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Definition of Identification

Another term that means different things to different people

I will base my discussion on Matzkin’s (2007) formal definition
of identification but use my own notation and be a bit less
formal

This will all be about the Population in thinking about
identification we will completely ignore sampling issues

We first need to define a data generation process



Data Generating Process

Let me define the data generating process in the following way

Xi ∼H0(Xi)

ui ∼F0(ui; θ)

Υi =y0(Xi, ui; θ)

The data is (Υi,Xi) with ui unobserved.

We know this model up to θ



To think of this as non-parametric we can think of θ as infinite
dimensional

For example if F0 is nonparametric we could write the model as
θ = (θ1,F0(·))



Point Identification of the Model

The model is identified if there is a unique θ that could have
generated the population distribution of the observable data
(Xi,Υi)

A bit more formally, let Θ be the parameter space of θ and let θ0
be the true value

If there is some other θ1 ∈ Θ with θ1 6= θ0 for which the joint
distribution of (Xi,Υi) when generated by θ1 is identical to
the joint distribution of (Xi,Υi) when generated by θ0 then θ
is not identified
If there is no such θ1 ∈ Θ then θ is (point) identified



Set Identification of the Model

Define ΘI as the identified set.

I still want to think of there as being one true θ0

ΘI is the set of θ1 ∈ Θ for which the joint distribution of (Xi,Υi)
when generated by θ1 is identical to the joint distribution of
(Xi,Υi) when generated by θ0.

So another way to think about point identification is the case in
which

ΘI = {θ0}



Identification of a feature of a model

Suppose we are interested not in the full model but only a
feature of the model: ψ(θ)

The feature is identified if there is a unique value of it consistent
with the observed data

More formally
ΨI ≡ {ψ(θ) : θ ∈ ΘI}

Most interesting cases occur when ΘI is a large set but ΨI is a
singleton



In practice ψ(θ) could be something complicated like a policy
counterfactual in which we typically need to first get θ and then
simulate ψ(θ)

However, often it is much simpler and we can just write it as a
known function of the data.



I can think of the Imbens/Angrist framework as a data
generation process.

The data is (Zi,Ti,Yi)

Here Zi is my exogenous Xi so H0(Xi) in that case is

Pr(Zi = 1) =ρ

Pr(Zi = 0) =1− ρ



They are not explicit about ui but I can add it as

ui =

 Si

Y0i

Y1i


and we can write this joint distribution as

Pr(Si = s)

and F0(Y0i | Si = s) and F1(Y1i | Si = s) as the distributions of Y0i

and Y1i respectively conditional on Si.



Then finally Υi = (Ti,Yi) .

Once we have done this the y0 is trivial

Υi =y0(Zi, ui)

=


(1,Y1i) Si = ♣
(0,Y0i) Si = ♥
(0,Y0i) Si = ♦,Zi = 0
(1,Y1i) Si = ♦,Zi = 1



What can we hope to identify?

What we get from data is essentially:

Dist of Zi : ρ

Dist of Ti conditional on Zi. This is µ♣ when Zi = 0 and
µ♣ + µ♦ when Zi = 1, so the µ′s are identified
Then

1 The distribution of Yi conditional of Zi = 0,Ti = 0, which is
the distribution of Y0i conditional on Si ∈ {♥,♦}

2 The distribution of Yi conditional of Zi = 0,Ti = 1, which is
the distribution of Y1i conditional on Si ∈ {♣}

3 The distribution of Yi conditional of Zi = 1,Ti = 0, which is
the distribution of Y0i conditional on Si ∈ {♥}

4 The distribution of Yi conditional of Zi = 1,Ti = 1, which is
the distribution of Y1i conditional on Si ∈ {♣,♦}



Notice that clearly the full model and the average treatment
effect is not identified. The data is silent about

the distrubution of Y0i for Si = ♣
the distrubution of Y1i for Si = ♥

From that sense if we want to get a conditional treatment effect
our only hope is the ♦s.



To see this is identified note that

From 2 E (Y1i | Si = ♣) is identified
From 4 we can identify

E (Yi | Zi = 1,Ti = 1) =
µ♣E (Y1i | Si = ♣) + µ♦E (Y1i | Si = ♦)

µ♣ + µ♦

So

E (Y1i | Si = ♦) =
(µ♣ + µ♦) E (Yi | Zi = 1,Ti = 1)− µ♣E (Y1i | Si = ♣)

µ♦

is identified
This is symmetric so

E (Y0i | Si = ♦) =
(µ♥ + µ♦) E (Yi | Zi = 0,Ti = 0)− µ♥E (Y0i | Si = ♥)

µ♦

And thus

E (αi | Si = ♦) =E (Y1i | Si = ♦)− E (Y0i | Si = ♦)

is identified



Observations

pretty nice that this is what IV actually converges to
Not this simple if covariates or either Zi or Ti is not binary
however if Zi take on lots of values you can get more, if it
varies enough the average treatment effect is identified
This doesn’t work with other features of the distribution like
the median. (difference of the medians is not the median of
the difference)
However mean is pretty general, we can define Yi however
we want so we can identify the mean of any function of Yi.

One such function is 1(Yi ≤ y) .
Do that at all y and we can identify the conditonal cdf of Y1i

for the ♦ and the conditional cdf of Y0i for the ♦
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