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Difference Model

Lets think about a simple evaluation of a policy.

If we have data on a bunch of people right before the policy is
enacted and on the same group of people after it is enacted we
can try to identify the effect.

Suppose we have two years of data 0 and 1 and that the policy
is enacted in between

We could try to identify the effect by simply looking at before
and after the policy

That is we can identify the effect as

Y1 —Yo



We could formally justify this with a fixed effects model.

Let
Yii = Bo + oaTi + 0; + u;

We have in mind that

We will also assume that u;, is orthogonal to 7;, after taking
accounting for the fixed effect

We don’t need to make any assumptions about 6;



Background on Fixed effect.
Lets forget about the basic problem and review fixed effects
more generally

Assume that we have T; observations for each individual
numbered 1, ..., T;

We write the model as

Yie = XufS + 0; + uis
and assume the vector of u;; is uncorrelated with the vector of
X;; (though this is stronger than what we need)

Also one can think of 6; as a random intercept, so there is no
intercept included in X,



For a generic variable Z;; define

then notice that

So
(Y = Y) = Xu — X)' B+ (uyr — ;)

We can get a consistent estimate of 3 by regressing (Y;; — ¥;)
on (X; — X).

The key thing is we didn’t need to assume anything about the
relationship between 6; and X;

(From here you can see that what we need for consistency is



This is numerically equivalent to putting a bunch of individual
fixed effects into the model and then running the regressions

To see why, let D; be a N x 1 vector of dummy variables so that

for the j"element:
ph =t =i
0 otherwise

and write the regression model as
Yi = XitB"‘ Dﬁ"‘ ﬁit

It will again be useful to think about this as a partitioned
regression



For a generic variable Z;, think about a regression of Z;; onto D;

Abusing notation somewhat, the least squares estimator for this
is

T;

5= (zN: iD,-DQ) ) ZN: > DiZi

i=1 =1 i=1 t=1

o The matrix 3", >°7' D;D; is an N x N diagonal matrix
with each (i, i) diagonal element equal to T;.

o The vector -V ST D7, is an N x 1 vector with j*
element 37| 7,

o Thus § is an N x 1 vector with generic element Z;

° Dﬁ =7



Or using notation from the previous lecture notes we can write
Z=MpZ
where a generic row of this matrix is
Zy—D6=Z4—7

Thus we can see that Bjust comes from regressing (Y;; — Y;) on
(X — X) which is exactly what fixed effects is



Model vs. Estimator

For me it is very important to distinguish the econometric model
or data generating process from the method we use to estimate
these models.

o The model is
Yii = XiyB+0; + uyy

@ We can get consistent estimates of 5 by regressing Y;; on
X;; and individual dummy variables



This is conceptually different than writing the model as
Yii = XitBB + Di + u;y
Technically they are the same thing but:

o The equation is strange because notationally the true data
generating process for Y;; depends upon the sample

@ More conceptually the model and the way we estimate
them are separate issues-this mixes the two together



First Differencing

The other standard way of dealing with fixed effects is to “first
difference” the data so we can write

Yie — Yi—1 = (Xir — Xi—1)' B+ tir — wir—1

Note that with only 2 periods this is equivalent to the standard

fixed effect because
_ Y; Y;
Yp —Yi=7Yn— 0t
2
Yo —Y;
2

This is not the same as the regular fixed effect estimator when
you have more than two periods



To see that, lets think about a simple “treatment effect” model
with only the regressor T;.

Assume that we have T periods for everyone, and that also for

everyone
0 <71
T; =

1 t>71

Think of this as a new national program that begins at period
T4+ 1



The standard fixed effect estimator is
N scov (Ty — Ti, Yy — V)
QFg = =
svar (T — T;)

:Zﬁvzl Sy (T =T) (Y = Y))

(2 =L (7 - 7°)
Let

B 1 N T
P IP IR

i=1 t=7+1

B 1 N T
YB:EZZY"

i=1 t=1
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The denominator is

i—1 Li=1 Pt
[ T—7T—1 TT
— T
N _7' T +(T—71) TT]
TT?2 = 27T+ 13 T72—73
=N T2 72
[7T% — 72T




So the fixed effects estimator is just
Yy —Yp
Next consider the first differences estimator

SN S (T — Timy) (Yie — Yaa)
S S, (T — Ti1)?

:Zﬁvzl (Yirg1 — Yir)
N
=Lr41 — YT

Notice that you throw out all the data except right before and
after the policy change.



You can also see that these correspond in the two period case

Thus we have shown in the two period model-or multi-period
model that the fixed effects estimator is just a difference in
means, before and after the policy is implemented

This is sometimes called the “difference model”



The problem is that this attributes any changes in time to the
policy

That is suppose something else happened at time 7 other than
just the program.

We will attribute whatever that is to the program.

If we added time dummy variables into our model we could not
separate the time effect from T;; (in the case above)



To solve this problem, suppose we have two groups:

o People who are affected by the policy changes (¢)
o People who are not affected by the policy change (&)

and only two time periods before (r = 0) and after (r = 1)

We can think of using the controls to pick up the time changes:
Ya1 — Yao

Then we can estimate our policy effect as a difference in

difference:

a = (Yo1 — Yo0) — (Ya1 — Ya0)



To put this in a regression model we can write it as
Yir = Bo + Ty + 01+ 0; + €
where s(i) indicates persons suit

Now think about what happens if we run a fixed effect
regression in this case



Let s(i) indicate and individual’s suit (either ¢ or &)

Further we will assume that



Identification

Lets first think about identification in this case notice that

[E(Yi1 | s(i) = #) — E(Yip | s(i) = )]
— [E(Yin | s(i) = &) — E(Yio | s(i) = &)]
=[(Bo+a+ 0+ E(6; | s(i) = ¢)) — (bo + E(6; | s(i) = ¢))]
— [(Bo+ 0+ E(0; | s(i) = )) — (Bo + E(0; | s(i) = &))]
=a+46
-0

=



Fixed Effects Estimation

Doing fixed effects is equivalent to first differencing, so we can
write the model as

(Yir — Yio) = 6 + o (Tyiy — Ty(iyo) + (€1 — €io)



Let Ny and N4 denote the number of diamonds and clubs in the
data

Note that for 4’s, Ts(i)l - Ts(i)O =1, but for &’s, Ts(i)l - Ts(i)O =0
This means that N

T —Tp=—t

Ny + Ng,
and of course

Na

1= =To) = 575,



So if we run a regression
& :E?’:l ((Tsy1 — Ty(iyo) — (T1 — To)) (Yir — Yio)
SN Ty — Too — T + To)2

Ng,
Ne (N,.+N,> (Yo1 — Y40) — Naait; (Va1 — Ya0)

- 2
N, No
Ny (N.,,fN.) +N4- (N.,.+N.>

NN, o Ng,
N.:"FNQ <Y’1 Y‘O) N_',—i—N (Ylvl - YJoO)
NoNa,(Nas+No)
(Ng+No )

= (Yo1 — Yo0) — (Ya1 — Y0)



Actually you don’t need panel data, but could do just fine with
repeated cross section data.

In this case we add a dummy variable for being a ¢, let this be
¢

Then we can write the regression as

Y; = Bo+ Ty + o1(i) + 74 + &



To show this works, lets work with the GMM equations (or
Normal equations)
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We can rewrite these equations as

0=Y5
‘70
0=Y5
4.1
0=%"5
.0
0=Y"5



Using

we can write as

Y, = ,/3\0 + aTs(i)t(i) + gt(i) + 7 + &

Yoo =Bo +7

Yor =Bo+a+d+7
Ya0 =P

Y&l 230—1—3



We can solve for the parameters as

Bo =Y a0
7 =Y40 — Yo
a=Ye1 — Yoo — (Ya1 — Yao) — (Yoo — Yig0)

(Yo1 — Yo0) — (Ya1 — Yao)

”

Now more generally we can think of “difference in differences

as
Yi = Bo+ aTgiy) + 0ii) + Og(i) + €i

where g(i) is the individual’s group

There are many papers that do this basic sort of thing



Eissa and Liebman “Labor Supply Response to the
Earned Income Tax Credit” (QJE, 1996)

They want to estimate the effect of the earned income tax credit
on labor supply of women

The EITC is a subsidy that goes mostly to low income women
who have children

It looks something like this:
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Eissa and Liebman evaluate the effect of the effect on EITC
from the Tax Reform Act of 1986.

At that time only people with children were eligible

They use:

o For Treatments: Single women with kids
o For Controls: Single women without kids

They look before and after the EITC

Here is the simple model



TABLE 11
LABOR FORCE PARTICIPATION RATES OF UNMARRIED WOMEN

Difference-in-
Pre-TRA86 Post-TRA86 Difference differences
Q) (2) 3 4)

A. Treatment group:
With children 0.729 (0.004) 0.753 (0.004) 0.024 (0.006)
[20,810]
Control group:
Without children 0.952 (0.001) 0.952 (0.001) 0.000 (0.002) 0.024 (0.006)
[46,287]

B. Treatment group:
Less than high school, with children 0.479 (0.010) 0.497 (0.010) 0.018 (0.014)
[5396]
Control group 1:
Less than high school, without children 0.784 (0.010) 0.761 (0.009) —0.023 (0.013) 0.041 (0.019)
[3958]
Control group 2:
Beyond high school, with children 0.911 (0.005) 0.920 (0.005) 0.009 (0.007) 0.009 (0.015)
[5712]

C. Treatment group:
High school, with children 0.764 (0.006) 0.787 (0.006) 0.023 (0.008)
[9702]
Control group 1:
High school, without children 0.945 (0.002) 0.943 (0.003) —0.002 (0.004) 0.025 (0.009)
[16,527]
Control group 2:
Beyond high school, with children 0.911 (0.005) 0.920 (0.005) 0.009 (0.007) 0.014 (0.011)
[5712]

Data are from the March CPS, 1985-1987 and 1989-1991. Pre-TRA86 years are 1984-1986. Post-TRAS6 years are 1988-1990. Labor force participation equals one if annual
hours are positive, zero otherwise. Standard errors are in parentheses. Sample sizes are in square brackets. Means are weighted with CPS March supplement weights.



Note that this is nice and suggests it really is a true effect

As an alternative suppose the data showed

Treatment | Control
Before 1.00 1.50
After 1.10 1.65

This would give a difference in difference estimate of -0.05.

However how do we know what the right metric is?



Take logs and you get

Treatment | Control
Before 0.00 0.41
After 0.10 0.50

This gives diff-in-diff estimate of 0.01

So even the sign is not robust




However if the model looks like this, we have much stronger
evidence of an effect



Time



Eissa and Liebman estimate the model as a probit
Prob(Yl- = 1) =0 (50 + OéTg(,-)t + Xl/ﬂ + (5,(0 + Hg(,))

They also look at the effect of the EITC on hours of work



TABLE III
ProBIT RESULTS: CHILDREN VERSUS NO CHILDREN ALL UNMARRIED WOMEN

Sample: all unmarried women

Without Demographic ~ Unemployment State Second child  Separate year
covariates characteristics and AFDC dummies dummy interactions
Variables (1) 2 3) 4) 5) (6)
Coefficient estimates

Other income (1000s) — —0.035(.001)  —0.034 (.001) —0.034 (.001) —0.034(.001) —0.039 (.001)
Number of preschool children — —-0.395(.016)  —0.279(.018) —0.281(.018) —0.278(.018) —0.279(.018)
Nonwhite — -0.422 (.016)  —0.521(.030) —0.520(.031) -0.518(.031) —0.518(.031)
Age — —0.237 (.059)  —0.209 (.060) —0.195(.060) —0.194(.060) —0.193 (.060)
Age squared — 0.007 (.002) 0.006 (.002) 0.006 (.002) 0.006 (.002) 0.006 (.002)
Education - —0.020 (.014)  —0.029 (.014) —0.029 (.014) -0.029 (.014) —0.029 (.014)
Education squared — 0.010 (.001) 0.010 (.001) 0.010 (.001)  0.010(.001) 0.010 (.001)
Second child — — — — —0.118 (.040) —0.117 (.040)
State Unemployment rate — — —0.096 (.007) —0.063 (.012) —0.064(.012) —0.064 (.012)
State Unemployment rate kids
X kids _ — 0.028 (.010) 0.029 (.010) 0.029 (.010) 0.030 (.010)
Maximum monthly AFDC

benefit — — —0.001 (.000)  —0.001(.000) —0.001(.001) —0.001(.000)



Kids (y,) —1.053 (.020)
Post86 (y,) —0.001 (.028)
Kids X Post86 (v,) 0.069 (.027)
Kids x 1988
Kids X 1989
Kids X 1990
Second child X post86
Log likelihood —20759
Predicted participation r
for treatment group

—0.250 (.029)

0.019 (.031)

0.074 (.030)

—17105

.019 (.008)

—1.403 (.106)

—0.152 (.067)

0.103 (.037)

—16793

.026 (.010)

—1.438 (.108)

—0.104 (.069)

0.113 (.037)

—16633

.028 (.009)

—1.458 (.110)
—0.094 (.069)
0.087 (.043)

0.051 (.043)
—16629

.022 (.009)

—1.462 (.110)

0.033 (.057)
0.116 (.058)
0.112 (.057)
~16626
.008, .029,
.028 (.014),
(.015), (.015)

Data are from survey years 1985-1987 and 1898-1991 of the March CPS. The dependent variable is labor force participation. It equals one if the woman worked at least one
hour during the tax year. Post86 equals one for tax years 1988, 1989, 1990. Kids equals one if the tax filing unit contained at least one child. In addition to the variables shown, all
regressions include year dummies for 1984, 1985, 1989, and 1990. Columns (2) through (6) also include variables for the number of children in the tax filing unit age-cubed. Columns
(3) through (6) also include interactions of age and nonwhite with post86 and with kids. Columns (4) through (6) also include a full set of state dummies. Column (6) also includes

interactions of second child with the year dummies for 1988, 1989, and 1990. The number of obser

with CPS March supplement weights.

ions is 67, 097. Standard errors are in

are weighted



1ADLL v
HoURs AND WEEKS REGRESSIONS: CHILDREN VERSUS NO CHILDREN

Dependent variable: Annual hours  Annual hours Annual hours  Annual hours Annual weeks Annual weeks
All single Less than high
women with school with All single Less than high  All single women All single
hours >0 hours > 0 women school with hours > 0 women
Variables @D (2) 3) (4) (5) (6)

Coefficient estimates

Other income (1000s) —21.83 (.61) —26.81 (2.93) —29.92 (.62) —56.65 (2.46)  —0.433 (.012) —0.670 (.014)
Number of preschool
children —66.28 (10.42)  —72.21(25.57) -—136.49(9.18) -107.94(16.92) —1.833(.214) —3.944 (.207)
Nonwhite —140.94 (11.77) —142.84 (41.29) —209.80 (12.43) —266.32(36.14)  —2.680 (.241) —4.788 (.281)
Age 786.82 (22.38) 475.01(64.29) 576.16 (23.59) 211.04 (54.87) 13.743 (.459) 9.391 (.533)
Age squared —21.45 (.75) —12.62 (2.21) —15.12 (.80) -4.79(1.89)  —0.385(.015) —0.252 (.018)
Education 56.69 (6.41) 14.22 (17.07) 114.90 (6.14)  —56.03 (15.03) 1.262 (.132) 3.086 (.139)
Education squared —1.58 (.25) —-0.21(1.22) —2.22 (.24) 5.97(1.05)  —0.041(.005) —0.068 (.006)
Unemployment rate -9.98(3.85) —31.37(14.58) —15.94(4.15) —42.24(13.00) —0.130(.079) —0.304 (.094)
Unemployment rate
x kids 5.27 (4.17) 33.60 (13.44) 1.33 (4.14) 34.40 (11.10) 0.054 (.086) —.065 (.094)
Maximum monthly
AFDC benefit —0.22 (.06) —0.10 (.18) —0.54 (.06) —0.14 (.14)  —0.005 (.001) —.014 (.001)
Kids (y,) —83.03 (47.82) —249.44 (132.61) —186.48 (46.65) —327.07 (110.24)  —6.856 (.981) —11.420 (1.054)
Post86 (v,) —29.95 (23.61) 63.27 (78.03) —45.33 (25.20) —56.27 (69.26) 0.722 (.484) 0.222 (.569)
Kids X Post86 (y, 25.22 (15.18) 2.98 (46.04) 37.37 (15.31) 83.83 (39.42) .126 (.311) .560 (.346)
Observations 59,474 5700 67,097 9354 59,474 67,097

Data are from survey years 1985-1987 and 1989-1991 of the March CPS. Post86 equals one for tax years 1988, 1989, and 1990. Kids equals one if the tax filing unit contained at
least one child. In addition to the variables shown, all regressions include year dummies for 1984, 1985, 1989, and 1990; variables for the number of children in the tax filing unit; age-
cubed; interactions of age and nonwhite with post86 and with kids; and a full set of state dummies. Standard errors are in parentheses. Regressions are weighted with CPS March

supplement weights.
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Hastings, “Vertical Relationships and Competition in
Retail Gasoline Markets: Empirical Evidence from
Contract Changes in Southern California” (AER, 2004)

IO uses these methods as well.
Lets look at an important example (not something | know well).

There is huge variation in the price of gas across different
geographic areas

One explanation is that increases in gas prices are due to
vertical integration-retail stations are often owned by refiners.



Types of ownership of stations

o Independent

o use unbranded gas

o can shop among refiners to find best deal
o Branded

o must used branded gas and have their signage
o Three types

o company operated station

o lessee dealer (company owned but leased)

o dealer owned



In 1997 ARCO (branded) took over most of the Thriftys
(independent) in southern california.

Hastings does a difference in differences design to see if
having an indpendent or company operated station near by.

Nearby is described as within one mile



TABLE 1 —SUMMARY STATISTICS OF RETAIL PRICE SAMPLE

Panel A

Percent of stations in sample Los Angeles San Diego

ARCO 19.41 13.21
Chevron 17.84 17.61
Mobil 15.88 13.21
Shell 14.12 17.61
Texaco 8.43 12.58
Unocal 12.55 11.95
Minor brands 5.25 8.18
Independents 6.52 5.66

Number of observations N = 510 N = 159



Panel B

Average price

(Standard deviation) Los Angeles San Diego
February, 1997 1.273 1.320
(0.060) (0.035)
June, 1997 1.285 1.375
(0.068) (0.049)
October, 1997 1.405 1.468
(0.070) (0.056)
December, 1997 1.266 1414
(0.073) (0.0610)
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The basic specification (in my notation)

pir =i + oyiy + ¢cis + 0Zig + €5t

Where

o i is station

o /(i) location of station

o ¢ quarter

9 ¢;; company operated competitor
o Z; Independent competitor



TABLE 2 —FIXED-EFFECTS ESTIMATION

Dependent variable:
Retail price for regular unleaded

Variable (1 2) 3)

Intercept 1.3465 1.3465 1.3617
(0.0421)  (0.0415) (0.0287)
Company operated 0.1080 —0.0033 —0.0033
(0.0107)  (0.0178) (0.0122)
Independent — —0.1013 —0.0500
(0.0143) (0.0101)

LA#*February — — 0.0180
(0.0065)

LAsJune — — 0.0243
(0.0065)

LA=*October — — 0.1390
(0.0064)

SD#*February — — —0.0851
(0.0036)
SD:June — — —0.0304
(0.0036)

SD:*October — — 0.0545

(0.0036)



TABLE 3 —FIXED-EFFECTS ESTIMATION, INDEPENDENT
COEFFICIENT BY BRAND GROUP

Dependent variable: Retail price for regular unleaded
(Standard errors are in parentheses)

(1 (2)

Parameter Parameter
Variable estimate  estimate
Intercept 1.3622 1.3620

(0.0287)  (0.0287)
Company operated —0.0018 —0.0008

(0.0124) (0.0124)
Independent - High-share brands —0.0273 —0.0362

(0.0125)  (0.0156)
Independent - Middle-share brands —0.0530 —0.0617
(0.0154)  (0.0179)

Independent + Low-share brands —0.0700 —0.0741
(0.0185)  (0.0190)
Independent - ARCO —-0.0731 —0.0741
(0.0149)  (0.0149)
Independent + N-decreased — 0.0130
(0.0136)

City-time effects Yes Yes

Adjusted R* 0.7183 0.7187




Donahue and Levitt “The Impact of Legalized Abortion
on Crime” (QJE, 2001)

This was a paper that got a huge amount of attention in the
press at the time

They show (or claim to show) that there was a large effect of
abortion on crime rates

The story is that the children who were not born as a result of
the legalization were more likely to become criminals

This could be either because of the types of families they were
likely to be born to, or because there was differential timing of
birth



Identification comes because 5 states legalized abortion prior
to Roe v. Wade (around 1970): New York, Alaska, Hawaii,
Washington, and California

In 1973 the supreme court legalized abortion with Roe v. Wade

What makes this complicated is that newborns very rarely
commit crimes

They need to match the timing of abortion with the age that kids
are likely to commence their criminal behavior



They use the concept of effective abortion which for state j at
time ¢ is

Arrest,
EffectiveAbortionj; = ZAbOFtiOnlegaljl_a < rrests, )
a

ArrestSipal

The model is then estimated using difference in differences:

log(Crimej;) = [31EffectiveAbortionj; + XJ{,@ ++ XN +eEi
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TABLE 1
CRIME TRENDS FOR STATES LEGALIZING ABORTION EARLY VERSUS
THE REST OF THE UNITED STATES

Percent change in crime rate over the period

Cumulative,
Crime category 1976-1982 1982-1985 1988-1994 1994-1997 1982-1997
Violent crime
Early legalizers 16.6 11.1 1.9 —25.8 —12.8
Rest of U. S. 20.9 13.2 154 —11.0 17.6
Difference —4.3 —-2.1 —13.4 —14.8 —30.4
(5.5) (5.4) (4.4) (3.3) 8.1
Property crime
Early legalizers 1.7 —8.3 —14.3 —21.5 —44.1
Rest of U. S. 6.0 1.5 —-5.9 —4.3 —8.8
Difference —4.3 —9.8 —84 —17.2 —35.3
2.9) (4.0) (4.2) (2.4) (5.8)
Murder
Early legalizers 6.3 0.5 2.7 —44.0 —40.8
Rest of U. S. 1.7 —8.8 5.2 —21.1 —24.6
Difference 4.6 9.3 —25 —229 —16.2
(7.4) (6.8) (8.6) (6.8) (10.7)
Effective abortion rate
at end of period
Early legalizers 0.0 64.0 238.6 327.0 327.0
Rest of U. S. 0.0 10.4 87.7 141.0 141.0

Difference 0.0 53.6 150.9 186.0 186.0




Delta log(violent crime),1985-97
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TABLE IV
PANEL-DATA ESTIMATES OF THE RELATIONSHIP BETWEEN
ABORTION RATES AND CRIME

In(Violent In(Property
crime per crime per In(Murder per
capita) capita) capita)
Variable 1) (2) (3) (4) 5) (6)

“Effective” abortion rate ~ —.137 —.129 —.095 —.091 —.108 -—.121
(X 100) (.023) (.024) (.018) (.018) (.036) (.047)
In(prisoners per capita) — —.027 — —.159 — —.231
t—1) (.044) (.036) (.080)
In(police per capita) — —.028 — —.049 — —.300
t—1 (.045) (.045) (.109)
State unemployment rate — .069 — 1.310 — .968
(percent unemployed) (.505) (.389) (.794)
In(state income per — .049 — .084 — —.098
capita) (.213) (.162) (.465)
Poverty rate (percent — —.000 — —.001 — —.005
below poverty line) (.002) (.001) (.004)
AFDC generosity (¢t — — .008 — .002 — —.000
15) (X 1000) (.005) (.004) (.000)
Shall-issue concealed — —.004 — .039 — —.015
weapons law (.012) (.011) (.032)
Beer consumption per — .004 — .004 — .006
capita (gallons) (.003) (.003) (.008)

R? .938 942 .990 .992 914 918



Event Studies

We have assumed that a treatment here is a static object

Suddenly you don’t have a program, then you implement it,
then you look at the effects

One might think that some programs take a while to get going
so you might not see effects immediately

Others initial effects might be large and then go away

In general there are many other reasons as well why short run
effects may differ from long run effects



Analyzing this is actually quite easy. It is just a matter of
redefining the treatment.

In principal you could define the treatment as “the first year of
the program" and throw out treatments beyond the second year

You could then define "being in the second year of the program"
and throw out other treatments

etc.

It is better to combine them in one regression. You could just
run the regression

Yi = Bo + anTig(iy(iy + @2Tog(iyitiy + @3 3g(i0e(0) + Og(i) + Pei) + €



Key Assumption

Lets think about the unbiasedness of DD
Going to the original model above we had
Y; = Bo + aTyiy) + 0t(i) + v + &

SO

a=(Ye1 — Ye0) — (Ya1 — Ya0)
=Bo+a+d+y+Eu—Bo—7—Ee0)
—(Bo+0+cg1 — Bo—Eao)
=+ (E¢1 — E40) — (Ea1 — Ea0)



So what you need is

E[(Ee1 —Z40) — (a1 —Z40)] =0

States that change their policy can have different levels of the
error term

But it must be random in terms of the change in the error term



This can be a problem (Ashenfelter’'s dip is clear example), but

generally is not that big a deal as states tend to not operate that
quickly

However you might be a bit worried that those states are special

People do two things to adjust for this



Placebo Policies

If a policy was enacted in say 1990 you could pretend it was
enacted in 1985 in the same place and then only use data
through 1989

This is done occasionally

The easiest (and most common) is in the Event framework:
include leads as well as lags in the model

Sort of the basis of Bertrand, Duflo, Mullainathan that | will talk
about



Figure 3: Effect of Switch to FDLP on Federal Borrowing Rate
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Figure 5: Effect of Lost Eligibility on Ln(Sticker Price)
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Time Trends

This is really common

One might be worried that states that are trending up or
trending down are more likely to change policy

One can include group xtime dummy variables in the model to
fix this problem

Lets go back to the base example but now assume we have
three years of data and that the policy is enacted between
periods 1 and 2



Our model is now:
Y = Bo+aT(iyi)+0at (i) #i+0gt(i)[1 — €] +021(2(i) = 2) +#i+eir

Notice that this is 6 parameters in 6 unknowns



We can write it as a Difference in difference in difference:

a=(Ye—Y)— (Yo — Ya1)
— (Yo1 — Y40) + (Y1 — Ya0)
z(a+5¢+52)—(54.+52)
— (0¢) + (a)

=

So that works



You can also just do this with state specific time trends

Again it is useful to think about this in terms of a two staged
regression

For regular fixed effects you just take the sample mean out of
X, T,andY

For fixed effects with a group trend, for each group you regress
X,T, and Y on a time trend with an intercept and take the
residuals

This has become a pretty standard thing to do and both
Donohue and Levitt did it



1TADLI V

SENSITIVITY OF ABORTION COEFFICIENTS TO ALTERNATIVE SPECIFICATIONS

Coefficient on the “effective” abortion rate
variable when the dependent variable is

In (Violent

In (Property

crime per crime per In Murder
Specification capita) capita) per capita)
Baseline —.129(.024) —.091(.018) —.121(.047)
Exclude New York —.097 (.030) —.097(.021) —.063(.045)
Exclude California —.145(.025) —.080(.018) —.151(.054)
Exclude District of Columbia —.149 (.025) —.112(.019) —.159(.053)
Exclude New York, California,
and District of Columbia —.175(.035) —.125(.017) —.273(.052)
Adjust “effective” abortion rate
for cross-state mobility —.148 (.027) —.099 (.020) —.140 (.055)
Include control for flow of
immigrants —.115(.024) —.063(.018) —.103(.047)
Include state-specific trends —.078 (.080) .143(.033)  —.379(.105)
Include region-year interactions  —.142 (.033) —.084(.023) —.123(.053)
Unweighted —.046 (.029) —.022(.023) .040 (.054)
Unweighted, exclude District of
Columbia —.149(.029) —.107(.015) —.140(.055)
Unweighted, exclude District of
Columbia, California, and
New York —.157(.037) —.110(.017) —.166 (.075)
Include control for overall
fertility rate (¢ — 20) —.127(.025) —.093(.019) —.123(.047)



Inference

In most of the cases discussed above, the authors had
individual data and state variation

Lets think about this in terms of “repeated cross sectional” data
so that

Yi = aTjau) + Zi6 + XjoB + 0oy + Yy + i

Note that one way one could estimate this model would be in
two stages:

o Take sample means of everything in the model by j and ¢
o Using obvious notation one can now write the regression
as:
Yo = aTy+Z;0 + X8+ 0; + v +
@ You can run this second regression and get consistent
estimates



This is a pretty simple thing to do, but notice it might give very
different standard errors

We were acting as if we had a lot more observations than we
actually might

Formally the problem is if

Ui = Mj(iy(i) T Ei

If we estimate the big model via OLS, we are assuming that «;
is i.i.d.

However, if there is an 7 this is violated



Since it happens at the same level as the variation in T}, it is
very important to account for it (Moulton, 1990) because

Wjr = Ni(i\e(i) T Eji

The variance of 7; might be small relative to the variance of ¢;,
but might be large relative to the variance of g;

The standard thing is to “cluster” by state xyear



Clustering

To review clustering lets avoid all this fixed effect notation and
just think that we have G groups and N; persons in each group.

Yoi = XgiB + .
Let

the total number of observations

We get asymptotics from the expression

1
G Ng G Ng

~ 1 . g
\/]W (B — ﬁ) ~ W Z ZXgngi W Z ZXgiugi

g=1 i=1 g=1 i=1



The standard OLS estimate (ignoring degree of freedom
corrections) would use:

G N

SN Xeitgi ~ N0, E(XgiX i)

g=1 i=1

1
1/]\/'T

= N(Oa E(XgiX;i)Oﬁ)
The White heteroskedastic standard errors just use

G N

> Xeitgi ~ N0, E(XgiXpuiy))

g=1 i=1

1
‘/NT




And approximate

G N

1
2 ~2
E(XgiXyitty;) ~ TN DD XXy

g=1 i=1

Clustering uses the approximation:

Y[ > x| (3
= X,‘I,t,~ ~N O,E X,‘ui
\/agz:l lz; 8178 = 818 .

And we approximate the variance as

N, A 1 &
| S| (S )| ~ o3 (St
i=1 i=1 =



Bertrand, Duflo, and Mullainathan “How Much Should
we Trust Difference in Differences” (QJE, 2004)

They notice that most (good) studies cluster by state xyear

However, this assumes that 7 is iid, but if there is serial
correlation in n;, this could be a major problem



TABLE 1
SURVEY OF DD PAPERS"

Number of DD papers
Number with more than 2 periods of data
Number which collapse data into before-after
Number with potential serial correlation problem
Number with some serial correlation correction
GLS
Arbitrary variance-covariance matrix
Distribution of time span for papers with more than 2 periods

Most commonly used dependent variables
Employment
Wages
Health/medical expenditure
Unemployment
Fertility/teen motherhood
Insurance
Poverty
Consumption/savings
Informal techniques used to assess endogeneity
Graph dynamics of effect
See if effect is persistent
DDD
Include time trend specific to treated states
Look for effect prior to intervention
Include lagged dependent variable
Number with potential clustering problem
Number which deal with it

92

69

4

65

5

4

1
Average

Percentile

1%

5%

10%

25%

50%

75%

90%

95%

99%
Number

18

13

8

6
4
4
3

3
Number
15
2
11
7
3
3
80
36

16.5
Value
3
3
4
5.75
11
21.5
36
51
83




TABLE II
DD REJECTION RATES FOR PLACEBO LAWS

A. CPS DATA
Rejection rate
Data P1s Po» Pa Modifications No effect 2% effect

1) CPS micro, log 675 .855
wage (.027) (.020)
2) CPS micro, log Cluster at state- 44 74
wage year level (.029) (.025)

3) CPS agg, log 509, .40, .332 435 2
wage (.029) (.026)
4) CPS agg, log 509, .440, 332  Sampling 49 663
wage wi/replacement (.025) (.024)
5) CPS agg, log 509, .440, 332 Serially 05 988
wage uncorrelated laws (.011) (.006)
6) CPS agg, 4170, .418, .367 .46 .88
employment (.025) (.016)
7) CPS agg, hours .151, .114, .063 1265 .280
worked (.022) (.022)
8) CPS agg, changes  —.046, .032, .002 0 978
in log wage (.007)

B. MONTE CARLO SIMULATIONS WITH SAMPLING FROM AR(1) DISTRIBUTION

Rejection rate

Data P Modifications No effect 2% effect

9) AR(1) 8 373 725
(.028) (.026)
10) AR(1) 0 053 783
(.013) (.024)
11) AR(1) 2 123 738
(.019) (.025)
12) AR(1) 4 .19 713
(.023) (.026)
13) AR(1) 6 .333 700
(.027) (.026)
14) AR(1) —.4 .008

7
(.005) (.026)




They look at a bunch of different ways to deal with problem



TABLE IV
PARAMETRIC SOLUTIONS

Rejection rate

Data Technique Estimated p; No effect 2% Effect
A. CPS DATA

1) CPS aggregate OLS .49 .663
(.025) (.024)

2) CPS aggregate Standard AR(1) .381 .24 .66
correction (.021) (.024)

3) CPS aggregate AR(1) correction .18 .363
imposing p = .8 (.019) (.024)

B. OTHER DATA GENERATING PROCESSES

4) AR(1),p = .8 OLS .373 765

(.028) (.024)

5) AR(1),p = .8 Standard AR(1) 622 .205 715

correction (.023) (.026)

6) AR(1),p = .8 AR(1) correction .06 .323

imposing p = .8 (.023) (.027)

7) AR(2), p; = .55 Standard AR(1) 444 .305 625

pe = .35 correction (.027) (.028)
8) AR(1) + white Standard AR(1) .301 .385 4

noise, p = .95, correction (.028) (.028)

noise/signal = .13




TABLE VIII
ARBITRARY VARIANCE-COVARIANCE MATRIX

Rejection rate

Data Technique N No effect 2% effect
A. CPS DATA
1) CPS aggregate OLS 50 .49 .663
(.025) (.024)
2) CPS aggregate Cluster 50 .063 .268
(.012) (.022)
3) CPS aggregate OLS 20 .385 535
(.024) (.025)
4) CPS aggregate Cluster 20 .058 .13
(.011) (.017)
5) CPS aggregate OLS 10 443 .51
(.025) (.025)
6) CPS aggregate Cluster 10 .08 12
(.014) (.016)
7) CPS aggregate OLS 6 .383 433
(.024) (.025)
8) CPS aggregate Cluster 6 115 .118
(.016) (.016)
B. AR(1) DISTRIBUTION
9) AR(1),p = .8 Cluster 50 .045 275
(.012) (.026)
10) AR(1),p=10 Cluster 50 .035 .74
(.011) (.025)



Conley and Taber

“Inference with Difference in Differences with a Small Number
of Policy Changes," with T. Conley, (RESTAT, Feb., 2011)

We want to address one particular problem with many
implementations of Difference in Differences

Often one wants to evaluate the effect of a single state or a
few states changing/introducing a policy

A nice example is the Georgia HOPE Scholarship Program-a
single state operated as the treatment



Simple Case

Assuming simple case (one observation per state xyear no
regressors):

th:asz‘FHj‘i"Yt‘i‘??jt

Run regression of Y, on presence of program (7};), state
dummies and time dummies



Simple Example

Suppose there is only one state that introduces the program at
time ¢*

Denote that state asj =1

It is easy to show that (with balanced panels)

aFE:a+< Zm,)
tl‘*Jrl
1 N N 1 r*
- ((Nl)jz; (T - Z U e D Z"ﬂ) |

t 41 ] 2

E(njl ‘ djla 9]7717)(1'1‘) =0.
it is unbiased.



However, this model is not consistent as N — oo because the
first term never goes away.

On the other hand, as N — oo we can obtain a consistent
estimate of the distribution of (ﬁ S me— 230, nn)
so we can still do inference (i.e. hypothesis testing and
confidence interval construction) on a.

This places this work somewhere between small sample
inference and Large Sample asymptotics



Base Model

Most straightforward case is when we have 1 observation per
group xyear as before with

Y = aTje + X + 6+ + 1



Generically define Zj, as residual after regressing S;; on group
and time dummies

Then _ L
th = osz, ‘|‘XJ{;5 + 7A7}'t'

“Difference in Differences” is just OLS on this regression
equation



We let Ny denote the number of “treatment” groups that change
the policy (i.e. dj; changes during the panel)

We let N; denote the number of “control” groups that do not
change the policy (i.e. T}, constant)

We allow N — oo but treat N, as fixed



Assumption

((Xj1,mj1) , s (Xjr, 7)) s 1D across groups; (nj1, .., mir) is
expectation zero conditional on (dji, ...,d;r) and (Xji, ..., Xjr) ;
and all random variables have finite second moments.

Assumption

Ni+Ny T

P
Ni +No J; 2 XKy 5

=1

where Y, is finite and of full rank.



Proposition

Under Assumptions 1.1-1.2, ASN; — o : B 5 B and @ is
unbiased and converges in probability to o + W, with:

W S Y (T =T)) (me — 7))
Zjv:% Zszl (Tjt - Tj)z :

Bad thing about this: Estimator of « is not consistent

Good thing about this: We can identify the distribution of

a — (.

As a result we can get consistent estimates of the distribution of
a up to a.



To see how the distribution of (1, — 77;)can be estimated, notice
that for the controls

~ A~

Yy — X,3=X},(8— B) + (nu — 7, — 7, +7)
£> (”jt - ﬁ/)

So the distribution of (1 — 7;) is identified using residuals from
control groups with the following additional assumption

Assumption

(nj1, ..., mjr) is independent of (dji, ..., dir) and (Xji, ..., Xjr) , with
a bounded density.



Let

I(a) =plimPr((0 — o) <a | {Tp,j=1,..,No,t =1, ...,

For the Ny=1 case we can estimate I'(a) using

f(a)ENL Z

U= No+1

More generally

r
< 1 >N0 No+N, No+N;

6=No+1  LlNy=No+1

Mot (ST (T —Th) (17& - ??Zzsz)
1

2?:1 (Tlt - Tl)z

Z1Zz1( J)(

<a

T}).

Z thl(t



Proposition

Under Assumptions 1.1 and 1.2, f(a) converges uniformly to
['(a).

To see why this is useful, first consider testing

Hy:a=q

If T were continuous we would 95% acceptance region by
[Alower, Aupper| such that



T (Aigwer — a9) = 0.025.

Reject if a is outside [Ajower, Aupper] -

(In practice since T is not continuous, we need to approximate
this)

As N1 — oo,the coverage probability of this interval will
converge to 95%.



Practical Example

To keep things simple suppose that:

o There are two periods (T = 2)
o There is only one “treatment state”
o Binary treatment (71, = 0,71, = 1)



Now consider testing the null: o =0

o First run DD regression of ¥, on Tj;, X;;,time dummies and
group dummies

o The estimated regression equation (abusing notation) can
just be written as

AY) =7 + QAT + AX/B +v;

o Construct the empirical distribution of v; using control
states only

@ now since the null is o« = 0 construct
v(0) =AY, —5 — AX]B

o If this lies outside the 0.025 and 0.975 quantiles of the
empirical distribution you reject the null



CDE




CDE

0.975

0.025




With two control states you would just get

vi(a®) + v (a™)

and simulate the distribution of the sum of two objects

With T > 2 and different groups that change at different points
in time, expression gets messier, but concept is the same



Model 2

More that 1 observation per state xyear
Repeated Cross Section Data (such as CPS):

Yi = aTju) +XiB + 0 + %) + i) + &
Let M(j,t) be the set of i in state j at time ¢

|M(j(i),1)| be the size of that set



We can rewrite this model as

Y, = )\j(,-),(i)+Z{6+si
)\jt = Oﬂ},—i—XJ{,B-f—ej-i-%—i-T]j,

Suppose first that the number if individuals in a (j, ) cell is
growing large with the sample size (i.e. |M(j(i),t)| — o0).

In that case one can estimate the model in two steps:

o First regress Y; on Z; and (j, r) dummies-this gives us a
consistent estimate of \;

o Now the second stage is just like our previous model



We show that one can ignore the first stage and do inference
as in the previous section

This is just one example-we do a bunch more different cases in
the paper



Monte Carlo Analysis

We also do a Monte Carlo Analysis to compare alternative
approaches

The model we deal with is

sz :OlTjt + BX]t + 9j + Yt + Njt
Nt =PNjt—1 + Ujt

uj; ~N(0, 1)

Xjr =axdji + Vjy

viy ~N(0,1)



In base case

o a=1

o 5 Treatment groups
oT=10

o Tj binary

o turns on at 2,4,6,8,10
0 p=05

@ a. =05

(o)

@
I
—



Monte Carlo Results

Size and Power of Test of at Most 5% Level®
Basic Model:

Y = adj + BXje +0; + v + ¢

Njt = PNje—1 + Ejt,0 = 1, X = apdjy + vy

Percentage of Times Hypothesis is Rejected out of 10,000 Simulations

Size of Test (Hy:a=1)

Power of Test (Hp : a = 0)

Classic Conley Conley | Classic Conley Conley

Model Cluster Taber (FA*) Taber (f) Model Cluster Taber (FA*) Taber (f)
Base Model® 14.23 16.27 4.88 5.52 73.23 66.10 54.08 55.90
Total Groups=1000 14.89 17.79 4.80 4.95 73.97 67.19 55.29 55.38
Total Groups=50 14.41 15.55 5.28 6.65 71.99 64.48 52.21 56.00
Time Periods=2 5.32 14.12 5.37 6.46 49.17 58.54 49.13 52.37
Number Treatments=1¢ 18.79 84.28 4.13 5.17 40.86 91.15 13.91 15.68
Number Treatments=2¢ 16.74 35.74 4.99 5.57 52.67 62.15 29.98 31.64
Number Treatments=10¢ | 14.12 9.52 4.88 5.90 93.00 84.60 82.99 84.21
Uniform Error? 14.91 17.14 5.30 5.86 73.22 65.87 53.99 55.32
Mixture Error® 14.20 15.99 4.50 5.25 55.72 51.88 36.01 37.49
p=0 4.86 15.30 5.03 5.57 82.50 86.42 82.45 83.79
p=1 30.18 16.94 4.80 5.87 54.72 34.89 19.36 20.71
a, =0 14.30 16.26 4.88 5.55 73.38 66.37 54.08 55.93
a; =2 1418 16.11 4.82 5.49 73.00 65.91 54.33 55.76
a; =10 1036 9.86 11.00 11.90 51.37  47.78 53.29 54.59




