at
least to me)



To see consistency from this perspective note that

Ỹ =MXY

=αMXT + MXXβ + MXu

=αT̃ + ũ

so

α̂IV ≈
cov(Z̃i, Ỹi)

cov(Z̃i, T̃i)

≈ cov(Z̃i, αT̃i + ũi)

cov(Z̃i, T̃i)

= α+
cov(Z̃i, ũi)

cov(Z̃i, T̃i)



This formula is helpful. In order for the model to be consistent
you need

cov(Z̃i, ũi) = 0

cov(Z̃i, T̃i) 6= 0

But more generally for the asymptotic bias to be small you want

cov(Z̃i, ũi) to be small
|cov(Z̃i, T̃i)| to be large

This means that in practice there is some tradeoff between
them.

If your instrument is not very powerful, a little bit of correlation
in cov(Z̃i, ũi) could lead to a large asymptotic bias.



As a concrete example lets compare IV to OLS.

OLS is really just a special case of IV with Zi = Ti

Then we get

α̂IV ≈ α+
cov(Z̃i, ũi)

cov(Z̃i, T̃i)

α̂OLS ≈ α+
cov(T̃i, ũi)

cov(T̃i, T̃i)

If cov(Z̃i, ũi) = 0 and cov(T̃i, ũi) 6= 0 then IV is consistent and
OLS is not

However, cov(Z̃i, ũi) < cov(T̃i, ũi) does not guarantee less bias
because it also depends on cov(Z̃i, T̃i) = 0 and cov(T̃i, T̃i) 6= 0



Assumptions

Lets think about the assumptions

Lets ignore the first stage thing and assume that isn’t a problem

we looked at two different things

GMM
E(Ziui) = 0,E(Xiui) = 0

My derivation
cov(Z̃i, ũi) = 0

Are these the same?



Well ...

We know that GMM gives consistent estimates and if
cov(Z̃i, ũi) 6= 0 then α̂ is not consistent. So the first
assumptions better imply the second
However, it doesn’t have to be the other way around. We
need cov(Z̃i, ũi) = 0 to get consistent estimates of α, but we
haven’t required consistent estimates of β.



To see it doesn’t go the other way, suppose that I can write

ui = X′iδ + εi

with E(Xi, εi) = 0,E(Zi, εi) = 0

We can write

Yi =αTi + X′iβ + ui

αTi + X′i(β + δ) + εi

So IV gives a consistent estimate of α but not β



Simultaneous equations

The second and third way to see IV comes from the
simultaneous equations framework

Yi = αTi + X′iβ + ui

Ti = ρYi + X′iγ + Ziδ + νi

Thee are called the “structural equations”

Note the difference between Xi and Zi in that we restrict what
can affect what.

We could also have stuff that affects Yi but not not Ti but lets
not worry about that (we are still allowing this as a possibility as
some of the γ coefficients could be zero)

The model with ρ = 0 simplifies things, but lets focus on what
happens when it isn’t



We assume that

E(ui | Xi,Zi) = 0

E(vi | Xi,Zi) = 0

but notice that if ρ 6= 0, then almost for sure Ti is correlated with
ui because ui influences Ti through Yi



It is useful to calculate the “reduced form” for Ti, namely

Ti = ρYi + X′iγ + Ziδ + νi

= ρ
[
αTi + X′iβ + ui

]
+ X′iγ + Ziδ + νi

= ραTi + X′i [ρβ + γ] + Z′iδ + (ρui + νi)

= X′i
ρβ + γ

1− ρα
+ Z′i

δ

1− ρα
+
ρui + νi

1− ρα
= X′iβ

∗
2 + Z′iδ

∗
2 + ν∗i

where

β∗2 ≡
ρβ + γ

1− ρα

δ∗2 ≡
δ

1− ρα

ν∗i ≡
ρui + νi

1− ρα

Note that E(ν∗i | Xi,Zi) = 0, so one can obtain a consistent
estimate of β∗2 and δ∗2 by regressing Ti on Xi and Zi.



This is called the “reduced form” equation for Ti

Note that the parameters here are not the fundamental
structural parameters themselves, but the are a known function
of these parameters

To me this is the classic definition of reduced form (you need to
have a structural model)



We can obtain a consistent estimate of α as long as we have
an exclusion restriction

That is we need some Zi that affects Ti but not Yi directly

I want to show this in two different ways



Method 1
We can also solve for the reduced form for Yi

Yi = αTi + X′iβ + ui

= Xi
αγ + β

1− αρ
+ Zi

αδ

1− αρ
+
ανi + ui

1− αρ
= Xiβ

∗
1 + Ziδ

∗
1 + u∗i

with

β∗1 ≡
αγ + β

1− αρ

δ∗1 ≡
αδ

1− αρ

u∗i ≡
ανi + ui

1− αρ

Like the other reduced form, we can get a consistent estimate
of β∗1 and δ∗1 by regressing Yi on Xi and Zi.



Notice then that
δ∗1
δ∗2

= α

So we can get a consistent estimate of α simply by taking the
ratio of the reduced form coefficients

It also gives another interpretation of IV:

δ∗2 is the causal effect of Zi on Ti

δ∗1 is the causal effect of Zi on Yi-it only operates through Ti



Yi

Ti

Zi

↵�⇤2

If we increase Zi by one unit this leads Ti to increase by δ∗2 units
which causes Yi to increase by δ∗2α units

Thus the causal effect of Zi on Yi is δ∗2α units



This illustrates another important way to think about an
instrument: the key assumption is that Ti is the only channel
through which Zi influences Yi



Suppose there was another

Yi

Ti

Zi

↵

d a
⌧i

�⇤2

Then the causal effect of Zi on Yi would be δ∗2α+ da and IV
would be

δ∗2α+ da
δ∗2



In the exactly identified case (i.e. one Zi), this is numerically
identical to IV.

To see why, note that in a regression of Yi and Ti on (Xi,Zi)
yields

δ̂1 =
Z̃′i Ỹi

Z̃′i Z̃i

δ̂2 =
Z̃′i T̃i

Z̃′i Z̃i

so

δ̂1

δ̂2
=

Z̃′i Ỹi

Z̃′i T̃i

= α̂IV

This is just math-it does not require that the “Structural
equation" determining Ti be correct



Method 2

Define
T f

i ≡ X′iβ
∗
2 + Z′iδ

∗
2

and suppose that T f
i were known to the econometrician

Now notice that

Yi = αTi + X′iβ + ui

= α
[
T f

i + ν∗i

]
+ X′iβ + ui

= αT f
i + X′iβ2 + (αν∗i + ui)

One could get a consistent estimate of α by regressing Yi on Xi

and T f
i .



Two Stage Least Squares

In practice we don’t know T f
i but can get a consistent estimate

of it from the fitted values of a reduced form regression call this
T̂i (it is crucial that the reduced form gives us consistent
estimates of β∗2 and δ∗2 )

That is:

1 Regress Ti on Xi and Zi, form the predicted value T̂i

2 Regress Y on Xi and T̂i

To run the second regression one needs to be able to vary T̂i

separately from Xi which can only be done if there is a Zi



It turns out that 2SLS is also is numerically identical to IV (with
1 instrument)

Note that
T̂ = Z∗

(
Z∗

′
Z∗
)−1

Z∗
′
T

so
B̂2SLS =

([
T̂ X

]′ [
T̂ X

])−1 [
T̂ X

]′
Y

However, note that we can write

X = Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
X

That is projecting X on (X,Z) and using it to predict X will be a
perfect fit.



That means that(using notation from earlier) that[
T̂ X

]
= Z∗

(
Z∗

′
Z∗
)−1

Z∗
′
X∗

Then (in the exactly identified case) we can write

B̂2SLS =

(
X∗

′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
X∗
)−1

×

X∗
′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
Y

=

(
X∗

′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
X∗
)−1

X∗
′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
Y

=
(

Z∗
′
X∗
)−1 (

Z∗
′
Z∗
)(

X∗
′
Z∗
)−1

X∗
′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
Y

=
(

Z∗
′
X∗
)−1 (

Z∗
′
Z∗
)(

Z∗
′
Z∗
)−1

Z∗
′
Y

=
(

Z∗
′
X∗
)−1

Z∗
′
Y

=β̂IV



3 Interpretations

Thus with 1 instrument we have 3 equivalent ways to derive IV:

1 GMM estimator or (Z′T)−1Z′Y
2 Ratio of reduced form estimates-rescaling the reduced

form
3 2SLS-direct effect of fitted model

With more than one instrument only one of these procedures
works-we’ll worry about that later



Examples

There are three main reasons people use IV

1 Simultaneity bias: ρ 6= 0
2 Omitted Variable bias : There are unobservables that

contribute to ui that are correlated with Ti

3 Measurement Error: We do not observe Ti perfectly

While the first is the original reason for IV, in practice omitted
variable bias is typically the biggest concern

A classic (perhaps the classic) example is the returns to
schooling.



Returns to Schooling

This comes from the Card’s chapter in the 1999 Handbook of
Labor Economics

Lets assume that

log(Wi) = αSi + X′iβ + εi

where Wi is wages, Si is schooling, and Xi is other stuff

The biggest problem is unobserved ability



We are worried about ability bias we want to use instrumental
variables

A good instrument should have two qualities:

It should be correlated with schooling
It should be uncorrelated with unobserved ability (and
other unobservables)

Many different things have been tried. Lets go through some of
them



Family Background

If my parents earn quite a bit of money it should be easier for
me to borrow for college

Also they might put more value on education

This should make me more likely to go

This has no direct effect on my income-Wisconsin did not ask
how much education my Father had when they made my offer

But is family background likely to be uncorrelated with
unobserved ability?



Closeness of College

If I have a college in my town it should be much easier to attend
college

I can live at home
If I live on campus

I can travel to college easily
I can come home for meals and to get my clothes washed

I can hang out with my friends from High school

But is this uncorrelated with unobserved ability?



Quarter of Birth

This is the most creative

Consider the following two aspects of the U.S. education
system (this actually varies from state to state and across time
but ignore that for now),

People begin Kindergarten in the calendar year in which
they turn 5
You must stay in school until you are 16

Now consider kids who:

Can’t stand school and will leave as soon as possible
Obey truancy law and school age starting law
Are born on either December 31,1972 or January 1,1973



Those born on December 31 will

turn 5 in the calendar year 1977 and will start school then
(at age 4)
will stop school on their 16th birthday which will be on Dec.
31, 1988
thus they will stop school during the winter break of 11th
grade

Those born on January 1 will

turn 5 in the calendar year 1978 and will start school then
(at age 5)
will stop school on their 16th birthday which will be on Jan.
1, 1989
thus they will stop school during the winter break of 10th
grade



The instrument is a dummy variable for whether you are born
on Dec. 31 or Jan 1

This is pretty cool:

For reasons above it will be correlated with education
No reason at all to believe that it is correlated with
unobserved ability

The Fact that not everyone obeys perfectly is not problematic:

An instrument just needs to be correlated with schooling, it
does not have to be perfectly correlated

In practice we can’t just use the day as an instrument, use
“quarter of birth” instead



Policy Changes

Another possibility is to use institutional features that affect
schooling

Here often institutional features affect one group or one cohort
rather than others









Consistently IV estimates are higher than OLS

Why?

Bad Instruments
Ability Bias
Measurement Error
Publication Bias
Discount Rate Bias



Heterogeneous Treatment Effects

OK lets go back to the simple model but think about
heterogeneous treatment effects following Imbens and Angrist
(1994)

We can write

Yi = TiY1i + (1− Ti) Y0i

= Ti (Y1i − Y0i) + Y0i

= ∆iTi + Y0i

Assume our binary instrument Zi is correlated with Ti but not
with ∆i or Y0i (or equivalently Y0i or Y1i)

Does IV estimate the ATE?



There are 4 different types of people those for whom Ti = 1
when:

♣ : Zi = 1,Zi = 0

♦ : Zi = 1 only
♥ : Never
♠ : Zi = 0 only

Imbens and Angrist’s monotonicity rules out 4 as a possibility

We also assume that Zi is independent of type

Let µ♣, µ♦, and µ♥ represent the sample proportions of the
three groups and Si an indicator of the type



We know

α̂2SLS =
Y1 − Y0

T1 − T0
≈ E (Yi | Zi = 1)− E (Yi | Zi = 0)

E (Ti | Zi = 1)− E (Ti | Zi = 0)

Lets figure out the numerator and denominator

E (Yi | Zi = 1)− E (Yi | Zi = 0)

=E (∆iTi + Y0i | Zi = 1)− E (∆iTi + Y0i | Zi = 0)

=E (∆iTi | Zi = 1)− E (∆iTi | Zi = 0)

= [µ♣E(∆iTi | Si = ♣,Zi = 1) + µ♦E(∆iTi | Si = ♦,Zi = 1) + µ♥E(∆iTi | Si = ♥,Zi = 1)]

− [µ♣E(∆iTi | Si = ♣,Zi = 0) + µ♦E(∆iTi | Si = ♦,Zi = 0) + µ♥E(∆iTi | Si = ♥,Zi = 0)]

= [µ♣E(∆i | Si = ♣) + µ♦E(∆i | Si = ♦) + µ♥0]

− [µ♣E(∆i | Si = ♣) + µ♦0 + µ♥0]

=µ♦E(∆i | Si = ♦)



E (Ti | Zi = 1)− E (Ti | Zi = 0)

= [µ♣E(Ti | Si = ♣,Zi = 1) + µ♦E(Ti | Si = ♦,Zi = 1) + µ♥E(Ti | Si = ♥,Zi = 1)]

− [µ♣E(Ti | Si = ♣,Zi = 0) + µ♦E(Ti | Si = ♦,Zi = 0) + µ♥E(Ti | Si = ♥,Zi = 0)]

= [µ♣ + µ♦]

− [µ♣)]

=µ♦

Thus

E (Yi | Zi = 1)− E (Yi | Zi = 0)

E (Ti | Zi = 1)− E (Ti | Zi = 0)
=E(∆i | Si = ♦)

They call this the local average treatment effect (LATE)



Measurement Error

Another way people use instruments is for measurement error

In the classic model lets get rid of X′s so we want to measure
the effect of T on Y.

Yi = β0 + αTi + ui

and lets not worry about other issues so assume that
cov(Ti, ui) = 0.

The complication is that I don’t get to observe Ti, I only get to
observe a noisy version of it:

τ1i = Ti + ξi

where ξi is i.i.d measurement error with variance σ2
ξ



What happens if I run the regression on τ1i instead of Ti?

α̂ ≈ Cov (τ1i,Yi)

Var(τ1i)

=
Cov (Ti + ξi, β0 + αTi + ui)

Var(Ti + ξi)

= α
Var (Ti)

Var(Ti) + σ2
ξ



Why is OLS biased?

Lets rewrite the model as

Yi = β0 + αTi + ui

= β0 + αTi + αξi + ui − αξi

= β0 + ατ1i + (ui − αξi).

You can see the problem with OLS: τ1i = Ti + ξi is correlated
with (ui − αξi)



Now suppose we have another measure of Ti,

τ2i = Ti + ηi

where ηi is uncorrelated with everything else in the model.

Using this as an instrument gives us a solution.

τ2i is correlated with τ1i (through Ti),but uncorrelated with
(ui − αξi) so we can use τ2i as an instrument for τ1i.



Twins

(Here we will think about both measurement error and fixed
effect approaches)

log(wif ) = θf + αSif + uif

The problem is that θf is correlated with Sif

We can solve by differencing

∆ log(wf ) = α∆Sf + ∆uf

if ∆Sf is uncorrelated with ∆uf , then we can use this to get
consistent estimates of α



The problem here is that a little measurement error can screw
up things quite a bit because the variance of ∆Sf is small.

A solution of this is to get two measures on schooling

Ask me about my schooling
Also ask my brother about my schooling
do the same think for my brother’s schooling

This gives us two different measure of ∆Sif .

Use one as an instrument for the other





The Colonial Origins of Comparative Development: An
Empirical Investigation

by Acemoglu, Johnson, and Robinson

Time for a non-education example-a very important paper on
an extremely important issue

Their goal is to estimate the effects of “institutions” on
Economic Development

The idea is that countries with better institutions should develop
more



Specifically they want to estimate their equation:

log(yi) = µ+ αRi + X′iγ + εi

where

yi is GDP per capita
Ri is “protection against expropriation"
Xi is other stuff

Lets take a preliminary look
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TABLE 2-OLS REGRESSIONS 

Whole Base Whole Whole Base Base Whole Base 
world sample world world sample sample world sample 

(1) (2) (3) (4) (5) (6) (7) (8) 
Dependent variable 

is log output per 
Dependent variable is log GDP per capita in 1995 worker in 1988 

Average protection 0.54 0.52 0.47 0.43 0.47 0.41 0.45 0.46 
against expropriation (0.04) (0.06) (0.06) (0.05) (0.06) (0.06) (0.04) (0.06) 
risk, 1985-1995 

Latitude 0.89 0.37 1.60 0.92 
(0.49) (0.51) (0.70) (0.63) 

Asia dummy -0.62 -0.60 
(0.19) (0.23) 

Africa dummy -1.00 -0.90 
(0.15) (0.17) 

"Other" continent dummy -0.25 -0.04 
(0.20) (0.32) 

R2 0.62 0.54 0.63 0.73 0.56 0.69 0.55 0.49 
Number of observations 110 64 110 110 64 64 108 61 

Notes: Dependent variable: columns (1)-(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's 
World Development Indicators 1999); columns (7)-(8), log output per worker in 1988 from Hall and Jones (1999). Average 
protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against 
expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard errors are in parentheses. In regressions 
with continent dummies, the dummy for America is omitted. See Appendix Table Al for more detailed variable definitions 
and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia, 
and Vietnam. 

Sachs and coauthors, have argued for a direct 
effect of climate on performance, and Gallup et 
al. (1998) and Hall and Jones (1999) document 
the correlation between distance from the equa- 
tor and economic performance. To control for 
this, in columns (3)-(6), we add latitude as a 
regressor (we follow the literature in using the 
absolute value measure of latitude, i.e., distance 
from the equator, scaled between 0 and 1). This 
changes the coefficient of the index of institu- 
tions little. Latitude itself is also significant and 
has the sign found by the previous studies. In 
columns (4) and (6), we also add dummies for 
Africa, Asia, and other continents, with Amer- 
ica as the omitted group. Although protection 
against expropriation risk remains significant, 
the continent dummies are also statistically and 
quantitatively significant. The Africa dummy in 
column (6) indicates that in our sample African 
countries are 90 log points (approximately 145 
percent) poorer even after taking the effect of 
institutions into account. Finally, in columns (7) 

and (8), we repeat our basic regressions using 
the log of output per worker from Hall and 
Jones (1999), with very similar results. 

Overall, the results in Table 2 show a strong 
correlation between institutions and economic 
performance. Nevertheless, there are a number 
of important reasons for not interpreting this 
relationship as causal. First, rich economies 
may be able to afford, or perhaps prefer, better 
institutions. Arguably more important than this 
reverse causality problem, there are many omit- 
ted determinants of income differences that will 
naturally be correlated with institutions. Finally, 
the measures of institutions are constructed ex 
post, and the analysts may have had a natural 
bias in seeing better institutions in richer places. 
As well as these problems introducing positive 
bias in the OLS estimates, the fact that the 
institutions variable is measured with consider- 
able error and corresponds poorly to the "cluster 
of institutions" that matter in practice creates 
attenuation and may bias the OLS estimates 
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FIGURE 2. OLS RELATIONSHIP BETWEEN EXPROPRIATION RISK AND INCOME 

downwards. All of these problems could be 
solved if we had an instrument for institutions. 
Such an instrument must be an important factor 
in accounting for the institutional variation that 
we observe, but have no direct effect on perfor- 
mance. Our discussion in Section I suggests that 
settler mortality during the time of colonization 
is a plausible instrument. 

III. Mortality of Early Settlers 

A. Sources of European Mortality 
in the Colonies 

In this subsection, we give a brief overview 
of the sources of mortality facing potential set- 
tlers. Malaria (particularly Plasmodium falcipo- 
rum) and yellow fever were the major sources 
of European mortality in the colonies. In the 
tropics, these two diseases accounted for 80 
percent of European deaths, while gastrointes- 
tinal diseases accounted for another 15 percent 
(Curtin, 1989 p. 30). Throughout the nineteenth 
century, areas without malaria and yellow fever, 
such as New Zealand, were more healthy than 
Europe because the major causes of death in 
Europe-tuberculosis, pneumonia, and small- 
pox-were rare in these places (Curtin, 1989 
p. 13). 

Both malaria and yellow fever are transmit- 
ted by mosquito vectors. In the case of malaria, 
the main transmitter is the Anopheles gambiae 
complex and the mosquito Anopheles funestus, 
while the main carrier of yellow fever is Aedes 
aegypti. Both malaria and yellow fever vectors 
tend to live close to human habitation. 

In places where the malaria vector is present, 
such as the West African savanna or forest, an 
individual can get as many as several hundred 
infectious mosquito bites a year. For a person 
without immunity, malaria (particularly Plas- 
modium falciporum) is often fatal, so Europe- 
ans in Africa, India, or the Caribbean faced very 
high death rates. In contrast, death rates for the 
adult local population were much lower (see 
Curtin [1964] and the discussion in our intro- 
duction above). Curtin (1998 pp. 7-8) describes 
this as follows: 

Children in West Africa ... would be in- 
fected with malaria parasites shortly after 
birth and were frequently reinfected after- 
wards; if they lived beyond the age of 
about five, they acquired an apparent im- 
munity. The parasite remained with them, 
normally in the liver, but clinical symp- 
toms were rare so long as they continued 
to be infected with the same species of P. 
falciporum. 



The problem is that there is no reason to believe institutions are
set at random

They suggest using mortalities of settlers as an instrument with
the following argument
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in their institutions and in their income per 
capita. 

To estimate the impact of institutions on eco- 
nomic performance, we need a source of exog- 
enous variation in institutions. In this paper, we 
propose a theory of institutional differences 
among countries colonized by Europeans,' and 
exploit this theory to derive a possible source of 
exogenous variation. Our theory rests on three 
premises: 

1. There were different types of colonization 
policies which created different sets of insti- 
tutions. At one extreme, European powers set 
up "extractive states," exemplified by the Bel- 
gian colonization of the Congo. These institu- 
tions did not introduce much protection for 
private property, nor did they provide checks 
and balances against government expropria- 
tion. In fact, the main purpose of the extractive 
state was to transfer as much of the resources 
of the colony to the colonizer. 
At the other extreme, many Europeans mi- 
grated and settled in a number of colonies, 
creating what the historian Alfred Crosby 
(1986) calls "Neo-Europes." The settlers tried 
to replicate European institutions, with strong 
emphasis on private property and checks 
against government power. Primary examples 
of this include Australia, New Zealand, Can- 
ada, and the United States. 

2. The colonization strategy was influenced by 
the feasibility of settlements. In places where 
the disease environment was not favorable to 
European settlement, the cards were stacked 
against the creation of Neo-Europes, and the 
formation of the extractive state was more 
likely. 

3. The colonial state and institutions persisted 
even after independence. 

Based on these three premises, we use the 
mortality rates expected by the first European 
settlers in the colonies as an instrument for 

current institutions in these countries.2 More 
specifically, our theory can be schematically 
summarized as 

(potential) settler > settlements 
mortality 

early current 
institutions institutions 

current 
performance. 

We use data on the mortality rates of soldiers, 
bishops, and sailors stationed in the colonies be- 
tween the seventeenth and nineteenth centuries, 
largely based on the work of the historian Philip 
D. Curtin. These give a good indication of the 
mortality rates faced by settlers. Europeans were 
well informed about these mortality rates at the 
time, even though they did not know how to 
control the diseases that caused these high mor- 
tality rates. 

Figure 1 plots the logarithm of GDP per 
capita today against the logarithm of the settler 
mortality rates per thousand for a sample of 75 
countries (see below for data details). It shows a 
strong negative relationship. Colonies where 
Europeans faced higher mortality rates are to- 
day substantially poorer than colonies that were 
healthy for Europeans. Our theory is that this 
relationship reflects the effect of settler mortal- 
ity working through the institutions brought by 
Europeans. To substantiate this, we regress cur- 
rent performance on current institutions, and 
instrument the latter by settler mortality rates. 
Since our focus is on property rights and checks 
against government power, we use the protec- 
tion against "risk of expropriation" index from 
Political Risk Services as a proxy for institu- 
tions. This variable measures differences in in- 
stitutions originating from different types of 
states and state policies.3 There is a strong 

1 By "colonial experience" we do not only mean the 
direct control of the colonies by European powers, but more 
generally, European influence on the rest of the world. So 
according to this definition, Sub-Saharan Africa was 
strongly affected by "colonialism" between the sixteenth 
and nineteenth centuries because of the Atlantic slave trade. 

2 Note that although only some countries were colonized, 
there is no selection bias here. This is because the question 
we are interested in is the effect of colonization policy 
conditional on being colonized. 

3Government expropriation is not the only institutional 
feature that matters. Our view is that there is a "cluster of 

Lets see what they find
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TABLE 1-DESCRIPTIVE STATISTICS 

By quartiles of mortality 

Whole world Base sample (1) (2) (3) (4) 

Log GDP per capita (PPP) in 1995 8.3 8.05 8.9 8.4 7.73 7.2 
(1.1) (1.1) 

Log output per worker in 1988 -1.70 -1.93 -1.03 -1.46 -2.20 -3.03 
(with level of United States (1.1) (1.0) 
normalized to 1) 

Average protection against 7 6.5 7.9 6.5 6 5.9 
expropriation risk, 1985-1995 (1.8) (1.5) 

Constraint on executive in 1990 3.6 4 5.3 5.1 3.3 2.3 
(2.3) (2.3) 

Constraint on executive in 1900 1.9 2.3 3.7 3.4 1.1 1 
(1.8) (2.1) 

Constraint on executive in first year 3.6 3.3 4.8 2.4 3.1 3.4 
of independence (2.4) (2.4) 

Democracy in 1900 1.1 1.6 3.9 2.8 0.19 0 
(2.6) (3.0) 

European settlements in 1900 0.31 0.16 0.32 0.26 0.08 0.005 
(0.4) (0.3) 

Log European settler mortality n.a. 4.7 3.0 4.3 4.9 6.3 
(1.1) 

Number of observations 163 64 14 18 17 15 

Notes: Standard deviations are in parentheses. Mortality is potential settler mortality, measured in terms of deaths per annum 
per 1,000 "mean strength" (raw mortality numbers are adjusted to what they would be if a force of 1,000 living people were 
kept in place for a whole year, e.g., it is possible for this number to exceed 1,000 in episodes of extreme mortality as those 
who die are replaced with new arrivals). Sources and methods for mortality are described in Section III, subsection B, and 
in the unpublished Appendix (available from the authors; or see Acemoglu et al., 2000). Quartiles of mortality are for our base 
sample of 64 observations. These are: (1) less than 65.4; (2) greater than or equal to 65.4 and less than 78.1; (3) greater than 
or equal to 78.1 and less than 280; (4) greater than or equal to 280. The number of observations differs by variable; see 
Appendix Table Al for details. 

money to enforce property rights, while 
those who have less to lose may not be. 

II. Institutions and Performance: 
OLS Estimates 

A. Data and Descriptive Statistics 

Table 1 provides descriptive statistics for the 
key variables of interest. The first column is for 
the whole world, and column (2) is for our base 
sample, limited to the 64 countries that were 
ex-colonies and for which we have settler mor- 
tality, protection against expropriation risk, and 
GDP data (this is smaller than the sample in 
Figure 1). The GDP per capita in 1995 is PPP 
adjusted (a more detailed discussion of all data 
sources is provided in Appendix Table Al). 
Income (GDP) per capita will be our measure of 
economic outcome. There are large differences 
in income per capita in both the world sample 

and our basic sample, and the standard devia- 
tion of log income per capita in both cases is 
1.1. In row 3, we also give output per worker in 
1988 from Hall and Jones (1999) as an alterna- 
tive measure of income today. Hall and Jones 
(1999) prefer this measure since it explicitly 
refers to worker productivity. On the other 
hand, given the difficulty of measuring the for- 
mal labor force, it may be a more noisy measure 
of economic performance than income per 
capita. 

We use a variety of variables to capture in- 
stitutional differences. Our main variable, re- 
ported in the second row, is an index of 
protection against expropriation. These data are 
from Political Risk Services (see, e.g., William 
D. Coplin et al., 1991), and were first used in the 
economics and political science literatures by 
Knack and Keefer (1995). Political Risk Ser- 
vices reports a value between 0 and 10 for each 
country and year, with 0 corresponding to the 
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FIGURE 3. FIRST-STAGE RELATIONSHIP BETWEEN SETTLER MORTALITY AND EXPROPRIATION RISK 

with little effect on the estimate. Columns (3) and 
(4) use the democracy index, and confirm the 
results in columns (1) and (2). 

Both constraints on the executive and democ- 
racy indices assign low scores to countries that 
were colonies in 1900, and do not use the ear- 
liest postindependence information for Latin 
American countries and the Neo-Europes. In 
columns (5) and (6), we adopt an alternative 
approach and use the constraints on the execu- 
tive in the first year of independence and also 
control separately for time since independence. 
The results are similar, and indicate that early 
institutions tend to persist. 

Columns (7) and (8) show the association be- 
tween protection against expropriation and Euro- 
pean settlements. The fraction of Europeans in 
1900 alone explains approximately 30 percent of 
the variation in our institutions variable today. 
Columns (9) and (10) show the relationship be- 
tween the protection against expropriation vari- 
able and the mortality rates faced by settlers. This 
specification will be the first stage for our main 
two-stage least-squares estimates (2SLS). It shows 
that settler mortality alone explains 27 percent of 
the differences in institutions we observe today. 

Panel B of Table 3 provides evidence in 

support of the hypothesis that early institutions 
were shaped, at least in part, by settlements, and 
that settlements were affected by mortality. Col- 
umns (1)-(2) and (5)-(6) relate our measure of 
constraint on the executive and democracy in 
1900 to the measure of European settlements in 
1900 (fraction of the population of European 
decent). Columns (3)-(4) and (7)-(8) relate the 
same variables to settler mortality. These regres- 
sions show that settlement patterns explain around 
50 percent of the variation in early institutions. 
Finally, columns (9) and (10) show the relation- 
ship between settlements and mortality rates. 

B. Institutions and Economic Performance 

Two-stage least-squares estimates of equa- 
tion (1) are presented in Table 4. Protection 
against expropriation variable, Ri, is treated as 
endogenous, and modeled as 

(5) Ri = + log Mi + X'8 + vi, 

where Mi is the settler mortality rate in 1,000 
mean strength. The exclusion restriction is that 
this variable does not appear in (1). 
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TABLE 3-DETERMINANTS OF INSTITUTIONS 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Panel A Dependent Variable Is Average Protection Against Expropriation Risk in 1985-1995 

Constraint on executive in 0.32 0.26 
1900 (0.08) (0.09) 

Democracy in 1900 0.24 0.21 
(0.06) (0.07) 

Constraint on executive in first 0.25 0.22 
year of independence (0.08) (0.08) 

European settlements in 1900 3.20 3.00 
(0.61) (0.78) 

Log European settler mortality -0.61 -0.51 
(0.13) (0.14) 

Latitude 2.20 1.60 2.70 0.58 2.00 
(1.40) (1.50) (1.40) (1.51) (1.34) 

R2 0.2 0.23 0.24 0.25 0.19 0.24 0.3 0.3 0.27 0.3 
Number of observations 63 63 62 62 63 63 66 66 64 64 

Dependent 
Variable Is 
European 

Dependent Variable Is Constraint Dependent Variable Is Settlements in 
Panel B on Executive in 1900 Democracy in 1900 1900 

European settlements in 1900 5.50 5.40 8.60 8.10 
(0.73) (0.93) (0.90) (1.20) 

Log European settler mortality -0.82 -0.65 -1.22 -0.88 -0.11 -0.07 
(0.17) (0.18) (0.24) (0.25) (0.02) (0.02) 

Latitude 0.33 3.60 1.60 7.60 0.87 
(1.80) (1.70) (2.30) (2.40) (0.19) 

R2 0.46 0.46 0.25 0.29 0.57 0.57 0.28 0.37 0.31 0.47 
Number of observations 70 70 75 75 67 67 68 68 73 73 

Notes: All regressions are OLS. Standard errors are in parentheses. Regressions with constraint on executive in first year of 
independence also include years since independence as a regressor. Average protection against expropriation risk is on a scale 
from 0 to 10, where a higher score means more protection against expropriation of private investment by government, 
averaged over 1985 to 1995. Constraint on executive in 1900 is on a scale from 1 to 7, with a higher score indicating more 
constraints. Democracy in 1900 is on a scale from 0 to 10, with a higher score indicating more democracy. European 
settlements is percent of population that was European or of European descent in 1900. See Appendix Table Al for more 
detailed variable definitions and sources. 

Panel A of Table 4 reports 2SLS estimates 
of the coefficient of interest, a from equation 
(1) and Panel B gives the corresponding first 
stages.18 Column (1) displays the strong first- 
stage relationship between (log) settler mortal- 
ity and current institutions in our base sample, 
also shown in Table 3. The corresponding 2SLS 

estimate of the impact of institutions on income 
per capita is 0.94. This estimate is highly sig- 
nificant with a standard error of 0.16, and in fact 
larger than the OLS estimates reported in 
Table 2. This suggests that measurement error 
in the institutions variables that creates attenu- 
ation bias is likely to be more important than 
reverse causality and omitted variables biases. 
Here we are referring to "measurement error" 
broadly construed. In reality the set of institu- 
tions that matter for economic performance is 
very complex, and any single measure is bound 
to capture only part of the "true institutions," 

18 We have also run these regressions with standard 
errors corrected for possible clustering of the mortality rates 
assigned to countries in the same disease environment. This 
clustering has little effect on the standard errors, and does 
not change our results. 
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FIGURE 1. REDUCED-FORM RELATIONSHIP BETWEEN INCOME AND SETTLER MORTALITY 

(first-stage) relationship between settler mortal- 
ity rates and current institutions, which is inter- 
esting in its own right. The regression shows 
that mortality rates faced by the settlers more 
than 100 years ago explains over 25 percent 
of the variation in current institutions.4 We also 
document that this relationship works through 
the channels we hypothesize: (potential) settler 
mortality rates were a major determinant of 
settlements; settlements were a major determi- 
nant of early institutions (in practice, institu- 
tions in 1900); and there is a strong correlation 
between early institutions and institutions to- 
day. Our two-stage least-squares estimate of the 
effect of institutions on performance is rela- 
tively precisely estimated and large. For ex- 
ample, it implies that improving Nigeria's 

institutions to the level of Chile could, in the 
long run, lead to as much as a 7-fold increase in 
Nigeria's income (in practice Chile is over 11 
times as rich as Nigeria). 

The exclusion restriction implied by our in- 
strumental variable regression is that, condi- 
tional on the controls included in the regression, 
the mortality rates of European settlers more 
than 100 years ago have no effect on GDP per 
capita today, other than their effect through 
institutional development. The major concern 
with this exclusion restriction is that the mor- 
tality rates of settlers could be correlated with 
the current disease environment, which may 
have a direct effect on economic performance. 
In this case, our instrumental-variables esti- 
mates may be assigning the effect of diseases on 
income to institutions. We believe that this is 
unlikely to be the case and that our exclusion 
restriction is plausible. The great majority of 
European deaths in the colonies were caused by 
malaria and yellow fever. Although these dis- 
eases were fatal to Europeans who had no im- 
munity, they had limited effect on indigenous 
adults who had developed various types of im- 
munities. These diseases are therefore unlikely 
to be the reason why many countries in Africa 
and Asia are very poor today (see the discussion 
in Section III, subsection A). This notion is 

institutions," including constraints on government expropri- 
ation, independent judiciary, property rights enforcement, 
and institutions providing equal access to education and 
ensuring civil liberties, that are important to encourage 
investment and growth. Expropriation risk is related to all 
these institutional features. In Acemoglu et al. (2000), we 
reported similar results with other institutions variables. 

4 Differences in mortality rates are not the only, or even 
the main, cause of variation in institutions. For our empir- 
ical approach to work, all we need is that they are a source 
of exogenous variation. 
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TABLE 4-IV REGRESSIONS OF LOG GDP PER CAPITA 

Base 
Base Base sample, 

Base Base sample sample dependent 
Base sample Base sample sample sample with with variable is 

Base Base without without without without continent continent log output 
sample sample Neo-Europes Neo-Europes Africa Africa dummies dummies per worker 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Two-Stage Least Squares 

Average protection against 0.94 1.00 1.28 1.21 0.58 0.58 0.98 1.10 0.98 
expropriation risk 1985-1995 (0.16) (0.22) (0.36) (0.35) (0.10) (0.12) (0.30) (0.46) (0.17) 

Latitude -0.65 0.94 0.04 -1.20 
(1.34) (1.46) (0.84) (1.8) 

Asia dummy -0.92 -1.10 
(0.40) (0.52) 

Africa dummy -0.46 -0.44 
(0.36) (0.42) 

"Other" continent dummy -0.94 -0.99 
(0.85) (1.0) 

Panel B: First Stage for Average Protection Against Expropriation Risk in 1985-1995 

Log European settler mortality -0.61 -0.51 -0.39 -0.39 -1.20 -1.10 -0.43 -0.34 -0.63 
(0.13) (0.14) (0.13) (0.14) (0.22) (0.24) (0.17) (0.18) (0.13) 

Latitude 2.00 -0.11 0.99 2.00 
(1.34) (1.50) (1.43) (1.40) 

Asia dummy 0.33 0.47 
(0.49) (0.50) 

Africa dummy -0.27 -0.26 
(0.41) (0.41) 

"Other" continent dummy 1.24 1.1 
(0.84) (0.84) 

R2 0.27 0.30 0.13 0.13 0.47 0.47 0.30 0.33 0.28 

Panel C: Ordinary Least Squares 

Average protection against 0.52 0.47 0.49 0.47 0.48 0.47 0.42 0.40 0.46 
expropriation risk 1985-1995 (0.06) (0.06) (0.08) (0.07) (0.07) (0.07) (0.06) (0.06) (0.06) 

Number of observations 64 64 60 60 37 37 64 64 61 

Notes: The dependent variable in columns (1)-(8) is log GDP per capita in 1995, PPP basis. The dependent variable in column (9) is log output 
per worker, from Hall and Jones (1999). "Average protection against expropriation risk 1985-1995" is measured on a scale from 0 to 10, where 
a higher score means more protection against risk of expropriation of investment by the government, from Political Risk Services. Panel A 
reports the two-stage least-squares estimates, instrumenting for protection against expropriation risk using log settler mortality; Panel B reports 
the corresponding first stage. Panel C reports the coefficient from an OLS regression of the dependent variable against average protection against 
expropriation risk. Standard errors are in parentheses. In regressions with continent dummies, the dummy for America is omitted. See Appendix 
Table Al for more detailed variable descriptions and sources. 

creating a typical measurement error problem. 
Moreover, what matters for current income is 
presumably not only institutions today, but also 
institutions in the past. Our measure of institu- 
tions which refers to 1985-1995 will not be 
perfectly correlated with these.19 

Does the 2SLS estimate make quantitative 
sense? Does it imply that institutional differences 
can explain a significant fraction of income dif- 

19 We can ascertain, to some degree, whether the differ- 
ence between OLS and 2SLS estimates could be due to 
measurement error in the institutions variable by making 
use of an alternative measure of institutions, for example, 
the constraints on the executive measure. Using this mea- 

sure as an instrument for the protection against expropria- 
tion index would solve the measurement error, but not the 
endogeneity problem. This exercise leads to an estimate of 
the effect of protection against expropriation equal to 0.87 
(with standard error 0.16). This suggests that "measurement 
error" in the institutions variables (or the "signal-to-noise 
ratio" in the institutions variable) is of the right order of 
magnitude to explain the difference between the OLS and 
2SLS estimates. 



Overidentification

What happens when we have more than one instrument?

Lets think about a general case in which Zi is multidimensional

Let KZ be the dimension of Z∗i
Let KX denote the dimension of X∗i

Now we have more equations then parameters so we can no
longer solve for B̂ using

0 = Z∗
′
(

Y − X∗B̂
)

because this gives us KZ equations in KX unknowns.



A simple solution is follow GMM and weight the moments by
some KZ × KZ weighting matrix Ω and then minimize[

Z∗
′
(Y − X∗B)

]′
Ω
[
Z∗

′
(Y − X∗B)

]
which gives

−2X∗
′
Z∗ΩZ∗

′
(

Y − X∗B̂
)

= 0

(notice that in the exactly identified case X∗
′
Z∗Ω drops out)

We can solve directly for our estimator

B̂GMM =
(

X∗
′
Z∗ΩZ∗

′
X∗
)−1

X∗
′
Z∗ΩZ∗

′
Y



Two staged least squares is a special case of this:

B̂2SLS =

(
X∗

′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
X∗
)−1

X∗
′
Z∗
(

Z∗
′
Z∗
)−1

Z∗
′
Y

Notice that this is the same as B̂GMM when

Ω =
(

Z∗
′
Z∗
)−1



Consistency

B̂GMM =

(
1
N

X∗
′
Z∗Ω

1
N

Z∗
′
X∗
)−1 1

N
X∗

′
Z∗Ω

1
N

Z∗
′
(X∗B + U)

=B +

(
1
N

X∗
′
Z∗Ω

1
N

Z∗
′
X∗
)−1 1

N
X∗

′
Z∗Ω

1
N

Z∗
′
U

≈B +
(

E
(

X∗i Z∗
′

i

)
ΩE
(

Z∗i X∗
′

i

))−1
E
(

X∗i Z∗
′

i

)
ΩE(Z∗i ui)

=B



Inference

√
N
(

B̂− B
)

=

(
1
N

X∗
′
Z∗Ω

1
N

Z∗
′
X∗
)−1 1

N
X∗

′
Z∗Ω

1√
N

Z∗
′
U

Using a standard central limit theorem with i.i.d. data

1√
N

Z∗
′
U =

1√
N

N∑
i=1

Z∗i ui

≈ N
(

0,E
(

u2
i Z∗i Z∗

′
i

))
Thus

√
N
(

B̂− B
)
≈N

(
0,A′VA

)
with

V =E
(

X∗i Z∗
′

i

)
ΩE
(

u2
i Z∗i Z∗

′
i

)
ΩE
(

Z∗i X∗
′

i

)
A =

(
E
(

X∗i Z∗
′

i

)
ΩE
(

Z∗i X∗
′

i

))−1



From GMM results we know that the efficient weighting matrix is

Ω =E
(

u2
i Z∗i Z∗

′
i

)−1

in which case the Covariance matrix simplifies to(
E
(

X∗i Z∗
′

i

)
E
(

u2
i Z∗i Z∗

′
i

)−1
E
(

Z∗i X∗
′

i

))−1

This also means that under homoskedasticity two staged least
squares is efficient.



Overidentification Tests

Lets think about testing in the following way.

Suppose we have two instruments so that we have three sets of
moment conditions

0 = Z′1
(

Y − Tα̂− Xβ̂
)

0 = Z′2
(

Y − Tα̂− Xβ̂
)

0 = X′
(

Y − Tα̂− Xβ̂
)



As before we can use partitioned regression to deal with the X’s
and then write the first two moment equations as

0 = Z̃′1
(

Ỹ − T̃α̂
)

0 = Z̃′2
(

Ỹ − T̃α̂
)

The way I see the overidentification test is whether we can find
an α̂ that solves both equations.



That is let

α̂1 =
Z̃′1Ỹ

Z̃′2T̃

α̂2 =
Z̃′1Ỹ

Z̃′2T̃

If
α̂1 ≈ α̂2

then the test will not reject the model, otherwise it will

For this reason I am not a big fan of overidentification tests:

If you have two crappy instruments with roughly the same
bias you will fail to reject
Why not just estimate α̂1 and α̂2 and look at them? It
seems to me that you learn much more from that than a
simple F-statistic


